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In this work, wave breaking for general non-quasi-static oscillations in warm plasma is investigated using
Lagrangian methods. In particular, the effects of secular behavior on wave-breaking limits are explored, and it
is shown that thermal effects can sometimes prevent wave breaking by curbing secular behavior. The oscilla-
tion equations for fully relativistic warm plasma are cast into Lagrangian form, and wave-breaking limits are
derived for waves in warm plasma having nonconstant density. These results have important applications in
electron acceleration schemes that employ a wakefield or a slow beat wave propagating down a density
gradient.
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The problem of wave breaking of one-dimensional �1D�
quasistatic waves, i.e., waves that are nonevolving with re-
spect to a comoving coordinate �=x−v�t for some fixed
speed v�, has been solved completely �1–6�. However, there
are many configurations of nonquasistatic waves for which it
is also important to know the wave-breaking limits. Wave
breaking in plasmas having nonconstant background densi-
ties, for example, is of much importance to laser resonance
absorption �7,8�, electron acceleration schemes using collid-
ing laser pulses on downward density slopes �9,10�, and two-
stage injection-acceleration schemes where electrons are in-
jected into a laser-driven wakefield at high plasma density
and subsequently accelerated at a lower density �11�. In a
recent experiment �12�, electron bunches having very low
absolute longitudinal momentum spread �0.17 MeV/c� have
been produced by wave breaking of a plasma wave propa-
gating down a density gradient, as predicted by Bulanov et
al. �13�. Furthermore, a plasma oscillation may have a spa-
tially varying amplitude for any number of reasons, and this
has its own peculiar effects on wave breaking if the oscilla-
tion is relativistic �14�. While various cases of breaking of
nonquasistatic waves have been investigated for cold plasma
�1,13–16�, there are hardly any results for such waves in the
presence of thermal effects. Since a realistic plasma needs to
have a finite temperature to prevent recombination, it is im-
portant that the theory of nonquasistatic plasma oscillations
is expanded to include thermal effects also.

The wave-breaking limits for quasistatic waves are
well established. For a quasistatic wave with amplitude
A, frequency �, and wave number k, cold-plasma wave
breaking sets in at kA=1 or v=v��� /k �1,2�. Warm-plasma
wave breaking occurs at v=v��1−�kBT / �mv�

2�1/��+1��
for nonrelativistic plasma �3,4� �where �=3 ��=1�
denotes adiabatic �isothermal� compression�, or v=v��1
−�� /��

2 +�� / ���
3v��� / �1+v�

�� /��� for relativistic plasma
�5,6� �where �=3kBT / �mec

2� and ��
2 =1 / �1−v�

2��. For non-
quasistatic waves however there are several controversies in
the literature which must be resolved before one can proceed.
First, there is the discrepancy between Dawson’s limit kA
=1 �1,17� and the Davidson-Schram limit kA=1 /2 �18–21�.
This is easily resolved by noting that Dawson’s solution is
written in Lagrangian coordinates �x̄ ,��, where x̄ denotes
the average position of an oscillating electron, while the

Davidson-Schram solution is written in Lagrangian coordi-
nates �x0 ,��, where x0 denotes the electron position at �=0.
Using �x̄ /�x0=n�x0 ,0� /n0 �22�, where n0 is the density of
stationary ions and n�x0 ,0� denotes the electron density at
�=0, it follows immediately that both solutions are in fact
equivalent. The effective wave number keff is then defined as
the increase in the electron phase with x̄ for constant � as the
electron phase at x�x̄ ,��= x̄ is constant �so x̄ provides a good
reference point� while the phase at x�x0 ,��=x0 is not. Then
Dawson’s solution yields keff=k, while the Davidson-Schram
solution yields keff=k / �1−kA�, and wave breaking sets in at
keffA=1 for both. This resolves the apparent conflict.

Of a more serious nature is the claim by Infeld and Row-
lands �23� that the wave-breaking limit in thermal plasma in
the absence of secular behavior �see below� is independent of
the plasma temperature. This would contradict all the exist-
ing results on quasistatic waves �3–6� and would imply that
quasistatic waves cannot be considered a special case of 1D
plasma oscillations. However, a close scrutiny of Ref. �23�
reveals that the wave solutions presented there do not match
the nonlinear evolution equation for a nonrelativistic thermal
plasma near the cold-plasma wave-breaking limit. In Daw-
son’s coordinates �x̄ ,��, this equation reads as �23�

� �2

��2 + �p
2�� = �p

2 − vT
2 �2�−�

� x̄2 , �1�

where �=n0 /n and n0, n denote the ion electron densities.
Warm-plasma wave breaking will then occur when thermal
effects, i.e., pressure, start to dominate over collective ef-
fects, inhibiting normal wave advection and destroying the
wave �6,8�. This happens when �↓ ��vT

2 /v�
2�1/��+1�, or

v = v��1 − ��vT
2/v�

2�1/��+1�� . �2�

In contrast, Ref. �23� presents a family of solutions to Eq. �1�
of the form ��x̄ ,��=1+A�x̄�cos���x̄���, and it is claimed
that the wave-breaking limit reads 	A�x̄�	=1, i.e., independent
of temperature. However, in the derivations of A�x̄� and ��x̄�
in Ref. �23�, the variable 	=��x̄�� is introduced and the op-
erators 
d	 and � /�x̄ 	� are exchanged. This is only allowed if
��x̄� does not depend significantly on x̄. Inserting the above
solution ��x̄ ,�� into Eq. �1� yields the dispersion-relation
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�2 = �p
2 −

�vT
2

��+1

1

A�x̄�
�2A

� x̄2 , �3�

so � depends on x̄ through �. Defining k2�−��2A /�x̄2� /A
and v�

2 ��2 /k2, it follows that �� /�x̄ can only be neglected
when ��vT

2 /v�
2� /��+1
1 or 	A�x̄�	
1− ��vT

2 /v�
2�1/��+1�, co-

incident with the wave-breaking limit �Eq. �2��. Beyond this
limit, the exchange of 
d	 and � /�x̄ 	� is no longer allowed
and the solutions presented in Ref. �23� do not actually solve
Eq. �1�. As a result, the proposed wave-breaking limit
	A�x̄�	=1 derived from them cannot be relied upon.

More generally, any solution to Eq. �1� of the form
��x̄ ,��=1+keff A cos�k0x̄−��x̄��� �where k0 and keff denote
the initial and effective wave numbers� will lead to disper-
sion relation �3� and thus, at peak compression, to the rela-
tion v�

2 =�p
2 /k2+�vT

2 /�min
�+1��vT

2 /�min
�+1, where �min denotes

the minimum value that � obtains during the wave cycle.
For a given value of v�, it is found that �min
� ��vT

2 /v�
2�1/��+1�. Once again, this corresponds to wave-

breaking condition �2�, emphasizing its general applicability
to both quasistatic and non-quasi-static oscillations. Note
that the phase-velocity v� cannot vary too much spatially
even for non-quasi-static waves, or the wave crests will over-
take the troughs and the wave will break rapidly. Also, since
the same reasoning can be applied to standing waves
�0�x̄ ,��=1+kA cos�kx̄�cos����, it follows that there is no
fundamental difference between the wave-breaking limits for
traveling and standing waves, contrary to claims made in
Ref. �23�.

Now that the proper wave-breaking limit for non-quasi-
static plasma oscillations has been determined, one can pro-
ceed to the study of secular behavior. Secular behavior is the
phenomenon that the phase difference between neighboring
fluid elements in a plasma oscillation is not constant in time.
It occurs when the oscillation frequency of the plasma elec-
trons depends on x̄ �1,13–16�. This happens, for example, in
an inhomogeneous plasma �1,12,13� or for a relativistic
plasma oscillation in homogeneous plasma where the oscil-
lation frequency can still depend on x̄ through the oscillation
amplitude �14,16�. In a cold plasma, secular behavior will
cause a plasma oscillation to eventually break at any ampli-
tude. This works as follows. A plasma oscillation having a
position-dependent frequency is given by, e.g., x�x̄ ,��
=A cos�k0x̄−��x̄���. The effective wave-number keff is then
derived from �x /�x̄: keff=k0− ��� /�x̄��, i.e., keff grows lin-
early in time. Wave breaking will occur when 	keffA	=1, so
even for k0A�1 secular behavior will cause the wave to
break after a time of at most �WB=1 / �A	�� /�x̄	�. Also, by
defining the effective phase speed as v�,eff=� /keff �13�, it
follows that wave breaking occurs if the peak-forward fluid
speed vmax satisfies vmax=�A=v�,effkeffA=v�,eff. Thus, con-
trary to statements by Lehmann et al. �21�, the statement that
wave breaking happens “when the peak fluid velocity equals
the phase speed of the plasma wave” �6� still holds. As
shown in Ref. �13�, secular behavior will cause the wave’s
phase speed to decrease until it equals the peak-forward fluid
speed, at which point the wave breaks. Electron trapping by
a wakefield on a downward density ramp, as demonstrated
by Geddes et al. �12�, is based on this principle.

While the role of secular behavior in cold-plasma wave
breaking is well studied �1,13–16�, secular behavior in
warm-plasma wave breaking is only touched upon by Infeld
and Rowlands �24�. Even so, a linearized version of Eq. �1�
is used in Ref. �24�, which leads to an incorrect wave-
breaking limit because it underestimates the plasma pressure.
Because of this and because the combination of secular and
thermal effects yields some surprising results, this subject
will be studied here.

Although thermal effects will normally reduce the wave-
breaking amplitude �3–6�, they may surprisingly also delay
or prevent the onset of wave breaking in the case of secular
behavior. This is because secular behavior will make k grow,
while thermal effects will make k advect, so the regions of
largest k and largest �k /�t will no longer coincide. The secu-
lar growth of k will then saturate eventually, preventing the
onset of wave breaking in certain circumstances. As an ex-
ample, the evolution of k will be investigated in a thermal
plasma, on a finite slope where the background density n0
falls an amount 
n�0 over a length L, as used, e.g., in
electron-trapping experiments by Geddes et al. �12�. From
�k /��+�� /�x̄=0 �15� and the Bohm-Gross dispersion-
relation �2=�p

2�x̄�+�vT
2k2, it is found that �assuming that

k�D�1 everywhere�

�k

��
+

�vT
2

�p
k
�k

� x̄
= −

�p

2n0

�n

� x̄
. �4�

A second “Lagrangianisation” ��=�, x̄�= x̄−��D
2 �p
kd��

�24� yields that �keff /���=−��p /2n0��n /�x̄
���p /2n0��
n /L�. Using �x̄ /���=��D

2 �pk, this expression
integrates to 
�keff

2 �D
2 ��
n / ��n0� over the entire length of

the slope, or keff�D�kmax�D���k0�D�2+
n / ��n0�, where
k=k0 at �=0. As in Eq. �2�, wave breaking then occurs if
kmaxA�1− ��kmax

2 �D
2 �1/�1+�� �increasing the wave number

lowers the wave-breaking limit in two ways�. The wave-
breaking amplitude AWB and corresponding electric field
EWB are then given by

AWB =
�D
1 − ���k0�D�2 + 
n/n0�1/�1+���

��k0�D�2 + 
n/��n0�
, �5�

EWB = v�
1 − C����k0�D�2 + 
n/n0�1/�1+��� , �6�

where v�=��kmax� /kmax is the local phase speed of the wave
�using Bohm-Gross for ��k��, C1�1 �4�, and C3�4 /3 �3�.
For a homogeneous plasma, 
n=0 and AWB= �1
− ��k0

2�D
2 �1/�1+��� /k0, a result already known from the work of

Dawson �1� and Coffey �3�. For an inhomogeneous cold
plasma, 
n�0 and �D=0, leading to AWB=0. This is a con-
sequence of the fact that the electron oscillations in an inho-
mogeneous cold plasma exhibit secular behavior �13�: k
grows linearly in time, and no matter how small the ampli-
tude, kA↑1 and the wave will eventually break. For both

n�0 and �D�0 however, AWB�0 again, provided that
��k0�D�2+
n /n0
1. It follows that the secular behavior
that is caused by the plasma inhomogeneity is curbed by
thermal effects: k will only grow a finite instead of an un-
limited amount, and for sufficiently small A and 
n, wave
breaking will not happen in spite of the density ramp.
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Equation �5� comes with the following caveat: the Bohm-
Gross dispersion relation used to derive it does not incorpo-
rate nonlinear effects. In practice, this means that the advec-
tion of k will be slightly larger than in the above derivation,
while the growth of k due to the density drop 
n will be
slightly smaller. As a result, the true value of AWB may be
larger than given by Eq. �5�. However, most of the nonlinear
aspects to warm-plasma wave breaking are still covered, as
condition �2� is used for wave breaking rather than vmax
=v�,eff. Thus, Eq. �5� still provides a reliable leading-order
estimate for the wave-breaking limit.

Next, the above results will be extended to also cover
plasma oscillations having relativistic amplitudes and/or
phase speeds, as encountered in, e.g., laser-wakefield accel-
eration �12�. Earlier work on wave breaking in warm, rela-
tivistic plasma only covered quasistatic waves in homoge-
neous plasma, to the exclusion of secular behavior �5,6�. The
Lagrangian equation for oscillations in a warm relativistic
plasma can be derived from the fully relativistic model of
Katsouleas and Mori �K&M� �5�,

�

�t
��U + P��2v� +

�

�x
�c2P + �U + P��2v2� + �e/me�nE = 0,

� �

�t
+ v

�

�x
�E =

n0e

�0
v ,

�n

�t
+

�nv
�x

= 0.

Here, v denotes the mean plasma velocity, �=1 /�1−v2, and
U and P are the internal energy and pressure of the electrons
in the comoving rest frame, scaled with mec

2. Note that the
average momentum p will not be used for the moment, since
p�v /�1−v2 in a relativistic thermal plasma.

Using K&M’s expressions for U and P,

�P

U
� =

n0

2p0
�npp0

�1 + �npp0�2 � sinh−1�npp0�� ,

where p0
2=��3kBT / �mec

2� and np= �n /n0� /�; the above
equations can be manipulated into

� �

�t
+ v

�

�x
���v�1 + �npp0�2� +

c2

n

�P

�x
+ �e/me�E = 0.

This can directly be transformed into Lagrangian coordinates
�x̄ ,��,

�

��
��v�1 + �npp0�2� +

c2

n0

�P

� x̄
+ �p

2�x − x̄� = 0.

Note that for p0=0 �cold plasma�, this equation reduces to
the one found by Polovin �25�: �2p /��2+�p

2p /�1+ p2=0.
While a complete treatment of this fully relativistic equa-

tion is beyond the scope of this paper, one can still investi-
gate the weakly relativistic case � / �1−v�

2��1, where v� de-
notes the wave’s phase speed. First, the case of an oscillation
with constant amplitude in an inhomogeneous plasma is con-
sidered: p= pm cos�kx̄−���, with p the average momentum.
For fully relativistic waves, i.e., pm�1, wave breaking oc-

curs when pm�v� /�1−v�
2 , and such waves can persist

mostly by virtue of having a phase speed satisfying ��
2

�1 / �1−v�
2��1. A small drop in v� due to secular behavior

will lead to a large drop in ��, and a fully relativistic wave
will then break within a couple of oscillations, regardless of
the presence or absence of thermal effects. The influence of
thermal effects on secular behavior will be more visible for
weakly relativistic waves, 	pm	�1, so this case will be stud-
ied here.

For 	pm	�1, the following approximations can be used,
�v� p, P��n0np

3 /3, �P /�x̄��n0k2�x− x̄�, and �1+ �npp0�2

��1+�, leading to the following dispersion–relation,

�2�1 + �� = �p
2�x̄��1 − 3pm

2 /8� + �c2k2. �7�

As before, this dispersion relation can be turned into an ad-
vection equation for the wave number k,

�k

��
+

�vT
2

�p�1 + ��
k
�k

� x̄
= −

�p

2n0

1 − 3pm
2 /16

1 + �

�n

� x̄
.

Note the similarity to the nonrelativistic equation �4�. Once
again, this equation is applied to the example of slope where
the background density n0 falls an amount 
n�0 over a
length L. As in the nonrelativistic case, it is found that wave
breaking due to secular behavior is curbed by thermal effects
below a certain wave-amplitude EWB. This limiting ampli-
tude can be found by replacing vT

2 by vT
2 / �1+�� and 
n by


n�1−3pm
2 /8� / �1+�� in Eqs. �5� and �6�.

The above results are particularly relevant to wakefield
acceleration on a downward plasma-density ramp �9–12�.
For example, when applying these results to the experiment
by Geddes et al. �12�, it is found that their wakefield ampli-
tude is well above the wave-breaking threshold EWB, mainly
because they use a very tightly focused laser pulse
�eEl / �me�lc��2� and because 
n /n0 is large at the bottom
of the ramp where n0↓0. However, if this experiment were to
be repeated using a wider laser focus to trap more electrons
and a constant density plateau at the bottom of the ramp for
further acceleration �so 
n /n0 remains smaller�, then thermal
effects resulting from plasma heating by the laser prepulse
may be of significant influence on the electron-trapping pro-
cess on a downward density ramp.

As shown by Drake et al. �14�, secular behavior also oc-
curs for relativistic waves in a homogeneous plasma, as long
as the wave amplitude is position dependent. Because disper-
sion relation �7� contains the wave’s amplitude, a position-
dependent amplitude will lead to a position-dependent fre-
quency, leading to secular behavior even for a homogeneous
background plasma. For example, for a small-amplitude os-
cillation with x̄-dependent amplitude, p= pm cos�kx̄�cos����
with 	pm	�1, the dispersion relation becomes

�2�1 + �� = �p
2�1 – 3pm

2 cos2�kx̄�/8� + �c2k2. �8�

Using the same techniques as in the case of an inhomoge-
neous plasma, it follows once more that the secular growth
of k is curbed by thermal effects
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k2 � kmax
2 � k0

2 +
3

8

pm
2

�

�p
2

c2 .

For weakly relativistic waves, wave breaking sets in
when the mean plasma velocity satisfies v�v��1
− ���

2� /v�
2�1/4 /��

2�, where v�=� /k and ��=1 /�1−v�
2 .

Using v�=�max /kmax, �max���kmax����p
2�1–3pm

2 /16�
+�c2kmax

2 �1/2, and assuming that secular behavior is domi-
nant, i.e., pm

2 �p
2 / �c2k0

2���1, so km��3 / �8��pm�p /c, it fol-
lows that, at wave breaking, pm satisfies

c

v�

pm

�1 + pm
2

= 1 − �1 − v�
2����/v�

2�/�1 − v�
2��1/4. �9�

To leading approximation, this returns pm��8� /3�1/4 as the
amplitude limit below which relativistic secular behavior
will be curbed by thermal effects. The corresponding �scaled�
electric field is given by EWB�v� /c= �8� /3�1/4. This is
again in contradistinction to the secular behavior in a cold
plasma �14�, where the unlimited growth of k will always
slow the wave down until it breaks, however small the am-
plitude pm.

In summary, wave breaking has been studied for general,
non-quasi-static plasma waves. It has been found that break-
ing of such waves has many traits in common with the break-
ing of quasistatic waves, confirming the notion that quasi-
static wave breaking is a proper special case of general wave

breaking. A proper investigation of secular behavior in ther-
mal plasma has been carried out here for the first time. This
investigation includes relativistic effects and the first ever
derivation of the Lagrangian equation for a fully relativistic,
non-quasi-static, thermal plasma. It has been found that ther-
mal effects can curb secular behavior and prevent wave
breaking in certain specific circumstances, even though ther-
mal effects normally facilitate wave breaking �3–6�. The
wave-breaking limits for plasma waves in inhomogeneous
thermal plasma and for inhomogeneous relativistic waves in
homogeneous plasma have been derived for the first time. As
such, this work is a generalization of earlier work on break-
ing of quasistatic waves in thermal plasma �6�, with impor-
tant consequences for the study of inhomogeneous plasma
oscillations or plasma waves in inhomogeneous plasma. This
has particular relevance in light of recent experiments on
electron trapping on a downward plasma density ramp,
which yielded electron bunches having a very small absolute
energy spread with great potential for further acceleration in
a two-stage scheme �12�. Using the models developed here,
electron trapping by a plasma wave on a downward density
ramp can be tuned to reach conditions that are optimal for
further acceleration of the trapped electron bunch.
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