
Painlevé-integrability of a (2+1)-dimensional reaction-diffusion equation:
Exact solutions and their interactions

Kuetche Kamgang Victor,1,2,* Bouetou Bouetou Thomas,1,2,3,† and Timoleon Crepin Kofane2,3,‡

1Ecole Nationale Supérieure Polytechnique, University of Yaounde I, P.O. Box. 8390, Cameroon
2Department of Physics, Faculty of Science, University of Yaounde I, P.O. Box. 812, Cameroon

3The Abdus Salam International Centre for Theoretical Physics, P.O. Box 586, Strada Costiera, II-34014 Trieste, Italy
�Received 28 July 2008; revised manuscript received 30 November 2008; published 11 May 2009�

We investigate the singularity structure analysis of a �2+1�-dimensional coupled nonlinear extension of the
reaction-diffusion �NLERD� equation by means of the Painlevé �P� test. Following the Weiss et al.’s formalism
�J. Math. Phys. 24, 522 �1983��, we prove the arbitrariness of the expansion coefficients of the observables.
Thus, without the use of the Kruskal’s simplification, we obtain a Bäcklund transformation of the coupled
NLERD equation via a consistent truncation procedure stemming from the Weiss et al.’s methodology �J.
Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 25, 13 �1984��. In the wake of such results, we unveil a
typical spectrum of localized and periodic coherent patterns. We also investigate the scattering properties of
such structures and we unearth two peculiar soliton phenomena, namely, the fusion and the fission.
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I. INTRODUCTION

Nonlinear evolution equations undoubtedly stand for an
important tool in characterizing many complicated physical
phenomena. Thus, in order to better understand the mecha-
nism of these problems, it would be advantageous to study in
detail the solutions to the associated equations. Physics and
mathematics constitute the most important fields where many
applications of integrable nonlinear equations are found. The
search for exact analytical solutions to nonlinear physical
models has long been a major concern for both mathemati-
cians and physicists given that they can provide much physi-
cal information and more insight into the physical aspects of
the problem and this results in further applications. There is
a rich theory of such equations which is mostly devoted to
the problem of integration and to the study of the underlying
algebraic and analytic structures. Among the different ap-
proaches used to tackle this problem, are: the P conjecture
�1,2�, perturbative analyses �3�, and approaches based on the
existence of higher symmetries and conservation laws, just to
name a few.

Over a half century ago, following the numerical experi-
ments of the seminal work of Fermi et al. �4�, Zabusky and
Kruskal �5� discovered that an initial sine wave breaks into a
train of stable solitary waves under the flow of the
Korteweg-de Vries �KdV� equation. They found that this
nonlinear wave collides with other solitary waves without
the modification of its initial shape after the interaction pro-
cess, although it suffers a shift in its phase. They thus coined
the term soliton to designate these particlelike waves. Since
then, the soliton structures have been widely extended to
many nonlinear systems, and they appear as solutions to non-
linear partial differential evolution �NLPDE� equations.
These robust objects result from the balance between the

nonlinearity and the dispersion �or diffraction�. The theory of
solitons plays a very important role and has been applied in
many natural sciences, especially in condensed-matter phys-
ics, field theory, fluid dynamics, etc �6–8�. It has been shown
that some simplest NLPDE equations with soliton solutions
possess an infinite set of conservation laws �9–11�. However,
the full details showing the relationship of infinitely con-
served quantities with soliton solutions have been shown to
be unclear �12–14� until Wahlquist and Estabrook �15� de-
veloped a technique known as ”prolongation structure,”
which has been generalized to nonlinear evolution equations.
As applied to the KdV equation, this powerful method which
is a set of interrelated potentials and pseudopotentials for
NLPDE equations in two independent variables, generates
infinite conservation laws leading directly to the soliton so-
lutions, Bäcklund transformation �BT� between solutions,
and inverse scattering transform �IST� to the initial value
problem �14�.

Following such results, Zhai et al. �16� recently investi-
gated the integrable �2+1�-dimensional �modified� Heisen-
berg ferromagnet �HF� model �17� using the prolongation
structure theory. The corresponding geometrical equivalent
counterparts, such as the �2+1�-dimensional nonlinear
Schrödinger equation and the coupled �2+1�-dimensional in-
tegrable equations, presented through the motion of
Minkowski space curves endowed with an additional spatial
variable, have been constructed. These last coupled
�2+1�-dimensional integrable equations are given by �16,18�

�t + �xy + �� = 0, �t − �xy − �� = 0, �x + ����y = 0,

�1�

where �, �, and � are physical observables and subscripts
denote partial differentiation. Owing to the miscellaneous
geometrical and physical applications of Eq. �1�, it is worth
investigating such a system both from the viewpoint of its
integrability properties and from the viewpoint of the exis-
tence of stable excitations.
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There exist many approaches to tackle the problem of
integrability of a given system. In fact, the subject of inte-
grability has considerably grown and progressed since the
“early” integrability times of the 70’s ��19–23� and refer-
ences therein�. Among such approaches, the Weiss-Tabor-
Carnevale �WTC� formalism �1,2� is a powerful technique
both for investigating the integrability properties of a given
system and for constructing the miscellaneous solutions to
such a system. In this way, Tang and Lou �24� used the WTC
formalism �1,2� to formulate a “multilinear variable separa-
tion approach” �MLVSA� ��25� and references therein�,
which has been extended and developed for many
�2+1�-dimensional integrable systems such as the Davey-
Stewartson equation �26,27�, the Nizhnik-Novikov-Veselov
�NNV� equation �28�, and the asymmetric NNV equation
�29�, just to name a few �30,31�.

The fact that Eq. �1� is obtained by the prolongation struc-
ture has the merit that it not only satisfies the covariant ge-
ometry theory, but also possesses many other properties such
as BT, Lax pair, IST. Thus, what we wish to show in this
paper is that Eq. �1� exhibits an interesting variety of under-
lying solutions with different patterns �32–34�. First of all,
after presenting the physical motivation of the present inves-
tigation, we aim at demonstrating the integrability properties
of system �1� by means of the WTC formalism �1,2�. Next,
based upon the results of this analysis, we aim at construct-
ing a panel of underlying excitations followed by a study of
their scattering properties.

Thus, the paper is organized as follows. In Sec. II, we
present the physical motivation of our investigation. Next, in
Sec. III, we study the singularity structure analysis of Eq. �1�
using the WTC formalism �1,2�. Then, in Sec. IV, we derive
the BT and Hirota’s bilinearization of Eq. �1�. Following
these results, in Sec. V, we construct some interesting local-
ized and periodic solutions followed by a study of their scat-
tering behavior in Sec. VI. Finally, in Sec. VII, we end with
a brief summary of the work.

II. PHYSICAL MOTIVATION

First of all, it is worth noting that with the transformation
�x=�y, Eq. �1� straightforwardly reduces to a
�1+1�-dimensional coupled NLPDE equation of diffusion
type investigated by Nakayama �35�, while surveying from
the viewpoint of a geometrical approach the motion of
curves in hyperboloid in the Minkowski space �35�.

The development of highly complex organisms is an in-
triguing and fascinating problem. The genetic material is the
same in each cell of an organism. One question that is worth
investigating, therefore, is formulated as follows: How do
cells produce spatial patterns under the influence of their
common genes? To provide an answer based upon nonlinear
interactions of at least two chemicals and on their diffusion,
regarding autocatalysis and long-range inhibition as funda-
mental phenomena, Koch and Meinhardt �36� investigated
some simple models of isotropic systems that describe the
generation of patterns out of an initially nearly homoge-
neously state. Owing to the complexity of such biological
systems, we aim at shedding light on the genuine anisotropic

nature of these systems, which would be very helpful in the
understanding of the dynamical behavior of these patterns.

Following the pioneer work of Turing �37� on the interac-
tions of two substances with different rates, Gierer and Mein-
hardt �38� and independently Seger and Jackson �39� de-
picted two important features playing a central role in pattern
formation: the local self-enhancement and long-range inhibi-
tion. Such features give rise to some important typical clas-
sification of biological apparatus, namely, the activator-
inhibitor systems describing at least stripelike patterns in
monkey and zebra and faceted eye of drosophila flies, just to
name a few �40�, the activator-substrate systems describing
at least reticulated dragonflies, animal coat patterns and also
Brusselator systems �41–43�, and finally the biochemical
switches �44–47�. Alongside such classifications, other kinds
of interactions are possible, mediated for instance by me-
chanical forces �48,49�, by electric potentials �50,51�, or sur-
face contact between cell membrane �52�. Cellular automata
are also often used to explain the emergence of inhomoge-
neous patterns �42�. Nevertheless, chemical interactions
coupled with the exchange of molecules are the main motor
of primary pattern genesis in biological systems.

Following the seminal work of Koch and Meinhardt �36�,
taking into account the anisotropic properties of such sys-
tems, the models for complex biological pattern formation
are described by the following reaction-diffusion equation:

Ukt = � · Jk + Rk�U� , �2�

where the flow Jk is given by

Jk = D� k � Uk. �3�

The quantity D� k�k�N� stands for the diffusion stress which
components represent the diffusion coefficients with respect
to a specified direction. The quantities Rk�k�N� are func-
tions of the dynamical fields U= �Uk�k�N characterizing the
nonlinear reactions among them. The gradient operator � is
expressed as �= ��1 ,�2 ,�3 ,¯� with �i=� /�xi, xi�i�N� being
the spacelike coordinates. It is noted that in some cases
where all the diffusion coefficients are different, the system
can straightforwardly evolve toward an instability known as
Turing instability �37� and complicated patterns related to
morphogenesis, reaction front dynamics, and self-
organization henceforward emerge �53–55�. It is also worth
noting that negative diffusion coefficients deserve to be stud-
ied both mathematically �56,57� and physically �58�. Indeed,
by considering a simple case consisting of two
�1+1�-dimensional interacting chemicals with the diffusion

stresses given by D� 1= � 1 0
0 0 � and D� 2= � −1 0

0 0 �, and the nonlinear
functions R1=2aU1−2U1

2U2 and R2=2U1U2
2−2aU2, the con-

stant a being a fixed parameter, this system is shown to be
gauge equivalent to a �1+1�-dimensional gravity �57�, but
also emerges as a good model for complex biological organ-
isms such as zebra stripes or butterfly stripes where the non-
linear interacting cells are behaving as damped oscillators
from the viewpoint of a thermofield approach �58�. Extend-
ing such a study to a �2+1�-dimensional system where the

diffusion stresses D� 1 and D� 2 are given by
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D� 1 = �1 − 1

1 − 1
�, D� 2 = �− 1 − 1

1 1
� , �4�

and considering the nonlinear functions R1 and R2 as

R1 = ��2� − �1� − a�t��U1, R2 = �a�t� + �1� − �2��U2,

�5�

where the spaceless quantity a	a�t� stands for a time-
dependent function while the pseudopotential quantity � is
introduced in order to characterize a typical nonlinear inter-
action between the two observables U1 and U2 as U1U2
=�1�+�2�−b�t� �the spaceless quantity b	b�t� depending
on time�, we derive a model valuable for a better understand-
ing of the properties of some natural biological organisms
such as zebra stripes, reticulated dragonflies, butterfly
stripes, and faceted eye of drosophila flies, and constituting
typical nonlinear systems of different kinds such as activator-
substrate and activator-inhibitor, just to name a few. Follow-
ing a variable transformation of the form x= �x1+x2� /2 and
y= �x2−x1� /2, the system consisting of Eqs. �2�–�5� reduces
to Eq. �1�, provided U1=�, U2=�, and �=a�t�+�1�−�2�.
Furthermore, the extension toward a �2+1�-dimensional
manifold is interesting both from the viewpoint of the inves-
tigation of its integrability properties and from the viewpoint
of the existence of stable pattern formations.

III. SINGULARITY STRUCTURE ANALYSIS OF THE
(2+1)-DIMENSIONAL COUPLED NLERD EQUATION

According to the standard WTC approach �1,2�, if Eq. �1�
is Painlevé �P� integrable, then all the available solutions to
the model is written in the full Laurent series as follows:

� = 

k=0

�

�kg
k+�, � = 


k=0

�

�kg
k+�, � = 


k=0

�

�kg
k+�, �6�

with sufficient arbitrary functions among �k, �k, �k, and g.
The constants �, �, and � should be negative integers. This
means that the previous solutions are written as single-
valued expressions among the arbitrary singularity manifold.

The formal way to find the constant �, �, and � is known
as the standard leading-order analysis. Thus, truncating the
previous series given by Eq. �6� to the zeroth order, and then
replacing them into Eq. �1� such as to compare the leading-
order terms for g�0, we find only one possible branch

� = � = − 1, � = − 2, �7�

and

�0�0 = 2gx
2, �0 = − 2gxgy . �8�

This implies that one of the three functions �0, �0, and �0 is
arbitrary. In general, there is no restriction on the valuedness
of these functions. In fact, they can be real- or complex-
valued expressions. Nonetheless, throughout the paper, the
arbitrary functions shall be regarded as real-valued expres-
sions.

In order to obtain the recursion relations to determine the
functions �k, �k, and �k, we substitute Eqs. �6�–�8� into Eq.

�1�. This leads us to the following algebraic system:

MkVk = Tk, �9�

where Mk is a square matrix, Vk= ��k ,�k ,�k�T and Tk
= �Pk ,Qk ,Uk�T with,

Pk = − 

j=1

k−1

�k−j� j − �k−2,xy − �k−2,t − �k − 2���k−1gt + �k−1,xgy

+ �k−1,ygx + �k−1gxy� , �10�

Qk = − 

j=1

k−1

�k−j� j − �k−2,xy + �k−2,t − �k − 2��− �k−1gt

+ �k−1,xgy + �k−1,ygx + �k−1gxy� , �11�

and

Uk = − �

j=0

k−1

��k−j−1� j�y + �k − 2�gy

j=1

k−1

� j�k−j + �k−1,x
 .

�12�

The matrix Mk is given by

Mk = �A1k A2k A3k

B1k B2k B3k

C1k C2k C3k
� , �13�

with

A1k = k�k − 3�gxgy, A2k = 0, A3k = �0, �14�

B1k = 0, B2k = A1k, B3k = �0, �15�

C1k = �k − 2��0gy, C2k = �k − 2��0gy, C3k = �k − 2�gx.

�16�

Thus, the determinant 	k of the matrix Mk is given by

	k = k�k − 2��k − 3��k − 4��k + 1�gy
2gx

3. �17�

The resonances are found at

k = − 1,0,2,3,4. �18�

The resonance at k=−1 corresponds to that of the singularity
manifold g being arbitrary. If the model is P integrable, we
require four resonance conditions at k=0,2 ,3 ,4, which are
satisfied identically such that the other four arbitrary func-
tions among �k, �k, and �k can be introduced into the general
series expansion given by Eq. �6�. From the leading-order
analysis, we know that the resonance at k=0 is satisfied iden-
tically and one of �0, �0, and �0, is arbitrary. For k=1, �1,
�1, and �1 are explicitly found as follows:

�1 = −
2gxgt�0 + 2gxgy�0,x − �0

2�0,y/2 + �0,ygx
2

4gygx
2 , �19a�

�1 = −
2gxgy�0,x − �0

2�0,y/2 + �0,ygx
2 − 2gxgt�0

4gygx
2 ,

�19b�
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�1 = 2gxy . �19c�

For k=2, one of �2, �2, and �2 is arbitrary. For k=3, we also
find that one of �3, �3, and �3 is arbitrary. Finally, for the
resonance at k=4, one of �4, �4, and �4 is arbitrary. Conse-
quently, the �2+1�-dimensional coupled NLERD Eq. �1�
possesses a sufficient number of arbitrary functions. We con-
clude that this system is P integrable. Its complete integra-
bility will be established if some essential properties such as
the BT and the Hirota’s bilinearization �59,60� are derived.

IV. BT AND HIROTA’S BILINEARIZATION OF THE
(2+1)-DIMENSIONAL COUPLED NLERD EQUATION

It is well known that the P analysis is also useful in
searching for other interesting properties �1,2� of a given
system. In this section, we use the truncated P expansion to
derive the BT and Hirota’s bilinearization �59,60� of the �2
+1�-dimensional coupled NLERD Eq. �1�. Thus, setting

�k = �k = �k+1 = 0, k 
 2, �20�

Eq. �6� is transformed as follows:

� = �0/g + �1, � = �0/g + �1, � = �0/g2 + �1/g + �2.

�21�

Substituting Eq. �21� into Eq. �1� yields

�0,xy + �0,t + �1�1 = − �0�2, �0,xy − �0,t + �1�1 = − �0�2

�22�

and

�1,t + �1,xy + �2�1 = 0, �1,t − �1,xy − �2�1 = 0,

�2,x + ��1�1�y = 0. �23�

From Eq. �23�, it follows that ��1 ,�1 ,�2� is a solution of the
�2+1�-dimensional coupled NLERD Eq. �1�. In order words,
truncated expansion �21� actually stands for a BT. A seed
solution is written as follows:

�1 = �1 = 0, �2 	 �2�y,t� . �24�

This seed solution is a simple one and is actually useful for
constructing many other solutions. For other existing seed
solutions, many other classes of solutions are derived. It is
that property of the P method for constructing various kinds
of solutions by means of arbitrary functions that makes it
potentially and powerfully underlying. The solutions are
given by the Eq. �21� expressed in a truncated form. Due to
the arbitrariness of these functions, many solutions are con-
structed in a straightforward way, provided to solve analyti-
cally or numerically some NLPD constraint equations. Many
examples will be given in Sec. V while studying the interac-
tions between such structures.

Using the seed solution given by Eq. �24�, Eqs. �19a� and
�19b� are written in the following compact form:

AV0,x + BV0,y + CV0 = 0, �25�

where V0= ��0 ,�0�T and

A = �2gxgy 0

0 2gxgy

, B = � gx

2
−

�0
2

2

−
�0

2

2
gx

2 
,

C = �2gxgt 0

0 − 2gxgt

 . �26�

Thus, solving Eq. �25� by means of the characteristics
method, it yields

V0 = G0�x −� dy

A−1B�exp�� dx

C−1A� , �27�

where G0 stands for an arbitrary array function of �x
−� dy

A−1B � to be determined.
Now, substituting Eqs. �21� and �24� into Eq. �1�, the fol-

lowing bilinear system is derived as follows:

�Dt + DxDy − ���0 · g + �0�1 = 0, �28a�

�− Dt + DxDy − ���0 · g + �0�1 = 0, �28b�

�DxDy − ��g · g − �0 = 0, �28c�

Dx�0 · g + Dy��0�0� · g + gDx�1 · g = �0gx + �0�0gy ,

�28d�

where �−�2−�=0 and �, �, 
, and � stand for arbitrary
quantities to be determined. We note that the symbols Dx, Dy,
and Dt represent the Hirota’s operators �59,60� with respect
to the variables x, y, and t. By expanding the functions g, �0,
�0, �0, �1, and �2 as formal power series, and using them in
system �28�, the one-, two- and N-soliton solutions �N being
an integer� to system �1� can straightforwardly be con-
structed. However, such solutions will be studied in detail in
a separate paper. Knowing that the BT of system �1� has been
found and its related Hirota’s bilinearization derived, we
conclude that the �2+1�-dimensional coupled NLERD Eq.
�1� is completely integrable. This confirms the power of the
“prolongation structure” coined by Wahlquist and Estabrook
�15�, establishing the integrability properties of a given
NLPDE equation. Nonetheless, the usefulness of the WTC
formalism also stems from its allowance to construct inter-
esting solutions based upon the previous results of the P
analysis.

Now, owing to the arbitrariness of some functions derived
from the P analysis, there are many interesting solutions to
investigate. Thus, in Secs. V and VI, we aim at focusing our
interest to solutions for which the quantities �� and � are
expressed as follows:

�� = 2��x ln�g��2, � = �2 +
DxDyg · g

g2 , �29�

and which stem from Eqs. �8� and �21�.
From a seed solution to system �23�, as given by Eq. �24�,

it is seen that this solution does not depend on whether �1 is
different from zero or not. Thus, by setting �1=0 and using
Eq. �19�, one gets gxy =0, which shows that g is the sum of
two arbitrary functions g1	g1�x , t� and g2	g2�y , t�. Now,
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considering the case where �1�0, and searching for a class
of solutions generalizing the previous ones such that �1
= f1�x , t�f2�y , t� with f1�x , t� and f2�y , t� being arbitrary func-
tions, from Eq. �19�, the function g is expressed as follows:

g = a0 + a1p + a2q + a3pq , �30�

where p= p�x , t� and q=q�y , t� stand for arbitrary functions
and the parameters ai�i=0,1 ,2 ,3� are arbitrary constants.
With the above form of g given by Eq. �30�, we combine the
two Eqs. �22� and �27� in order to get a nonlinear system
expressed in terms of G0 and �2, which can be solved ana-
lytically or numerically. For simplicity, it is interesting to
take �2=0 as considered in Sec. V while investigating the
scattering behavior of some localized excitations.

V. DISCUSSION OF THE LOCALIZED AND PERIODIC
EXCITATIONS TO THE (2+1)-DIMENSIONAL

COUPLED NLERD EQUATION

First of all, let us concentrate on time-independent func-
tions p	 p�x� and q	q�y�. The first interesting choice we
make is given by

p = 

k=1

n

pk exp��kx + x0k�, q = 

k=1

m

qk exp��ky + y0k� ,

�31�

where m ,n�N, and pk, �k, x0k �k=1, ¯ ,n�, qk, �k, and y0k
�k=1, ¯ ,m� are arbitrary constants. Under the selections
�n=1,m=1� and �n=2,m=2� the detail of which is pre-
sented in the caption of Fig. 1, we depict a typical structure
of two static half-straight-line solitons for the quantity �.
Owing to the resonance effect, the two half-straight-line soli-
tons can overlap and become only one half-straight-line soli-
ton well known in the literature �61–63�. Correspondingly,
under the previous selections, �� follows a typical kink pre-

sented in Fig. 1 as a concatenation of two or three kinklike
waves. Many other structures can also be found by choosing
other values for integers n and m.

Another type of important nonlinear excitation is the
breather solution �25,29�. Because of the arbitrariness of the
functions p and q, we can include some periodic-time func-
tions in the different selections. There are many different
ways to construct breather solutions. We make a simple se-
lection as presented in Fig. 2, where the details are provided
in the caption. From this figure, the amplitude of the
�-breather soliton varies from �13 to �24, the radius in x
direction from �5 to �3, and the center from �−15 to �15.
Besides, amplitude of the ��-breather soliton varies from
�90 to �275 and the center from �−15 to �15.

Among the family class of periodic excitations, many can
be constructed by different techniques. For example, by
choosing Jacobi elliptic functions, namely, sn and cn func-
tions. It is worth noting that the Jacobi transformation im-
plies that any solution found by one Jacobi elliptic function
can be transformed into equivalent one that is obtained by
another. First of all, we express the multiperiodic solutions as
follows:

p = 

k=1

k=N

Aksn��k�mk�, q = 

k=1

k=M

Bksn��k�nk� , �32�

where �k=�kx+�kt and �k=�ky+
kt, and Ak, Bk, �k, �k, �k,
and 
k being arbitrary constants. Taking N=1 and M =1, we
construct the following doubly-periodic waves:

p = sn���m�, q = sn���n� , �33�

with �=�1=2x+ t, �=�1=y+4t, m=m1=0.95, and n=n1
=0.97. This type of doubly periodic wave is depicted in Fig.
3 at t=0 where we have taken a0=4.

Another interesting periodic wave is the y-periodic wave
shaped as a worm and constructed as follows:

FIG. 1. Typical half-straight-line soliton and kinks depicted
through � and ��, respectively, under the following selections: p
=exp�2x+7� and q=exp�−2y� for the upper panels; p=exp�2x+7�
+exp�4x+3� and q=exp�−2y�+exp�−y� for lower panels. a0=1,
a1=a2=1, and a3=0.

FIG. 2. Typical breatherlike ring soliton and another type of
breatherlike pattern depicted by � and ��, respectively. These plots
correspond to the following selection: p=exp�−��cos�t�+4 /3�x
−20 sin�t��2+5� and q=exp�y2−5�. a0=0, a1=1, a2=1, and a3=0.
For upper panels, t=−� /2, for middle panels, t=0 and for lower
panels, t=� /2.
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px = − sech2�� − t�, q = sn���n� , �34�

with

x = � + k4 tanh�� − t�, � = 2�y + 2t� . �35�

This periodic wave is depicted in Fig. 3 at t=0 with k4
=−2.5, n=0.8, and a0=8. It should be noted that all periodic
waves do not straightforwardly have elastic properties. How-
ever, many of them retain their properties such as ampli-
tudes, velocities, and shapes, just to name a few, and remain
unchanged after interactions. In Sec. VI, we shall present the
conditions under which the elastic interactions occur. It is
actually worth noting that many other underlying solutions
can be constructed in a somewhat endless series of figures.
This is due to the arbitrariness of the functions p and q
making the WTC method an underlying and powerful tech-
nique.

VI. SCATTERING BEHAVIOR: ELASTIC
AND NONELASTIC INTERACTION

First of all, it is important to present the asymptotic be-
haviors of the localized excitations derived from Eq. �29�.
Recently, Tang et al. �30� studied the elastic and nonelastic
interaction between some localized waves such as special
types ring solitons and peakons. Also, Lou �64� proposed a
method for constructing solitary waves with compact support
on the basis of the universal formula from the MLVSA
method, and this method has been extended to generate �2
+1�-dimensional solitary waves and solitons, namely,
plateau-type, basin-type, and bowl-type ring solitons for the
�2+1�-dimensional sine-Gordon equation �65�. Besides,
Tang and Lou �66� provided an interesting way for the con-
struction of foldons �folded solitary waves with soliton struc-
ture�. In this section, we extend such an investigation to the
�2+1�-dimensional coupled NLERD Eq. �1�.

We assume that Fi��i�	Fi��−vit�	�Pidx ��i→��→Fi
�

and �i are invariant as t→�. We consider that q and

ai�i=0, ¯ ,3� are time independent. At the ith excitation, the
interaction properties among the localized excitations are de-
scribed by the following equations:

�t→�� → 

i=1

N

2
Ai

�a0 + a2q�y� + �a1 + a3q�y���Fi��i� + �i
���2 ,

�36�

���t→��

→ 

i=1

N

2� Pi��i��a1 + a3q�y��
a0 + a2q�y� + �a1 + a3q�y���Fi��i� + �i

���2

,

�37�

x�t→�� → � + �i
� + Xi�� − vit� , �38�

where

Ai = − ��a1 + a3q��a2 + a3�Fi��i� + �i
��� � �a0 + a2q

+ �a1 + a3q�y���Fi��i� + �i
��� − a3�qyPi��i� , �39�

�i
� = 


j�i

Fj
� + 


j�i

Fj
�, �i

� = 

j�i

Gj
� + 


j�i

Gj
�. �40�

Thus, the ith excitation preserves its shape if �i
+=�i

−, and its
total phase shift is �i

+−�i
−. Therefore, in order to construct

completely elastic interaction properties, it is suggested to
select suitable localized functions Fi �and then Pi� such that
�i

+=�i
−�i=1, . . . ,N�. Multiple �2+1�-dimensional localized

solitonic excitations with completely elastic interaction prop-
erties are then built-up from the �1+1�-dimensional multiple
localized excitations, provided the above properties are sat-
isfied. For example, one can derive multiple folded solitary
waves ��i

+��i
−, at least for one i� or multiple foldons ��i

+

=�i
− for all i� from the �1+1�-dimensional localized multi-

valued functions generating loop solitons �67,68�.
As an illustration, we first consider interactions among

special exponentially decaying ring solitons and half-
straight-line solitons, whose expressions are derived from

p = 1
3sin−1�tanh�x − 4t�� + 1

3sin−1�tanh�x��,

q = 1
3sin−1�tanh�y�� . �41�

These features are depicted in Fig. 4 and it is seen that these
structures are stationary along the y axis and moving along
the x axis. Thus, initially along the x axis, the solitary waves
are located at x�−11.6 and x�0, respectively, at time t=
−3. Then, during the interaction, they merge at time t=0 at
x�0 to form a single entity. At time t=3, after they ex-
change their amplitudes, the two initial structures recover
their initial properties such as velocities and shapes, just to
name a few, with corresponding location at x�0 and x
�11.6, respectively.

Alongside the elastic interactions, there are scattering
among some typical y-periodic waves which are written as
follows:

FIG. 3. Doubly periodic waves �upper panels� and typical
y-periodic pattern �lower panels� depicted by � and �� at initial
time.
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p = 1.2 sech2��� + 0.8 sech2�� − 0.25t�, q = sn���0.8� ,

�42�

where

x = � − 1.5 tanh��� − 1.5 tanh�� − 0.25t�, � = y + 4t .

�43�

As depicted in Fig. 5, the initial waves located at x�−3 and
x�−1.5, respectively, at time t=−18 interact in a peculiar
process where the amplitude of the higher structure decreases
whereas the small one increases its amplitude. After the scat-
tering process, at time t=18, they recover their velocities and
shapes, but with a small modification of their initial ampli-
tudes. At that time, their locations merged to x�3 and x
�1.5, respectively. This kind of attractive interaction is re-

garded as approximately elastic even though there may be
some exchange of energy.

Among other interesting excitations, there are solitons
with compact support which are derived from the following
equation �25�:

p = 

i=1

M �0, �i � �1i

Ri
p��i� − Ri

p��1i� , �1i � �2i

Ri
p��2i� − Ri

p��1i� , �2i � �i,
�

q = 

i=1

N �0, �i � �1i

Ri
q��i� − Ri

q��1i� , �1i � �2i

Ri
q��2i� − Ri

q��1i� , �2i � �i,
� �44�

where �i=x−cit�i=1, ¯ ,M� and �i=y−vit�i=1, ¯ ,M�, ci
and vi being arbitrary constants standing for velocities of
waves. Ri

p��i��i=1, ¯ ,M� and Ri
q��i��i=1, ¯ ,N� are dif-

ferentiable functions yielding many kinds of
�2+1�-dimensional solitons with compact support. We con-
sider one kind of such waves provided in the caption of Fig.
6. The interaction is utterly elastic such that the two initial
structures which are localized at x�−3 and x�6 at time t
=−3, retain their shapes after the scattering process in such a
way that at time t=3, their locations now becomes x�3 and
x�−6, respectively. During this attractive interaction, the
two structures merge at t=0 at location x�0 to give a single
soliton with compact support with higher amplitude.

Moreover, there is still too much to deal with interactions
in �2+1�-dimensional systems, thanks to the arbitrariness of
the functions p and q. As usual, when two soliton structures
interact mutually, in general, they attract or repel each other.
It is rather rare to observe a coalescence phenomenon merg-
ing to a resonance process. Among the fauna of exotic local-
ized excitation solutions to the �2+1�-dimensional coupled

FIG. 4. Elastic interaction between special exponentially decay-
ing ring solitons and typical quasi-half-straight-line solitons de-
picted by −� and ��, respectively. For upper panels, t=−3, for
middle panels, t=0 and for lower panels, t=3.
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FIG. 5. Quasielastic interaction between typical periodic pat-
terns depicted by � and ��. For upper panels, t=−18, for middle
panels, t=3 and for lower panels, t=18.
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FIG. 6. Elastic interaction among two typical pattern formations
depicted by �� and � under the following selection: R1

p��1�=
−2 cos��1�−2, R2
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−3, for middle panels, t=0 and for lower panels, t=3.
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NLERD Eq. �1�, by choosing some appropriate parameters,
two peculiar soliton phenomena are observed, which we may
call ”fission” and ”fusion.” Indeed, such phenomena have
earlier been investigated in a number of systems such as the
�2+1�-dimensional generalized Sasa-Satsuma equation �69�
and the Burgers and Sharma-Tasso-Olver equations ��70� and
references therein�, just to name a few. Let us consider the
following expressions of arbitrary functions p and q �69�:

p = � tanh�k1x + �1t� + � tanh3�k2x + �2t�/2,

q = � tanh�k3y� , �45�

such that with the following parameters: �=18, �=1 /2, �
=1 /3, k1=1 /2, k2=1, k3=1 /3, �1=−2, and �2=2 with a0
=20, a1=1, a2=1, and a3=1 /50, the fission phenomenon is
depicted. In Fig. 7, it is seen that the initial solitary wave
moves toward positive x direction and then splits into two
other solitary waves with different amplitudes which repel
each other. On the contrary, while trying the following pa-
rameters: �=1, �=18, �=1, k1=1, k2=2, k3=1 /2, �1=2,
and �2=−2 with a0=20, a1=1, a2=1, and a3=1 /50, a fusion
phenomenon appears. As presented in Fig. 8, two initial
x-moving solitary waves with different amplitudes coalesce
together merging to a single solitary wave.

VII. SUMMARY

In this paper, we have investigated the P property of the
�2+1�-dimensional coupled NLERD Eq. �1� and proven that
it is completely integrable as revealed earlier also by Zhai et
al. �16�, following a the “prolongation structure” analysis
originally due to Wahlquist and Estabrook �15�. We have
then judiciously made use of the truncated P analysis to de-
rive Hirota’s bilinearization �59,60� of the system prior to a
construction of some soliton solutions. Besides, based upon
the arbitrariness of some basic functions, we have con-
structed a wide class of localized and periodic single-valued
and multivalued excitations. The interaction between half-

straight-line solitons presents different features. By selecting
appropriate functions, we have constructed a such structure
and a typical kink structure of two or three kinklike waves.
Another type of localized breather has been constructed. We
were interested in particular in some kind of breathing waves
between times t=−� /2 and t=� /2. By using Jacobi elliptic
functions, we have constructed some special periodic waves.
Due to the arbitrariness of the functions p and q, there is
still many more possible excitation solutions to the
�2+1�-dimensional coupled NLERD Eq. �1� that can be pro-
duced.

More interesting perhaps, is the soliton structure of the
above excitations. We presented a systematic way of assess-
ing the soliton structure of a solitary wave solution to the
�2+1�-dimensional coupled NLERD Eq. �1�. While choosing
appropriate arbitrary functions, we investigated the scattering
properties of solitons with compact support and also typical
half-straight-line structures. As a result, they retain their
shapes and velocities after the interaction. We also investi-
gated the interaction between periodic multivalued waves
with “worm”-like shape generated by Jacobi elliptic func-
tions. This interaction �even though suffering some peculiari-
ties at the coalescence area� is considered as elastic since
these periodic waves recover their initial velocities and
shapes after the scattering process. It may also be attractive
since the initial waves pass through each other during the
interaction process. This kind of attractive scattering is also
investigated in the scattering behavior of two other kinds of
waves with compact support.

Moreover, when two waves interact, they do not only re-
pel or pass through each other. They can also coalesce to
form a single moving wave. This is a fusion phenomenon.
Besides, when a single solitary wave moves, a peculiar phe-
nomenon sometimes appears where the initial wave splits
into two, three, or more other similar waves, but with differ-
ent amplitudes. This kind of process is termed as fission. We
have shown that the �2+1�-dimensional coupled NLERD Eq.
�1� possesses these kinds of soliton phenomena. As illustra-
tion, we have shown that an initial exponentially decaying

−20
0

20
−10

0
10
0

0.5

1

xy

ψφ

−20
0

20
−10

0
10
0

0.02

0.04

xy

−γ

−20
0

20
−10

0
10
0

0.5

1

xy

ψφ

−20
0

20
−10

0
10
0

0.01

0.02

xy

−γ

−20
0

20
−10

0
10
0

0.5

1

xy

ψφ

−20
0

20
−10

0
10
0

0.01

0.02

xy

−γ

FIG. 7. Fission phenomenon depicted by �� and −�, respec-
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ring soliton can split into two baby solitons repelling each
other further. Besides, two exponentially decaying ring soli-
tons with different amplitudes can fuse together to form a
single moving structure.

Although the standard WTC’s P expansion method used
in this paper is distinguished among other techniques for
efficiently investigating integrability properties and finding
some exact solutions to nonlinear systems, it is still not easy
to find physically significant nonsingular localized solutions
to some model systems. Thus, Conte �71� developed an al-
ternative P-analysis approach, the invariant P analysis for
such models. A modification of the truncated Conte’s expan-
sion has been presented by Pickering �72,73�, and general-
ized further by Lou �74–76�. He showed that the standard
and nonstandard truncations of the generalized P expansion
lead to the construction of explicit exact solutions. As a fu-
ture perspective, it would be worth applying this generalized
method to the �2+1�-dimensional coupled NLERD Eq. �1� to
find more significant solutions in order to further understand
the dynamical behavior of system �1�. It is also important to

mention here that the integrability properties of a given sys-
tem do not necessarily imply that all solutions scatter
through an elastic process. In fact, when a system is shown
to be integrable, that means it possesses an infinite set of
conserved quantities. However, the conservation of some
quantities such as the momentum and the amplitude are not
straightforward. Such results have been revealed recently
through many investigations. As an example, nonelastic in-
teraction have been found recently, while investigating some
�2+1�-dimensional integrable systems such as the Boiti-
Leon-Pempinelli equation, the Nizhnik-Novikov-Veselov
�NNV� system, dispersive long wave equation, or the modi-
fied NNV system �24,77,78�.
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