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It is shown that linear separation relations are fundamental objects for integration by quadratures of Stäckel-
separable Liouville-integrable systems �the so-called Stäckel systems�. These relations are further employed for
the classification of Stäckel systems. Moreover, we prove that any Stäckel-separable Liouville-integrable
system can be lifted to a bi-Hamiltonian system of Gel’fand-Zakharevich type. In conjunction with other
known result this implies that the existence of bi-Hamiltonian representation of Liouville-integrable systems is
a necessary condition for Stäckel separability.
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I. INTRODUCTION

The Hamilton-Jacobi �HJ� theory seems to be one of the
most powerful methods of integration by quadratures for a
wide class of systems described by nonlinear ordinary differ-
ential equations, with a long history as a part of analytical
mechanics. The theory in question is closely related to the
Liouville-integrable Hamiltonian systems. The milestones of
this theory include the works of Stäckel, Levi-Civitá, Eisen-
hart, Woodhouse, Kalnins, Miller, and Benenti. The majority
of results were obtained for a very special class of integrable
systems, important from the physical point of view, namely,
for the systems with quadratic-in-momenta first integrals.

The first efficient construction of the separation variables
for dynamical systems was discovered by Sklyanin �1�. He
adapted the methods of soliton theory, i.e., the Lax represen-
tation and r-matrix theory for systematic derivation of sepa-
ration coordinates. In this approach the integrals of motion in
involution appear as coefficients of characteristic equation
�spectral curve� of the Lax matrix. This method was success-
fully applied for separating variables in many integrable sys-
tems �1–8�.

Recently, a modern geometric theory of separability on
bi-Poissonian manifolds was developed �9–15�. This theory
is closely related to the so-called Gel’fand-Zakharevich �GZ�
bi-Hamiltonian systems �16,17�. The theory in question in-
cludes Liouville-integrable systems with integrals of motion
being functions quadratic in momenta as a very special case.
In this approach the constants of motion are closely related
to the so-called separation curve which is intimately related
to the Stäckel separation relations. The separation curve aris-
ing in the geometric approach is closely related to its coun-
terpart in the r-matrix approach. In fact, these curves are
identical for linear r matrix and related by exponentiation of
momenta in the spectral curve for dynamical �quadratic� r
matrix �6,14�.

In the present paper we develop in a systematic fashion a
separability theory of the Liouville-integrable systems which
are of the GZ type, including as a special case the class of
systems with quadratic-in-momenta first integrals. First of
all, we treat Stäckel-separable systems according to the form
of separation relations and make some observations related
to their classification. Then we construct a quasi-bi-
Hamiltonian representation of Stäckel systems on 2n-

dimensional phase space and lift them to the related GZ bi-
Hamiltonian systems on the extended �2n+k�-dimensional
phase space. This result proves that bi-Hamiltonian property
is common to all classes of the Stäckel systems considered.
In other words, we prove that the existence of bi-
Hamiltonian representation for Liouville-integrable systems
is a necessary condition for their Stäckel separability, i.e., for
these systems for which separation relations are linear in all
constants of motion which are in involution. Finally let us
mention that up to now such a proof was available only for a
distinguished class of the so-called Benenti systems �18�,
where k=1 and all constants of motion are quadratic in mo-
menta.

II. SEPARABLE STÄCKEL SYSTEMS

Consider a Liouville-integrable system on a
2n-dimensional phase space M. Thus, we have M �u
= �q1 , . . . ,qn , p1 , . . . , pn�T and there are n functions Hi�q , p� in
involution with respect to the canonical Poisson tensor �,

�Hi,Hj�� = ��dHi,dHj� = �dHi,�dHj� = 0, i, j = 1, . . . ,n ,

where �· , ·� is the standard pairing of TM and T�M. Canon-
icity of � means that the only nonzero Poisson brackets
among the coordinates are �qi , pj��=�ij. The functions Hi
generate n Hamiltonian dynamic systems

uti
= �dHi = XHi

, i = 1, . . . ,n , �1�

where XHi
are called the Hamiltonian vector fields.

The HJ method for solving Eq. �1� essentially amounts to
the linearization of the latter via a canonical transformation,

�q,p� → �b,a�, ai = Hi, i = 1, . . . ,n . �2�

In order to find the conjugate coordinates bi it is necessary to
construct a generating function W�q ,a� of transformation �2�
such that

bj =
�W

�aj
, pj =

�W

�qj
.

The function W�q ,a� is a complete integral of the associated
Hamilton-Jacobi equations
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Hi	q1, . . . ,qn,
�W

�q1
, . . . ,

�W

�qn

 = ai, i = 1, . . . ,n . �3�

In the �b ,a� representation the ti dynamics is trivial:

�aj�ti
= 0, �bj�ti

= �ij ,

whence

bj�q,a� =
�W

�aj
= tj + cj, j = 1, . . . ,n , �4�

where cj are arbitrary constants.
Equation �4� provides implicit solutions for Eq. �1�. Solv-

ing it for qj is known as the inverse Jacobi problem. The
reconstruction in explicit form of trajectories qj =qj�ti� is in
itself a highly nontrivial problem from algebraic geometry,
which is beyond the scope of this paper.

The main difficulty in applying the above method to a
given Liouville-integrable system in given canonical coordi-
nates �q , p� consists of solving system �3� for W. In general
this is a hopeless task, as Eq. �3� is a system of nonlinear
coupled partial differential equations. In essence, the only
hitherto known way of overcoming this difficulty is to find
distinguished canonical coordinates, denoted here by �� ,��,
for which there exist n relations

�i��i,�i;a1, . . . ,an� = 0, i = 1, . . . ,n ,

ai � R, det� ��i

�aj
� � 0, �5�

such that each of these relations involves only a single pair
of canonical coordinates �1�. The determinant condition in
Eq. �5� means that we can solve Eq. �5� for ai and express ai
in the form ai=Hi�� ,��, with i=1, . . . ,n.

If the functions Wi��i ,a� are solutions of a system of n
decoupled ordinary differential equations obtained from Eq.
�5� by substituting �i=

dWi��i,a�
d�i

,

�i	�i,�i =
dWi��i,a�

d�i
,a1, . . . ,an
 = 0, i = 1, . . . ,n , �6�

then the function

W��,a� = 

i=1

n

Wi��i,a�

is an additively separable solution of all the Eq. �6�, and
simultaneously it is a solution of all Hamilton-Jacobi equa-
tions �3� because solving Eq. �5� to the form ai=Hi�� ,�� is a
purely algebraic operation. The Hamiltonian functions Hi
Poisson commute since the constructed function W�� ,a� is a
generating function for the canonical transformation �� ,��
→ �b ,a�. The distinguished coordinates �� ,�� for which the
original Hamilton-Jacobi equations �3� are equivalent to a set
of separation relations �6� are called the separation coordi-
nates.

Of course, the original Jacobi formulation of the method
was a bit different from the one presented above, and was
made for a particular class of Hamiltonians. Nevertheless it
contained all important ideas of the method. Jacobi himself

doubted whether there exists a systematic method for con-
struction of separation coordinates. Indeed, for many decades
of development of separability theory, the method did not
exist. Only recently, at the end of the 20th century, after more
then 100 years of efforts, two different constructive methods
were suggested, the first related to the Lax representation and
the second related to the bi-Hamiltonian representation for a
given integrable system.

We would like to stress that all results of the present paper
are derived directly from separation relations �5�, thus con-
firming their fundamental role in the modern separability
theory.

In what follows we restrict ourselves to considering a spe-
cial case of Eq. �5� when all separation relations are affine in
Hi:



k=1

n

Si
k��i,�i�Hk = �i��i,�i�, i = 1, . . . ,n , �7�

where Si
k and �i are arbitrary smooth functions of their argu-

ments. Relations �7� are called the generalized Stäckel sepa-
ration relations and the related dynamical systems are called
the Stäckel-separable ones. The matrix S= �Si

k� will be called
a generalized Stäckel matrix. The reason behind this name is
the fact that conditions �7� with Si

k being � independent and
�i being quadratic in momenta � are equivalent to the origi-
nal Stäckel conditions for separability of Hamiltonians Hi.
To recover the explicit Stäckel form of the Hamiltonians, it
suffices to solve linear system �7� with respect to Hi.

Although the restriction of linearity appears to be very
strong, for all known separable systems �at least to the
knowledge of the author�, the general separation conditions
can be reduced to form �7� upon suitable choice of integrals
of motion Hi. The possible explanation of this fact is that we
simply have no mathematical tools for effective construction
of separation coordinates for non-Stäckel-separable systems,
so that part of separability theory is yet terra incognita.

Let us come back to the Stäckel case. If in Eq. �7� we
further have Si

k��i ,�i�=Sk��i ,�i� and �i��i ,�i�=���i ,�i�,
then the separation conditions can be represented by n copies
of the curve



k=1

n

Sk��,��Hk = ���,�� �8�

in �� ,�� plane, called a separation curve. The copies in
question are obtained by setting �=�i and �=�i for i
=1, . . . ,n.

Remark. There is an important special case when Eq. �8�
is an arbitrary nonsingular compact Riemann surface �, i.e.,
when Sk�� ,�� and ��� ,�� are polynomials of � and � of
certain specific form. Then one can find the genus of this
curve and basic holomorphic differentials in a standard fash-
ion and Jacobi inversion problem �4� can be equivalently
expressed by the Abel map of the Riemann surface � into its
Jacobi variety and solved in the language of Riemann theta
functions �see �19� and references therein�.

From now on we will consider Stäckel-separable systems
with separation relations of the most general form �Eq. �7��.
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For reasons to be explained in Sec. III, we collect the terms
from the left-hand side of Eq. �7� as follows:



k=1

m

�i
k��i,�i�H�k���i� = �i��i,�i�, i = 1, . . . ,n , �9�

where

H�k���� = 

i=1

nk

�nk−iHi
�k�, n1 + ¯ + nm = n ,

and impose the normalization �i
m��i ,�i�=1.

As separation relations �7� play the fundamental role in
the Hamilton-Jacobi theory, it is natural to employ them for
classification of Stäckel systems. The form of separation re-
lations �9� allows us to classify the associated Stäckel sys-
tems. Actually, any given class of Stäckel-separable systems
can be represented by a fixed Stäckel matrix S and the func-
tions �. The matrix S is uniquely defined by m vectors �k

= ��1
k , . . . ,�n

k�T, with k=1, . . . ,m, and the partition
�n1 , . . . ,nm� of n. Note that in our normalization we have
�m= �1, . . . ,1�T.

For example, the most intensively studied systems in the
20th century, those related to one-particle separable dynam-
ics on Riemannian manifolds with flat or constant-curvature
metrics, belong to the simplest class with m=1 and the func-
tions �i being quadratic in the momenta �i:



j=1

n

Hj�i
n−j = 1

2 f i��i��i
2 + �i��i�, i = 1, . . . ,n . �10�

This class, which will hereinafter be referred to as the Be-
nenti class, includes systems generated by conformal Killing
tensors �18,20–22�, as well as bicofactor systems, generated
by a pair of conformal Killing tensors �23–28�. Here the
functions f i define the Stäckel metric, while the functions �i
define a separable potential. When f i= f��i� and f is a poly-
nomial of order not higher than n+1, then the associated
Stäckel metric is of constant curvature.

Another class of separable systems also has m=1 but the
functions �i are now exponential in the momenta,



j=1

n

Hj�i
n−j = exp�a�i� + exp�− b�i� + �i��i�, i = 1, . . . ,n ,

where �i defines a separable potential. This class includes
such systems as the periodic Toda lattice �13�, the
Korteweg–de Vries �KdV� dressing chain �14�, and the
Ruijsenaars-Schneider system �11�.

We also know some particular examples from the classes
with m	1. For instance, stationary flows of the Boussinesq
hierarchy belong to the class with m=2, n1=1, n2=n−1, and
�i

1=�i �11,12�. Dynamical system on loop algebra sl�3� be-
longs to the class with m=2, n1=2, n2=4, and �i

1=�i �15�. In
both cases the functions �i are cubic in the momenta, so
these separation relations belong to the following class:

�i

j=1

n1

Hj
�1��i

n1−j + 

j=1

n2

Hj
�2��i

n1−j

= 1
3 f��i��i

3 + �i�1��i� + �2��i�, i = 1, . . . ,n , �11�

where ��1 and �2 give rise to the separable potentials.
Finally, systems from the classes with 1
m�n, �i

k=�i
�k,

and �k�N and with �i quadratic in the momenta, i.e.,



k=1

m

�i
�kH�k���i� = 1

2 f i��i��i
2 + �i��i�, i = 1, . . . ,n , �12�

were constructed in �29�.

III. BI-HAMILTONIAN PROPERTY OF STÄCKEL
SYSTEMS

We start this section with a few definitions important for
further considerations. As the Hamiltonian formalism is of
tensorial type, there is no need to restrict ourselves to non-
degenerate canonical representation of Hamiltonian vector
fields. Given a manifold M, a Poisson operator � on M is
a bivector �second-order contravariant tensor field� with van-
ishing Schouten bracket

��,��S = 0.

Then the bracket

�f1, f2�� ª �df1,�df2�, f1, f2 � C
�M� ,

is the Lie bracket; i.e., it is skew symmetric and satisfies the
Jacobi identity. A function c :M→R is called the Casimir
function of the Poisson operator � if for an arbitrary function
f :M→R we have �f ,c��=0 �or, equivalently, if �dc=0�. A
linear combination ��=�1−��0 ���R� of two Poisson op-
erators �0 and �1 is called a Poisson pencil if the operator
�� is Poissonian for any value of the parameter �, i.e., when
��0 ,�1�S=0. In this case we say that �0 and �1 are compat-
ible. Given a Poisson pencil ��=�1−��0 we can often con-
struct a sequence of vector fields Xi on M that have two
Hamiltonian representations �the so-called bi-Hamiltonian
chain�,

Xi = �1dhi = �0dhi+1, �13�

where hi�C
�M� are called the Hamiltonians of chain �13�
and where i is a discrete index. This sequence of vector fields
may or may not terminate in zero depending on the existence
of the Casimir functions for the pencil.

Consider a bi-Poissonian manifold �M ,�0 ,�1� of dim M
=2n+m, where �0 , �1 is a pair of compatible Poisson ten-
sors of rank 2n. We further assume that the Poisson pencil ��

admits m Casimir functions which are polynomial in the pen-
cil parameter � and have the form

h�j���� = 

i=0

nj

�nj−ihi
�j�, j = 1, . . . ,m , �14�

so that n1+ ¯ +nm=n and hi
�j� are functionally independent.

The collection of n bi-Hamiltonian vector fields
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��dh�j���� = 0 ⇔ Xi
�j� = �1dhi

�j� = �0dhi+1
�j� ,

i = 1, . . . ,nj, j = 1, . . . ,m , �15�

is called the GZ system of the bi-Poissonian manifold M.
Notice that each chain starts from a Casimir of �0 and ter-
minates with a Casimir of �1. Moreover, all hi

�j� pairwise
commute with respect to both Poisson structures,

Xi
�j��hl

�k�� = �dhl
�k�,�0dhi+1

�j� � = �dhl
�k�,�1dhi

�j�� = �hl
�k�,hi+1

�j� ��0

= �hl
�k�,hi

�j���1
= 0.

In Sec. IV we prove that an arbitrary Stäckel system on
the phase space M with separation conditions given by Eq.
�9� can be lifted to a GZ bi-Hamiltonian system in the ex-
tended phase space M.

As recently proved in �15�, the Stäckel Hamiltonians from
separation relations �7� admit the following quasi-bi-
Hamiltonian representation:

�1dHi = 

j=1

n

Fij�0dHj, i = 1, . . . ,n , �16�

where �0 is a canonical Poisson tensor

�0 = 	 0 In

− In 0

 ,

In is an n�n unit matrix, �1 is a noncanonical Poisson ten-
sor of the form

�1 = 	 0 �n

− �n 0

, �n = diag��1, . . . ,�n� ,

compatible with �0, and the control matrix F has the form

F = �S−1�nS� , �17�

where S is the associated Stäckel matrix.
To have a better insight into the functions Fij, we will find

another representation for the entries Fij = �S−1�nS�ij of F. To
this end consider a system of n linear equations for Vk, with
k=1, . . . ,n;



k=1

n

Si
k��i,�i�Vk = 


j=1

n

�iSi
j��i,�i�aj, i = 1, . . . ,n , �18�

where ai, with i=1, . . . ,n, are some parameters. The solution
of this system has the form

Vr = 

p=1

n

�rpap, �rp =
det�S�rp��

det S
, �19�

where S�rp� is the matrix S with the rth column replaced by
(�1S1

p��1�1� , . . . ,�nSn
p��n�n�)T, the string of coefficients at

the parameter ap. On the other hand, as V= �V1 , . . . ,Vn�T and
a= �a1 , . . . ,an�T, system �18� can be written in the matrix
form as

SV = �nSa ⇒ V = S−1�nSa = �a ,

where �ij = �S−1�nS�ij. Comparing this result with Eqs. �17�
and �19� we find

Fij = �S−1�nS�ij =
det�S�ij��

det S
. �20�

Now, the important question is which entries Fij are non-
zero when the separation relations take form �7�. In other
words, we want to know for which i , j det�S�ij���0, i.e., the
matrix S�ij� has no linearly dependent columns.

To answer this question, we first rewrite quasi-bi-
Hamiltonian chain �16� in the equivalent form

�1dHi
�k� = 


l=1

m



j=1

nl

Fi,j
k,l�0dHj

�l�, k = 1, . . . ,m, i = 1, . . . ,nk,

�21�

adapted to the separation relations written in form �9�. Then
a simple inspection shows that

Fi,i+1
k,k = 1, Fi,1

k,l � Fi
k,l � 0.

Hence, quasi-bi-Hamiltonian representation �21� takes the
form

�1dHi
�k� = �0dHi+1

�k� + 

l=1

m

Fi
k,l�0dH1

�l�, Hnk+1
�k� = 0, �22�

where

Fi
k,l =

det Si
�k,l�

det S
,

and Si
�k,l� is the Stäckel matrix S with �n1+ ¯ +nk−1+ i�th

column replaced by ��1
l �1

nl , . . . ,�n
l �n

nl�T.
In the rest of this section we show that representation �22�

can be lifted to a GZ bi-Hamiltonian form. First, we extend
the 2n-dimensional phase space M to M=M �Rm with ad-
ditional coordinates ci, where i=1, . . . ,m, on Rm. Then, we
extend the Hamiltonians as follows:

Hi
�k��q,p� → hi

�k��q,p,c� = Hi
�k��q,p� − 


l=1

m

Fi
k,l�q,p�cl.

�23�

From Eqs. �18�–�20�we infer that the separation relations for
hi

�k� read



k=1

m

�i
k��i,�i�h�k���i� = �i��i,�i�, i = 1, . . . ,n , �24�

where

h�k���� = 

i=0

nk

�nk−ihi
�k�, h0

�k� = ck, n1 + ¯ + nm = n .

Moreover, for the functions Fi
k,l we have the same quasi-

bi-Hamiltonian representation as for Hi
�k�:

�1dFi
k,l = �0dFi+1

k,l + 

r=1

m

Fi
k,r�0dF1

r,l. �25�

This was proved for arbitrary Stäckel systems in �15�.
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Denote the push-forwards of the Poisson tensors �0 and
�1 to M by �0 and �1D. Both �0 and �1D are degenerate
and possess common Casimirs ci, with i=1, . . . ,m. We have

�0 = 	�0 0

0 0

, �1D = 	�1 0

0 0

 . �26�

Relations �22�–�26� imply that on M we have a quasi-bi-
Hamiltonian representation with respect to the Poisson ten-
sors �0 and �1D of the form

�1Ddhi
�k� = �0dhi+1

�k� + 

l=1

m

Fi
k,l�0dh1

�l�, F0
k,l = − �kl, hnk+1

�k� = 0.

�27�

Now introduce the bivector

�1 ª �1D + 

k=1

m

X1
�k� ∧ Zk,

where

X1
�k� = �0dh1

�k�, Zk =
�

�ck
.

First we show that the bivector �1 is Poissonian. Using
the properties of the Schouten bracket we have

��1,�1�S = 2

i

Zi ∧ LX1
�i��1D + 2


i,j
�X1

�i�,Zj� ∧ Zi ∧ X1
�j�,

�28�

where LX means the Lie derivative in the direction of X, and
�· , ·� is the commutator of vector fields. Now, let us prove
that

LX1
�r��1D = 


l

�0dF1
r,l ∧ X1

�l�. �29�

From Eq. �27� we have

Yk ª �1Ddhnk

�k� = 

l

Fnk

k,lX1
�l�,

�1DdFnk

k,l = 

r

Fnk

k,r�0dF1
r,l.

From the Poissonian property of �1D it follows that

0 = LYk
�1D

= 

l

�Fnk

k,lLX1
�l��1D − �1DdFnk

k,l ∧ X1
�l��

= 

l
�Fnk

k,lLX1
�l��1D − 	


r

Fnk

k,r�0dF1
r,l
 ∧ X1

�l��
= 


r

Fnk

k,rLX1
�r��1D − 


r

Fnk

k,r

l

�0dF1
r,l ∧ X1

�l�

= 

r

Fnk

k,r�LX1
�r��1D − 


l

�0dF1
r,l ∧ X1

�l�� .

Hence Eq. �29� is satisfied. On the other hand,

�X1
�i�,Zj� = �0dF1

i,j ,

so Eq. �28� becomes

��1,�1�S = 2

i,j

Zi ∧ �0dF1
i,j ∧ X1

�j� + 2

i,j

�0dF1
i,j ∧ Zi ∧ X1

�j�

= 0,

and thus �1 is Poissonian.
Moreover, the Poisson bivectors �0 and �1 are compatible

as

��0,�1�S = 

i

�Zi ∧ LX1
�i��0 − X1

�i� ∧ LZi
�0� = 0.

Finally, the vector fields Xi
�k� form bi-Hamiltonian chains

with respect to �0 , �1. Indeed, we have

�1dhi
�k� = �0dhi+1

�k� + 

l=1

m

Fi
k,l�0dh1

�l� + 

l=1

m

�X1
�l� ∧ Zl�dhi

�k�

= �0dhi+1
�k� = Xi+1

�k� ,

as



l=1

m

�X1
�l� ∧ Zl�dhi

�k� = − 

l=1

m

Fi
k,lX1

�l� = − 

l=1

m

Fi
k,l�0dh1

�l�.

Quite obviously,

�1dhnk

�k� = 0, X1
�l� = �1dcl = �1dh0

�l�,

so h�k���� are polynomial in � Casimir functions of the Pois-
son pencil ��=�1−��0.

IV. EXAMPLES

Here we illustrate the above results with three examples
of separable systems with three degrees of freedom. Two of
them are classical Stäckel systems with separation relations
quadratic in the momenta, while the third example has sepa-
ration relations cubic in the momenta.

A. Example 1

Consider the separation relations on a six-dimensional
phase space given by the bare �potential-free� separation
curve

H1�2 + H2� + H3 = 1
8�2

from class �10�. This curve corresponds to geodesic motion
for a classical Stäckel system �of Benenti type�. The trans-
formation �� ,��→ �q , p� to the flat coordinates of associated
metric follows from the point transformation

�1�q� = q1 = �1 + �2 + �3,

�2�q� = 1
4q1

2 + 1
2q2 = �1�2 + �1�3 + �2�3,

�3�q� = 1
4q1q2 + 1

4q3 = �1�2�3.

In the flat coordinates the Hamiltonians take the form
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H1 = p1p3 + 1
2 p2

2,

H2 = 1
2q3p3

2 − 1
2q1p2

2 + 1
2q2p2p3 − 1

2 p1p2 − 1
2q1p1p3,

H3 = 1
8q2

2p3
2 + 1

8q1
2p2

2 + 1
8 p1

2 + 1
4q1p1p2 + 1

4q2p1p3 − 1
4q1q2p2p3

− 1
2q3p2p3,

and admit a quasi-bi-Hamiltonian representation �16� with
the operators �0 and �1 of the form

�0 = 	 0 I3

− I3 0

 , �30�

�1 =
1

2�
0 0 0 q1 − 1 0

0 0 0 q2 0 − 1

0 0 0 2q3 q2 q1

− q1 − q2 − 2q3 0 p2 p3

1 0 − q2 − p2 0 0

0 1 − q1 − p3 0 0

� , �31�

and the control matrix

F = � q1 1 0

− 1
4q1

2 − 1
2q2

2 0 1
1
2q1q2 + 1

4q3 0 0
� .

On the extended phase space of dimension seven, with an
additional coordinate c, we have the extended Hamiltonians
�23�

h0 = c ,

h1 = p1p3 + 1
2 p2

2 − cq1,

h2 = 1
2q3p3

2 − 1
2q1p2

2 + 1
2q2p2p3 − 1

2 p1p2 − 1
2q1p1p3

+ � 1
4q1

2 + 1
2q2

2�c ,

h3 = 1
8q2

2p3
2 + 1

8q1
2p2

2 + 1
8 p1

2 + 1
4q1p1p2 + 1

4q2p1p3 − 1
4q1q2p2p3

− 1
2q3p2p3 − � 1

2q1q2 + 1
4q3�c .

They form a bi-Hamiltonian chain

�0dh0 = 0,

�0dh1 = X1 = �1dh0,

�0dh2 = X2 = �1dh1,

�0dh3 = X3 = �1dh2,

0 = �1dh3,

with the Poisson operators �0 and �1, where

�0 = 	�0 0

0 0

 , �1 = 	 �1 X1

− X1
T 0


 .

The separation curve for the extended system takes the form

c�3 + h1�2 + h2� + h3 = 1
8�2.

B. Example 2

Consider now separation relations on a six-dimensional
phase space given by the bare separation curve

H̄1�3 + H̄2�2 + H̄3 = 1
8�2

from class �12�. When written using notation �9�, this curve
takes the form

�2�H1
�1�� + H2

�1�� + H1
�2� = 1

8�2

and again represents geodesic motion for a classical Stäckel
system �this time of non-Benenti type�. Using the coordi-
nates, the Hamiltonians, and the functions �i from the previ-
ous example, we find that

H̄1 = H1
�1� = −

1

�2
H2,

H̄2 = H2
�1� = H1 −

�1

�2
H2,

H̄3 = H1
�2� = H3 −

�3

�2
H2.

Thus we see that the Hamiltonians H̄i are related to Hi
through the so-called generalized Stäckel transform �see �30�
for further details on the latter�. One can show that the metric

tensor associated to the Hamiltonian H̄1 is not flat anymore.

The Hamiltonians H̄i form a quasi-bi-Hamiltonian chain
�16� with Poisson tensors �30� and �31� and the control ma-
trix

F =�
�1 −

�3

�2
1 −

1

�2

− �2 +
�1�3

�2
0

�1

�2

�3
2

�2

0
�3

�2

� .

On the extended phase space of dimension eight, with
additional coordinates c1 , c2, we have the extended Hamil-
tonians �23�

h0
�1� = c1,

h1
�1� = H1

�1� − 	�1 −
�3

�2

c1 +

1

�2
c2,

h2
�1� = H2

�1� + 	�2 −
�1�3

�2

c1 −

�1

�2
c2,

h0
�2� = c2,
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h1
�2� = H1

�2� −
�3

2

�2
c1 −

�3

�2
c2.

They form two bi-Hamiltonian chains

�0dh0
�1� = 0,

�0dh0
�1� = X1

�1� = �1dh0
�1�, �0dh0

�2� = 0,

�0dh2
�1� = X2

�1� = �1dh1
�1�, �0dh1

�2� = X1
�2� = �1dh0

�2�,

0 = �1dh2
�1�, 0 = �1dh1

�2�

with the Poisson operators �0 and �1 of the forms

�0 = ��0 0 0

0

0
0 �, �1 = � �1 X1

�1� X1
�2�

− �X1
�1��T

− �X1
�2��T

0 � .

The separation curve for the extended system takes the form

�2�c1�2 + h1
�1�� + h2

�1�� + c2� + h1
�2� = 1

8�2.

C. Example 3

Consider separation relations on a six-dimensional phase
space given by the following bare separation curve cubic in
the momenta

�H1
�1� + H1

�2�� + H2
�2� = �3

from class �11�. The transformation �� ,��→ �q , p� to new
canonical coordinates in which all Hamiltonians are of a
polynomial form is obtained from the following two trans-
formations:

u1 = 3q2 − 3q3,

u2 = − q1p2 − q1p3 + 3q3
2 + 5q1

3 − 6q2q3,

u3 = − q3
3 − 9q1

3q3 + q1q3p2 + q1q3p3 − 2
27q1

3q2 + q1
2p1 + 3q2q3

2,

v1 = −
1

q1
,

v2 =
3q2 − 2q3

q1
,

v3 = p3 +
2

3
p2 −

q3
2

q1
+ 3

q2q3

q1
− 4q1

2,

and

u1 = �1 + �2 + �3,

u2 = �1�2 + �1�3 + �2�3,

u3 = �1�2�3,

�i = v1�i
2 + v2�i + v3, i = 1,2,3.

In the �q , p� coordinates the Hamiltonians take the form

H1
�1� = p2p3 + 1

3 p2
2 + p3

2 − 7q1
2p3 − 4q1

2p2 − 3q2p1 + 18q1q2
2

+ 13q1
4 + 12q3q1q2,

H1
�2� = 12q1

3q2 + 8q1
3q3 − 2q1

2p1 + �− 6q1q2 − 4q1q3�p3 + p1p3,

H2
�2� = 1

3 p2p3
2 + 1

3 p2
2p3 + 2

27 p2
3 − q1

2p3
2 − 4

3q1
2p2

2 − q2p1p2 − q1p1
2

− 10
3 q1

2p3p2 + �q3 − 3q2�p1p3 + �21q1
2q2 + 6q3q1

2�p1

+ �4q3q1q2 + 6q1q2
2 + 22

3 q1
4�p2

+ �7q1
4 + 18q1q2

2 + 6q3q1q2 − 4q1q3
2�p3 − 8q1

3q3
2

− 72q3q1
3q2 − 90q1

3q2
2 − 12q1

6.

They form a quasi-bi-Hamiltonian chain �16� with the non-
canonical Poisson operator

�1 =�
0 0 0 − q3 3q1 2q2

0 0 − 1
3q1 A 3q2 − q3 − q2

0 1
3q1 0 2q1

2 0 − q3

− q3 − A − 2q1
2 0 B C

1 − 3q1 − 3q2 + q3 0 − B 0 − 24q1
2

2q1 q2 q3 − C 24q1
2 0

� ,

where A=− 1
3 p2+ 1

3 p3−3q1
2, B=54q1q2+24q1q3−3p1, C=−24q1q2−12q1q3+ p1, and the control matrix

F = � − q3 − q1 0

− 1
3 p2 + q1

2 − 2q3 + 3q2 1

5q3q1
2 + 6q1

2q2 − q1p1 − 1
3q3p2 − 4q1

3 − q3
2 + 3q2q3 + 2

3q1p2 + q1p3 0
� .
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On the extended phase space of dimension eight, with
additional coordinates c1 ,c2, the extended Hamiltonians �23�
are

h0
�1� = c1,

h1
�1� = H1

�1� + q3c1 + q1c2,

h0
�2� = c2,

h1
�2� = H1

�2� + � 1
3 p2 − q1

2�c1 + �2q3 − 3q2�c2,

h2
�2� = H2

�2� − �5q3q1
2 + 6q1

2q2 − q1p1 − 1
3q3p2�c1

− �− 4q1
3 − q3

2 + 3q2q3 + 2
3q1p2 + q1p3�c2.

They form two bi-Hamiltonian chains

�0dh0
�1� = 0, �0dh0

�2� = 0,

�0dh1
�1� = X1

�1� = �1dh0
�1�, �0dh1

�2� = X1
�2� = �1dh0

�2�,

0 = �1dh1
�1�, �0dh2

�2� = X2
�2� = �1dh1

�2�,

0 = �1dh2
�2�,

with the corresponding Poisson operators �0 and �1,

�0 = ��0 0 0

0

0
0 �, �1 = � �1 X1

�1� X1
�2�

− �X1
�1��T

− �X1
�2��T

0 � .

The separation curve for the extended system takes the form

��c1� + h1
�1�� + c2�2 + h1

�2�� + h2
�2� = �3.

V. SUMMARY

We have considered the Stäckel systems classified using
their separation relations. The most general form of the sepa-
ration relations considered in the present paper is



k=1

m

�i
k��i,�i�H�k���i� = �i��i,�i�, m � n, i = 1, . . . ,n ,

where

H�k���i� = 

j=1

nk

�i
nk−jHj

�k�, n1 + ¯ + nm = n ,

and �i
k , �i are smooth functions of their arguments. More-

over, we have proved that all systems whose separation re-
lations are of the above form admit �after the lift to an ex-
tended phase space� Gel’fand-Zakharevich bi-Hamiltonian
representation. This confirms universality of the latter prop-
erty for the Stäckel systems. As a consequence, a geometric
separability theory, based on the existence of GZ bi-
Hamiltonian representation of a given system, is applicable
for all Liouville-integrable systems from the classes we con-
sidered.

Quite obviously, the knowledge of quasi-bi-Hamiltonian
representation is sufficient for separability of a given
Liouville-integrable system. Unfortunately, there is no sys-
tematic method available for the construction of such repre-
sentation. On the other hand, there are some systematic
methods for finding the bi-Hamiltonian representation. From
this point of view the result presented in this paper is of
interest, as it shows that the existence of bi-Hamiltonian rep-
resentation is an inherent property of Stäckel systems.
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