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We present a generalized optical theorem for surface waves. The theorem also applies to body waves since
under many circumstances body waves can be written in terms of surface-wave modal summations. This
theorem therefore extends the domain of applicability of the optical theorem from homogeneous background
media to a general class of body and surface-wave propagation regimes within layered elastic media.
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I. INTRODUCTION

The optical theorem uses the conservation of energy to
relate the energy radiated from a scattering body to the am-
plitude decay of the wave that was incident upon the scat-
terer �e.g., due to backscattering�. For homogeneous back-
ground media, it is possible to formulate a generalized
optical theorem that correctly describes the conservation of
energy in a general class of scattering problems �for both
acoustic and elastic waves�. A similar generalized optical
theorem that accounts for the scattering of multimode sur-
face waves would extend the applicability of the optical
theorem to account for vertical heterogeneity in the back-
ground medium. In this paper, we derive such an optical
theorem.

By a generalized optical theorem, we refer to an optical
theorem which gives an integral condition on the scattering
amplitude for any specific angle of incidence and any scat-
tering angle. From this generalized optical theorem, other
relationships can then be derived which describe scattering
relationships for more specific forms of scattering. The gen-
eralized optical theorem for acoustic waves has been derived
in different ways by many authors. For example, Newton �1�
gave an account of Heisenberg’s use of the unitarity proper-
ties of the scattering matrix in order to derive the generalized
optical theorem. Glauber and Schomaker �2� used reciprocity
relations to show the reversibility of the scattering amplitude
between any pair of directions and further to derive the gen-
eralized optical theorem. They then derive more specific op-
tical theorems for forward scattering �when the angle of in-
cidence equals the scattering angle� and for scattering with
inversion symmetry. Marston �3� used a similar approach
using symmetry, reciprocity, and energy conservation to de-
rive the same result for acoustic scattering with inversion
symmetry. Representation theorems �or reciprocity relations�
have also been used extensively to study energy relations in
scattering problems �4–6� and Snieder et al. �7� presented an
alternative derivation of the generalized optical theorem us-
ing an approach based on the use of the interferometric
Green’s function representations �specific forms of represen-
tation theorems �8,9��. Further, Budreck and Rose �10� de-

rived a generalized optical theorem for elastodynamics using
elastodynamic scattering theory and a Newton-Marchenko
equation.

Optical theorems find a wide range of applications in
physics including testing of algorithms for the computation
of scattered wave fields �11,12�, the estimation of back-
scattering from measurements of the scattered wave field
taken at other angles �3�, determining phase shifts from the
measurement of scattering data �e.g., in quantum mechanics
�13,14��, the investigation of the attenuation effect of scatter-
ers �e.g., in acoustics �15�, and in seismology �16,17��, the
determination of the energy both scattered and absorbed by a
scatterer �in acoustics �4��, and by using a statistical ap-
proach it may be possible to infer the structure of the scat-
tering media �18�.

In this paper, we derive a generalized optical theorem for
surface waves. The benefit of such a theorem over and above
body wave optical theorems is that the surface-wave theory
allows us to consider vector wave fields and multiple
surface-wave modes �19,20�. In seismology, a surface-wave
mode refers to a wave that propagates laterally across the
surface of the Earth and exists due to the presence of the free
surface. In a homogeneous half space, only one mode exists
�the fundamental Rayleigh mode�. However, if the medium
of interest is vertically heterogeneous then so-called higher-
mode Rayleigh waves �and fundamental and higher-mode
Love waves� exist; all propagating with different frequency-
dependent phase velocities �21�. Therefore the generalized
optical theorem for surface waves derived here enables the
range of applications of the generalized optical theorem to be
extended to cases where surface waves are produced or
where media may be represented as layered. This includes
seismology �20�, quantum physics �22�, acoustoelectrics
�23�, and materials science �24�. Since body waves can also
be represented by a sum over many surface-wave modes
�25,26�, the optical theorem for surface waves extends to a
general class of body and surface-wave propagation regimes
within layered elastic media.

We derive the optical theorem by considering the inter-
ferometric Green’s function representations for elastic media
and using the appropriate scattered surface-wave Green’s
functions. In places our approach mirrors that of Snieder et
al. �7�. However, while those authors consider scalar acoustic
wave fields propagating in homogeneous media, our ap-
proach uses the surface-wave Green’s functions for wave
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propagation in elastic media. Hence, we derive the first such
theorem for vector wave fields in layered elastic media.

We first define the appropriate interferometric Green’s
function representation: such representations relate the
Green’s functions between two points within a bounding sur-
face to the Green’s functions between the bounding surface
and each of the two points �9,27,28�. Second, we define the
appropriate Green’s functions to describe a single-scattered
surface-wave field and insert those into the interferometric
representation. This results in four different contributing
terms that can be analyzed using a stationary-phase approach
�where we assume that the dominant contribution of each
integral term comes from the point on the integration surface
at which the phase of the integrand is stationary�. We find
that in order for the interferometric representation to hold,
two sets of nonphysical terms must cancel; this condition
results in a generalized optical theorem for surface waves.
While we consider only Rayleigh surface waves, an identical
analysis exists for Love waves.

II. INTERFEROMETRIC GREEN’S FUNCTION
REPRESENTATIONS

Interferometric Green’s function representations can be
derived from representation theorems by using appropriate
mathematical representations of the Green’s functions be-
tween two locations �rA and rB� and between each of those
locations and all points on a bounding surface S �Fig. 1�. S
may be arbritrarily shaped, but in the following we consider
the specific case of a cylinder extending to great depth. In
this paper, we use semianalytical representations of the
particle-displacement surface-wave Green’s functions; hence
we consider an integral describing the extraction of particle-
displacement point-force source Green’s functions in elastic
media �27�,

Gim
� �rB,rA� − Gim�rB,rA�

= �
rS�S

�Gin�rB,rS�njcnjkl�kGml
� �rA,rS�

− njcnjkl�kGil�rB,rS�Gmn
� �rA,rS��dS , �1�

where Gim�rB ,rA� denotes the Green’s function representing
the ith component of particle displacement at location rB due
to a unidirectional impulsive point force in the m direction at
rA, �kGml�rA ,rS� is the spatial partial derivative at location rS
taken in the k direction of the Green’s function Gml�rA ,rS�,

cnjkl is the elasticity tensor, superscript � denotes complex
conjugation, and nj is the outward normal to the arbitrarily
shaped closed surface S, where S encloses the locations rA
and rB �Fig. 1�. Einstein’s summation convention applies for
repeat indices. The term njcnjkl�kGml�rA ,rS� represents the
particle displacement at rA due to a deformation-rate tensor
source at rS. In seismology, integrals, such as Eq. �1�, are
commonly used to extract the inter-receiver Green’s function
estimates from recordings of seismic wave fields at each re-
ceiver; a process referred to as seismic interferometry �29�.

III. GREEN’S FUNCTIONS FOR SURFACE-WAVE
PROPAGATION

In order to solve Eq. �1� for scattered surface waves, we
require an appropriate coordinate system and appropriate
forms for the Green’s functions. In order to solve the inter-
ferometric integral, we use a cylindrical coordinate system
with the scatterer placed at radius equal to zero and define
the locations rA, rB, rS, and r0 as �Fig. 2�

rA = �XA0 cos��A0 + ��
XA0 sin��A0 + ��

zA
	, rB = �X0B cos �0B

X0B sin �0B

zB
	 ,

rS = �XS0 cos��S0 + ��
XS0 sin��S0 + ��

zS
	, r0 = � 0

0

z0
	 . �2�

In the Green’s functions that we introduce in Appendix A,
the terms such as XA0 and �A0 describe the propagation path
of the surface wave. The order of the subscripts identifies the
direction of propagation, for example, A0 denotes that these
parameters describe the wave propagating from rA to r0. For
consistency, we have defined the vector �2� using the same
notation as Appendix A. The cylindrical coordinate system is
centered on the scatterer and this requires that for the angles
describing propagation toward the scatterer, we must add a
factor � since all vectors are defined pointing away from the
scatterer.

FIG. 1. �Color online� Geometry for Eq. �1�. Note that rA and rB

lie beneath the free surface in this case.

FIG. 2. Sketch illustrating the geometry in the horizontal plane
that is used in the stationary-phase analysis. The scatterer r0 is
placed at the center of the coordinate system �r=0�.
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In our analysis, we assume a single incident surface-wave
mode ��� and a single-scattered surface-wave mode ���; to
simplify the notation we define the partial Green’s function
�herein referred to as the Green’s function� representing the
combination of these two modes. To represent the full
Green’s function, we would require a sum over all the partial
Green’s functions, hence over all incoming and outgoing
modes.

The Green’s function representing the particle displace-
ment due to a point force is the sum of the incident and
scattered wave fields. For notational convenience, we drop
superscripts �� as follows:

Gim
���rB,rA� = Gim

0 �rB,rA� + Gim
sc �rB,rA� , �3�

and the equivalent particle-displacement deformation-rate
Green’s function is

njcnjkm�kGim
���rB,rA� = �Gim

0 �rB,rA� + �Gim
sc �rB,rA� , �4�

where Gim
0 �rB ,rA� and �Gim

0 �rB ,rA� represent the direct
waves observed at rB due to a unidirectional point force at rA
and a deformation-rate tensor source at rA, respectively, and
Gim

sc �rB ,rA� and �Gim
sc �rB ,rA� are the corresponding terms for

the scattered wave field. These terms are defined in detail in
Appendix A, with appropriate geometrical variables illus-
trated in Figs. 3 and 4.

IV. SOLUTION OF THE INTERFEROMETRIC
REPRESENTATION

For Eqs. �3� and �4� to solve the interferometric represen-
tation successfully, we require that when the right-hand side
of Eq. �1� is evaluated using the Green’s functions �3� and
�4� we obtain the Green’s function of the same form �as
defined by the left-hand side of Eq. �1��.

To evaluate the right-hand side, we must solve the integral
over the surface S �Fig. 1�. To do so we use the method of
stationary phase. This method has been shown to be a valu-
able tool to analyze and understand the application of seis-
mic interferometry in various settings �30–32�. With a
stationary-phase analysis we make a high-frequency approxi-
mation and assume that the dominant contributions to the
interferometric integral come from those points at which the
phase of the integrand is stationary �33�. We further assume
that the amplitude of the integrand varies slowly around
these stationary points.

To solve the interferometric integral, we substitute the
Green’s functions �3� and �4� into Eq. �1� resulting in four
terms: the cross correlation of the direct Rayleigh wave at
one receiver with the direct Rayleigh wave at the other �T1�,
the cross correlation of the direct Rayleigh wave at one re-
ceiver with the scattered surface wave at the other �and vice
versa, T2 and T3�, and the cross correlation of the scattered
surface wave at one receiver with the scattered surface wave
at the other �T4�. We label our terms T1 to T4 to keep our
notation consistent with previous work in seismology �32�
and in acoustics �7�. In Appendix A we analyze each of these
terms �for isotropic elastic media� using a stationary-phase
analysis and find that each term contributes as follows.

T1: the stationary-phase analysis of this term is identical
to that presented by Halliday and Curtis �30�. This results in
the part of the Green’s function corresponding to the direct
surface wave �i.e., the wave field in the layered background
medium�. We can therefore write term T1 as

T1 = Gim
0�

�rB,rA� − Gim
0 �rB,rA� , �5�

T2 and T3: In Appendix A we show that the stationary-
phase analysis naturally divides these two terms into four
separate subterms �the geometries for the stationary-phase
analysis are illustrated in Fig. 5�. Each of terms T2 and T3
contributes a first subterm that corresponds to part of the
Green’s function in Eq. �3�. We refer to this contribution as
the physical contribution �indicated by a subscript p, with
geometries illustrated in Figs. 6�a� and 6�c��,

T2p + T3p = Gim
sc�

�rB,rA� − Gim
sc �rB,rA� . �6�

Hence, the correct �physical� scattered surface waves are re-
covered from terms T2 and T3. However, we find that the
second subterms of each of T2 and T3 do not correspond to
any part of the true Green’s function �3� that we expect from
the left-hand side of Eq. �1�. We use subscript np to indicate
that this is a nonphysical term and geometries are illustrated
in Figs. 6�b� and 6�d� �note from hereon, Einstein’s summa-
tion convention for repeat indices does not apply�,

FIG. 3. Geometric variables used to describe the scattered sur-
face wave propagating between rA and rB.

FIG. 4. Geometric variables used to describe the direct surface
wave propagating between rA and rB.
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T2np + T3np = −
2

�
A���Sim

���r̂B, r̂A� − Sim
���

�r̂B, r̂A�� . �7�

In Eq. �7�, A�� represents the propagation characteristics of
the incident and scattered waves �i.e., the phase, wave num-
ber, and geometrical spreading� between the excitation and
observation point, respectively. Sim

���r̂B , r̂A� is the three-
dimensional �3D� surface-wave scattering matrix for an inci-
dent surface-wave mode �, traveling in the direction of the
unit vector r̂A, that is scattered in the direction of the unit
vector r̂B as surface-wave mode �, where it is understood
that r̂A and r̂B are the horizontal components of the unit
vectors. We refer to Sim

���r̂B , r̂A� as the 3D scattering matrix as
it includes polarization terms for the excitation of the inci-
dent wave field and for the observed scattered wave field,
i.e.,

Sim
���r̂B, r̂A� = Pim

���r̂B, r̂A�f���r̂B, r̂A� , �8�

where Pim
���r̂B , r̂A� is the product of the polarization terms of

the excited wave field �a point force in the m direction ex-
citing mode �� and the observed wave field �the i component
of particle displacement of the scattered mode ��, and
f���r̂B , r̂A� is the surface-wave scattering matrix for an inci-
dent surface-wave mode �, traveling in the direction of unit
vector r̂A, scattered in the direction of unit vector r̂B as the
surface-wave mode �. Since the polarization terms are de-
pendent on the depth of excitation and observation, the scat-
tering term Sim

�� is dependent on the depths of the scatterer
and the points of excitation and observation.

T4: term T4 is the cross correlation of the scattered sur-
face waves recorded at both receivers. In Appendix A we
show that this can be written as

T4 = −
2i

�2A���
0

2� 
 1

Pim
���r̂B, r̂A�

Sim
���r̂B,− r̂S�

�Sim
���

�r̂A,− r̂S��d� , �9�

where Pim
���r̂B , r̂A� is the product of the polarization terms of

the surface-wave mode � traveling in the direction of the
horizontal unit vectors r̂A and r̂B, and A�� accounts for the
propagation characteristics of the scattered waves observed
at rA and rB. The integration is over the azimuth of the inci-
dent wave upon the scatterer �i.e., over −r̂S�. The term 1 / Pim

��

cancels the excitation terms for the incident wave field that

appear in the product Sim
��Sim

���

; hence the depths of the
sources exciting the incident wave fields do not have an ef-
fect on expression �9�.

V. GENERALIZED OPTICAL THEOREM
FOR SURFACE WAVES

We have already shown that the correct direct and scat-
tered surface waves are recovered from terms T1, T2p, and
T3p. Note that from Eqs. �5� and �6� we can write,

T1 + T2p + T3p = �Gim
0��rB,rA� + Gim

sc��rB,rA��
− �Gim

0 �rB,rA� + Gim
sc �rB,rA�� , �10�

=Gim
� �rB,rA� − Gim�rB,rA� . �11�

Thus, the combination of these terms satisfies the left-hand
side of Eq. �1�. However, since Eq. �1� is exact, the non-
physical arrivals introduced by terms T2np, T3np, and T4
must cancel. We therefore require that T2np+T3np+T4=0,
which on expansion becomes,

2

�
A���Sim

���r̂B, r̂A� − Sim
���

�r̂B, r̂A��

=
2

i�2A���
0

2� 
 1

Pim
���r̂B, r̂A�

Sim
���r̂B,− r̂S�Sim

���

�r̂A,− r̂S��d� .

�12�

Finally we write Eq. �12� in the form

Sim
���r̂B, r̂A� − Sim

���

�r̂B, r̂A�

=
D��

i�
�

0

2� 
 1

Pim
���r̂B, r̂A�

Sim
���r̂B,− r̂S�Sim

���

�r̂A,− r̂S��d� .

�13�

This is a generalized optical theorem for surface waves, de-
scribing the relationship between any incident surface-wave
mode � excited by any point-force component m and any
scattered surface-wave mode � observed as any particle-
displacement component i. It has a slightly more complicated
form in layered media due to the presence of multiple modes.

FIG. 5. Definition of geometric variables required for terms T2
and T3 in the horizontal plane. Here we show the geometry of the
direct surface wave at receiver location rA due to a source at loca-
tion rS, the horizontal projection of the source-receiver path length
is XSA, and the horizontal projection of the azimuth is �SA. The
scattered wave is shown between source location rS and receiver
location rB, with the scatterer located at r0. The horizontal projec-
tion of the source-scatterer path is defined by length XS0 and angle
�S0, and the horizontal projection of the scatterer-receiver path is
similarly defined by X0B and �0B. Finally, we define the offset be-
tween rA and r0 as XA0.
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The term D�� contains ratios of the phase and wave number
of each of the modes � and � �i.e., it accounts for the fact
that each mode has different propagation characteristics�, and
the term Pim

���r̂B , r̂A� removes the polarization terms of the
incident wave fields from the scattering terms Sim

���r̂B ,−r̂S�
and Sim

���

�r̂A ,−r̂S�.
Note that in the case of a homogeneous half space D��

=1 �i.e., only one surface-wave mode is present�. If we as-
sume that the outgoing mode is observed with the same com-
ponent as that with which the incoming mode was excited
�i.e., i=m� then the polarization terms of the excited and
observed wave fields implicit in Sim

�� cancel. This allows us to
use only the scattering matrix f �dropping the superscripts�
and with the reversibility of this scattering matrix,

f�r̂B, r̂A� − f*�r̂A, r̂B� =
1

i�
�

0

2�

f�r̂B,− r̂S�f��r̂A,− r̂S�d� ,

�14�

which resembles the previously derived generalized optical
theorem.

VI. CONCLUSIONS

We have derived a generalized optical theorem for surface
waves using the interferometric Green’s function representa-
tion and semianalytical Green’s functions for scattered sur-
face waves. This analysis accounts for the scattering of

higher-mode surface waves, and while our analysis uses the
Rayleigh-wave Green’s functions the results are equally ap-
plicable to Love-wave modes. Also note that while we con-
sider isotropic elastic media it may be possible to use adap-
tations of the surface-wave theory to derive a similar relation
for anisotropic media �see, for example, the discussion on
surface-wave propagation in anisotropic layered media pre-
sented by Aki and Richards �21�, chapter 7�.

The ability to account for higher-mode surface waves
means that this theorem can be applied to surface waves
propagating in layered media, as this layering is manifest in
the presence of such higher-mode surface waves. It has also
been shown in previous studies that it is possible to represent
a body wave field as a sum over surface-wave modes using
the Green’s functions such as those used here. For example,
in a seismological study Nolet et al. �26� used a locked-mode
approximation �the introduction of a total-internal reflector at
some depth� to model the full wave field using the surface-
wave Green’s functions for vertically heterogeneous media.
This approximation essentially turns the problem into one of
elastic wave propagation in a closed layered medium. Hence
the optical theorem derived here not only applies to surface
waves in layered elastic half spaces but also to surface and
body waves in closed layered elastic media. Note also that
modal summations can be used to model the exact wave field
in an open layered elastic half space using so-called leaky
modes �25�. Hence, the theorem can be applied to a general
class of body and surface-wave propagation regimes within
layered elastic media.

This generalized optical theorem for surface waves com-
pliments previous derivations of the generalized optical theo-

FIG. 6. There are four types of
stationary point illustrated by
boundary locations rS, relating to
the recovery of a wave propagat-
ing from receiver rA to receiver
rB, scattered en route by a hetero-
geneity at r0. We use a circular
boundary of sources for illustra-
tion �dashed line�. �a� Term T2
�physical�, �b� term T2 �nonphysi-
cal�, �c� term T3 �physical�, and
�d� term T3 �nonphysical�. To il-
lustrate term T3, we have defined
the additional geometrical term
XSB describing the horizontal off-
set along the path between the
source rS and receiver rB.

GENERALIZED OPTICAL THEOREM FOR SURFACE WAVES… PHYSICAL REVIEW E 79, 056603 �2009�

056603-5



rem for homogeneous background media �1–3,7� and previ-
ous work considering the role of �more specific versions of�
the optical theorem on the attenuation of surface waves due
to scattering �16,17�. The generalized optical theorem for
surface waves that we derive here may allow the range of
applications of the generalized optical theorem to be ex-
tended to those areas of physics where surface waves are
observed, including quantum physics �22�, material physics
�24�, seismology �20�, and acoustoelectrics �23�.

Finally, using the above method of derivation, it may be
possible to obtain similar relationships for other modes of
energy propagation or for different source and receiver quan-
tities. For example, Wapenaar et al. �34� and Snieder et al.
�35� derived generalized interferometric relations that in-
clude �among others� seismoelectric, electrokinetic, electro-
magnetic, and diffusion-phenomena Green’s functions. With
appropriate representations of these Green’s functions, an in-
terferometric approach may allow for the derivation of simi-
lar optical theorem-type relationships for these other do-
mains of energy propagation.
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APPENDIX A

In this appendix, we provide details of our approach. First
we state the Green’s functions used in Eq. �1�. Then we use
a stationary-phase analysis to derive the contributing terms
to the interferometric relationship and finally we derive a
generalized optical theorem for surface waves.

Following Snieder �20�, the single �point� scattered
surface-wave mode �, ui

��1��rB ,��, at a location rB due to an
incident surface-wave mode � at scattering location r0,
ui

��0��r0 ,��, generated by a point force in the m direction at
location rA is

ui
��1��rB,��

= �
��

ei�k�X0B+k�XA0+�/2�

�

2

k�k�X0BXA0

pi
��zB,�0B�

�pm
��

�zA,�A0�V����0B,�A0� , �15�

where r0 is the scattering location, V����0B ,�A0� is the scat-
tering matrix for an incident wave with azimuth �A0 and a
scattered wave with azimuth �0B �the depth of the scatterer z0
is implicit in V���, k� is the wave number associated with the

�th surface-wave mode, XA0 and X0B are the horizontal off-
sets between the scatterer at r0 and locations rA and rB, re-
spectively, �A0 and �0B are also the azimuth of the horizontal
paths between rA and r0, and r0 and rB, respectively, and zA
and zB are the depths of rA and rB, respectively �Fig. 3�.
Superscripts �0� and �1� refer to the wave field in the back-
ground medium and the scattered wave field, respectively. To
simplify the expression, the modal normalization 8c�U�I1

�

=1 is assumed, where c�, U�, and I1
� are the phase velocity,

group velocity, and kinetic energy for the current mode, and
pi

� is the ith component of the polarization vector,

p��z,�� = �r1
��z�cos �

r1
��z�sin �

ir2
��z�

	 , �16�

where r1
��z� and r2

��z� are the horizontal and vertical
Rayleigh-wave eigenfunctions, respectively. This wave-field
representation is for a single frequency, and in the following
we assume summation over the relevant frequency range.

Mode � of the incident surface wave due to the same
source at location rA is

ui
��0��rB,�� = pi

��zB,�AB�pm
��

�zA,�AB�
ei�k�XAB+�/4�


�

2
k�XAB

, �17�

where XAB and �AB are the offset and azimuth describing the
horizontal projection of the path between rA and rB �Fig. 4�.

The Green’s function is then the sum of the direct and
scattered surface wave,

Gim
���rB,rA� = pi

��zB,�AB�pm
��

�zA,�AB�

�
ei�k�XAB+�/4�


�

2
k�XAB

+
ei�k�X0B+k�XA0+�/2�

�

2

k�k�X0BXA0

�pi
��zB,�0B�pm

��

�zA,�A0�V����0B,�A0� . �18�

In Eq. �3� of the main text, we simplify this expression
by writing Gim

���rB ,rA�=Gim
0 �rB ,rA�+Gim

sc �rB ,rA�, where
Gim

0 �rB ,rA� is the direct wave, and Gim
sc �rB ,rA� is the scattered

wave. The equivalent particle-displacement deformation-rate
Green’s function is

njcnjkm�kGim
���rB,rA�

= pi
��zB,�AB�Tm

��

�zA,�AB�
ei�k�XAB+�/4�


�

2
k�XAB

+
ei�k�X0B+k�XA0+�/2�

�

2

k�k�X0BXA0

pi
��zB,�0B�Tm

��

�zA,�A0�V����0B,�A0� ,

�19�

where Tn
� is the nth component of the traction vector
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T��z,�� =�
ik�r1

��z�cos2 � ik�r1
��z�cos � sin � − k�r2

��z�cos �

ik�r1
��z�cos � sin � ik�r1

��z�sin2 � − k�r2
��z�sin �

�

�z
r1

��z�cos �
�

�z
r1

��z�sin �
�

�z
ir2

��z� 	njcnjkl. �20�

Equation �19� is simplified in Eq. �4� of the main text by
writing njcnjkm�kGim

���rB ,rA�=�Gim
0 �rB ,rA�+�Gim

sc �rB ,rA�.
While Eqs. �15�–�20� provide semianalytical representa-

tions of the Rayleigh-wave Green’s functions, similar ex-
pressions exist for the Love-wave Green’s functions, and for
scattering conversions between Love-wave modes and
Rayleigh-wave modes �20�. Hence we expect that our analy-
sis also holds for the Love-wave case.

In the main text, we discuss the four terms that are intro-
duced when we substitute expressions �18� and �19� into Eq.
�1�. Here we analyze each of these terms in turn �excluding
T1 which has been the subject of a previous study �30��.

After substituting the appropriate Green’s functions into
Eq. �1� we find that the second term T2 is

T2 = �
S

ei�−k�XSA+k�X0B+k�XS0+�/4�

�

2

�

2
k�k�k�XSAX0BXS0

pi
��zB,�0B�pm

��

�zA,�SA�

�V����0B,�S0��pn
��

�zS,�S0�Tn
��zS,�SA�

− pn
��zS,�SA�Tn

��

�zS,�S0��dS , �21�

where the geometric variables are illustrated in Fig. 5. In
order to analyze this integral, we use the cylindrical coordi-
nate system introduced in the main text, and in Appendix B
we find that the stationary-phase conditions are �S0−�A0=0
and �S0−�A0=�. In cylindrical coordinates, we have dS
=XS0d�S0dz. We use �S0=�SA at the stationary point and
follow Halliday and Curtis �30� who used the isotropic form
of the stress tensor and solve the depth-dependant part of this
integral using,

�
0

�

pn
��

�zS,�S0�Tn
��zS,�S0� − pn

��zS,�S0�Tn
��

�zS,�S0�dz

=
1

2
ik��cos �S0nx + sin �S0ny� . �22�

Since we are evaluating this integral at the stationary point,
the integrand in Eq. �22� is only dependant on depth ��S0 is
fixed at the stationary point�. Note that the integral contains a
sum over the indice n, i.e., we sum over the three compo-
nents of the normal to the boundary S. Expression �22�
greatly reduces the complexity of the problem and allows for
the analysis of the integral using the method of stationary

phase. If we allow the integration surface to be a cylinder
with extremely large radius such that cos �S0=−nx and
sin �S0=−ny,

�
0

�

pn
��

�zS,�S0�Tn
��zS,�S0� − pn

��zS,�S0�Tn
��

�zS,�S0�dz = −
1

2
ik�.

�23�

Using this relationship we find,

T2 = −
ik�

�
�

R

ei�−k�XSA+k�X0B+k�XS0+�/4�

k�
�

2
k�XSAX0BXS0

�pi
��z,�0B�pm

��

�z,�SA�V����0B,�S0�XS0d�S0. �24�

The integration domain has been changed from the domain S
to the domain R; this domain R represents the horizontal
plane of integration described by XS0d�S0. We now wish to
solve the integral

I2 = �
R

ei�−k�XSA+k�X0B+k�XS0+�/4�

k�
�

2
k�XSAX0BXS0

V����0B,�S0�XS0d�S0,

�25�

using the method of the stationary phase. This requires the
second derivatives of XSA and XS0,

�2XSA

��S0
2 =

XS0XA0 cos��S0 − �A0�

XS0

2 − 2XS0XA0 cos��S0 − �A0� + XA0
2

, �26�

and

�2XS0

��S0
2 = 0. �27�

At the first stationary point ��S0−�A0=0� Eq. �26� becomes,

�2XSA

��S0
2 =

XS0XA0

XSA
, �28�

since at this stationary point XSA=XS0−XA0 �Fig. 6�a��. At the
second stationary point �S0−�A0=� and XSA=XS0+XA0 �Fig.
6�b�� so,

�2XSA

��S0
2 =

− XS0XA0

XSA
. �29�

We first evaluate the stationary point �S0−�A0=0. Following
Snieder �31�, the solution to the integral is
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I2 =
ei�−k�XSA+k�X0B+k�XS0+�/4�

k�
�

2
k�XSAX0BXS0

�e−i�/4
2�

k�

XS0


XS0XA0

XSA

V����0B,�S0� , �30�

=
2

k�

ei�−k�XSA+k�X0B+k�XS0�


k�k�X0BXA0

V����0B,�S0� . �31�

Substituting I2 into Eq. �24� we obtain

T2p = −
2i

�

ei�−k�XSA+k�X0B+k�XS0�


k�k��X0BXA0�

�pi
��z,�0B�pm

��

�z,�SA�V����0B,�S0� , �32�

where the subscript p indicates that this is a physical term,
corresponding to the scattered term of Eq. �18�. If �S0−�A0
=0 then XSA=XS0−XA0 and �S0=�SA=�A0, so the integral
becomes

T2p = −
ei�k�XA0+k�X0B+�/2�

�

2

k�k��X0BXA0�

pi
��z,�0B�

�pm
��

�z,�A0�V����0B,�A0� . �33�

Thus term T2 provides the correct causal scattered surface
wave as desired �cf. the second term of Eq. �18��. Following
a similar process for the second stationary point �when �S0
−�A0=�, XSA=XS0+XA0, and �S0=�SA=�A0+�� the integral
becomes

T2np = −
ei�k�X0B−k�XA0�

�

2

k�k��XA0X0B�

pi
��z,�0B�

�pm
��

�z,�A0 + ��V����0B,�A0 + �� . �34�

This term does not correspond to any part of the Green’s
function defined in Eq. �18�—subscript np indicates that this
is nonphysical. Note that if we reverse the order of cross
correlation �i.e., use the direct surface wave at rB and the
scattered surface wave at rA� and repeat the above process to
analyze contribution T3, we find that the two terms are equal
to

T3p =
e−i�k�XA0+k�X0B+�/2�

�

2

k�k��XA0X0B�

pi
��

�z,�0B�

�pm
� �z,�A0�V���

��0B,�A0� , �35�

and for the second term

T3np =
ei�k�X0B−k�XA0�

�

2

k�k��XA0X0B�

pi
��

�z,�0B�

�pm
� �z,�A0 + ��V���

��0B,�A0 + �� , �36�

where we have used V����A0 ,�0B�=V����0B ,�A0�. The ge-
ometries for these two terms are illustrated in Figs. 6�c� and
6�d�. Again by comparing with Eq. �18�, we see that T3p
contributes the true scattered surface-wave event but in the
time-reversed part of the interferometric integral due to the
complex conjugation of Eq. �35� with respect to the second
term in Eq. �18�. T3np on the other hand contributes a non-
physical arrival with the same phase as T2np but with oppo-
site sign and complex conjugation of the scattering matrix.

In the main text, we combine terms T1, T2p, and T3p
which gives the Green’s function described by the left-hand
side of Eq. �1�. However, to satisfy Eq. �1� we require that
the nonphysical terms T2np and T3np are canceled. In the
remainder of this appendix, and in the main text, we show
that term T4 allows for the cancellation of the nonphysical
terms provided scattering is governed by a generalized opti-
cal theorem for surface waves.

Term T4 is the cross correlation of the scattered surface
waves recorded at both receivers

T4 = �
S

ei�−k�XA0−k�XS0+k�X0B+k�XS0�

�2

4
k�k�


XS0XA0XS0X0B

pi
��z,�0B�

�pm
��

�z,�A0 + ��V����0B,�S0�V���
��A0 + �,�S0�

��pn
��

�zS,�S0�Tn
��zS,�S0� − pn

��zS,�S0�Tn
��

�zS,�S0��dS .

�37�

Note that the incident wave field upon the scatterer is the
same for both receiver positions. Recalling Eq. �23� and by
using dS=dzdrd�S0, we can solve the depth dependant part
of the integral

T4 = −
2i

�2�
R

ei�−k�XA0+k�X0B�

XS0k�

XA0X0B

pi
��z,�0B�pm

��

�z,�A0 + ��

�V����0B,�S0�V���
��A0 + �,�S0�drd�S0. �38�

Note again the change of integration domain from S to R;
this domain R represents the horizontal plane of integration
described by drd�S0. Since XA0 and X0B are constant, this
term is always stationary: each source location provides a
contribution to the interferometric integral and no such con-
tributions cancel destructively within the integration.

We have already shown that the correct direct and scat-
tered surface waves are recovered from terms T1, T2p, and
T3p. However nonphysical arrivals are introduced by terms
T2np, T3np, and T4, and since Eq. �1� is exact these terms
must cancel. We group the terms T2np and T3np into a single
nonphysical term Tnp,
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Tnp = −
2

�
A���X0B,XA0��Pim

����0B,�A0 + ��V����0B,�A0 + ��

− Pim
���

��0B,�A0 + ��V���
��0B,�A0 + ��� . �39�

The propagation characteristics �the phase, wave numbers,
and geometrical spreading� of the nonphysical term are given
by

A�� =
ei�k�X0B−k�XA0�


k�k��XA0X0B�
�40�

and the polarization of the nonphysical term is given by

Pim
����0B,�A0 + �� = pi

��z,�0B�pm
��

�z,�A0 + �� . �41�

We can therefore write term T4 in the following condensed
form:

T4 = −
2i

�2�
R

�A���X0B,XA0�Pim
���

��0B,�A0 + ��

�V����0B,�S0�V���
��A0 + �,�S0��

1

XS0
drd�S0,

�42�

and since XS0 is equal to the radius of the cylinder,

T4 = −
2i

�2�
0

2�

�A���X0B,XA0�Pim
���

��0B,�A0 + ��

�V����0B,�S0�V���
��A0 + �,�S0��d�S0. �43�

In the generalized optical theorem, the scattering amplitude
is often defined in terms of unit vectors in the directions of
propagation of the incident and scattered waves. Following
this convention, we take the horizontal component of the unit
vectors �implicit in the following notation� and recalling our
vector definition �2� we redefine the scattering matrix and
polarization terms as

V����0B,�A0 + �� = f���r̂B, r̂A� , �44�

and

Pim
����0B,�A0 + �� = Pim

���r̂B, r̂A� , �45�

where f���r̂B , r̂A� is the surface-wave scattering matrix for an
incident surface-wave mode � traveling in the horizontal di-
rection of unit vector r̂A that is scattered in the horizontal
direction of unit vector r̂B as surface-wave mode �. In the
main text, we combine these two terms using Sim

���r̂B , r̂A�
= Pim

���r̂B , r̂A�f���r̂B , r̂A�, where it is understood that Sim
�� in-

cludes a combination of the polarization components i and
m. We also replace �S0 with � and then Eqs. �39� and �43�
are rewritten to reach Eqs. �7� and �9� of the main text, from
which we derive a generalized optical theorem for surface
waves.

Finally, in Eq. �13� of the main text we use a term D��

which accounts for the differences in phase and wave num-
ber of the observed scattered surface-wave modes � and �
�i.e., the terms that describe the propagation characteristics
of each mode�. This term is defined as

D�� =
A��

A�� , �46�

=ei�k�XA0−k�XA0�
k�

k�

. �47�

APPENDIX B

In this appendix, we find the stationary-phase condition
for the scattered surface waves. To find the stationary-phase
condition, we need the lengths of each of the propagation
paths. In cylindrical coordinates, the length XSA can be re-
lated to the other paths as follows:

XSA = 
XS0
2 − 2XS0XA0 cos��S0 − �A0� + XA0

2 , �48�

where geometric variables are illustrated in �Fig. 2�. In order
to determine the stationary points of the integral, we then
require the first derivatives of XSA, XS0, XA0, and X0B with
respect to the integration direction. Since there is no depen-
dence on z, we consider the �S0 derivatives using the geom-
etry defined in Eq. �2�

�XSA

��S0
= 2XS0XA0 sin��S0 − �A0� , �49�

�XA0

��S0
= 0, �50�

�X0B

��S0
= 0, �51�

�XS0

��S0
= 0. �52�

In our analysis, we require stationary-phase conditions for
integration in the �S0 direction. The integral T2 is stationary
when

�XS0

��S0
=

�XSA

��S0
, �53�

i.e.,

0 = 2XS0XA0 sin��S0 − �A0� = 2XS0XA0 sin��S0 − �A0�
�54�

i.e., the stationary-phase conditions are ��S0−�A0�=0 and
��S0−�A0�=�.
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