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We present a model for the rate of temperature relaxation between electrons and ions in plasmas. The model
includes self-consistently the effects of particle screening, electron degeneracy, and correlations between elec-
trons and ions. We successfully validate the model over a wide range of plasma coupling against molecular-
dynamics simulations of classical plasmas of like-charged electrons and ions. We present calculations of the
relaxation rates in dense hydrogen and show that, while electron-ion correlation effects are indispensable in
classical, like-charged plasmas at any density and temperature, quantum diffraction effects prevail over
electron-ion correlation effects in dense hydrogen plasmas.
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I. INTRODUCTION

Temperature-relaxation rates between electrons and ions
are one of many quantities that must be modeled accurately
in order to predict inertial confinement fusion �ICF� �1�. The
lack of equilibrium in ICF occurs because the fusion alpha
particles deposit their energy collisionally to the electrons
and ions at different rates depending on the temperature re-
gime �2�. The task is challenging because ICF plasmas
traverse complex physics regimes characterized by collective
quantum and correlation effects. In practice, there have been
attempts to splice models from the different regimes �3,4� but
they are ad hoc and not validated to the required accuracy.
Recently, direct many-body simulations �5–8� have been un-
dertaken to validate the various models of relaxation rates.

Since the seminal works of Landau and Spitzer �9� on
weakly coupled plasmas, a variety of developments have
been made to calculate the temperature-relaxation rates in
plasmas. The best established parameter-free models have
considered either weakly coupled, nondegenerate �ideal�
plasmas �e.g., �10,11�� or include degeneracy effects in the
limit of weak electron-ion �e-i� interactions �12�. In spite of
recent works �13�, the effect of particle correlations on the
electron-ion energy exchanges in nonideal plasmas is still not
definitely understood.

In this paper, we present a model for the e-i temperature-
relaxation rates in plasmas that includes self-consistently the
effects of screening, electron degeneracy, and correlations
between electrons and ions. The model resolves the close and
distant particle encounters in a self-consistent fashion and
does not involve ad hoc cutoffs. We validate the model
against molecular-dynamics �MD� simulations of classical
plasmas over a wide range of plasma coupling. We then ap-
ply the model to dense hydrogen and discuss the relative
importance of degeneracy and correlation effects to the re-
laxation rate.

The paper is organized as follows. The model is presented
in Sec. II. Our derivation intentionally focuses on the tem-
poral evolution of the ionic temperature Ti in a two-
temperature plasma. Taking advantage that ions are classical,

an equation of evolution for Ti is obtained from momentum
integration of the exact kinetic equation for the ionic phase-
space distribution function. The equation obtained �Eq. �3�
below� expresses the change in Ti in terms of the net work
done by the electrons on the ions. The latter can be obtained
from the ionic and electronic density fluctuations in the
plasma. We thus propose a model for the density fluctuations
that includes self-consistently the effects of screening, elec-
tron degeneracy, and correlations between electrons and ions.
Using this model, the equation for the ionic temperature be-
comes a simple rate equation,

dTi

dt
= − �ie�Ti − Te� ,

where the temperature-relaxation rate �ie has the Landau-
Spitzer form �ie=�0 ln �, where �0 is a “universal” rate and
ln � is the generalized Coulomb logarithm that carries the
many-body effects taking place in the plasma. The model
reduces to well-known approximations in the appropriate
limits �e.g., Landau-Spitzer formula, Fermi-golden-rule
�FGR� formula, and Lenard-Balescu �LB� formula�. Several
technical details of the derivation of the model are presented
in Appendixes A and D.

In Sec. III we proceed to validate the predictions of the
model by comparing them with results of MD simulations.
Because first-principles simulations of real nonequilibrium
plasmas are not feasible yet, the validation upon truly ab
initio calculations is not possible. An approximation used by
several authors to cope with this consists of performing MD
simulations of plasmas with semiclassical potentials that
mimic quantum effects in an approximative way and prevent
the unphysical collapse undergone by classical electron-ion
systems �5–7�. However such semiclassical MD calculations
are no longer fully ab initio; besides their adequacy to simu-
late temperature relaxation is not unquestionably established.
The only truly ab initio simulations of plasmas that can be
performed are for like-charged systems made of positively
charged electrons and ions immersed in an inert, neutralizing
background. Highly accurate MD simulations of the relax-
ation rate in like-charged plasmas are possible and were re-
cently reported in �8�. We therefore apply our model to a
plasma of like-charged electrons and ions. This is legitimate*daligaul@lanl.gov
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since our formalism is independent of the nature of the elec-
trons. Electrons can be quantum and negatively charged as in
a real plasma but can also be classical and positively
charged: it is only when one evaluates the model that quan-
tities pertaining to the system studied must be used �e.g.,
classical vs quantum response functions.� As we shall see,
like-charged systems are as challenging as real plasmas for
the theory because, contrary to the latter, they exhibit corre-
lation effects in all regimes of plasma coupling. They there-
fore provide a good test of the validity of a theory that aims
to include correlation and strong-coupling effects. Moreover,
the points of differences between like-charged and real plas-
mas make the comparison very instructive in shedding light
on correlation effects. For classical like-charged plasmas, our
model reproduces the accurate MD data and joins the weakly
to strongly coupled regimes.

In Sec. IV, we apply the model to real dense hydrogen
plasmas. We shall see that, while e-i correlation effects are
crucial in classical plasmas at any density and temperature,
quantum diffraction effects prevail over e-i correlation ef-
fects in real, dense plasmas.

Finally, we present in Sec. V a systematic comparison of
our model with the coupled-mode theory of Dharma-
wardana and Perrot �13� �DWP�, the Fermi-golden-rule result
�12,13�, and with the Lenard-Balescu formula �14�.

In the following, the Fourier transform of a space- and
time-dependent function a�r , t� is defined as a�k ,��
=�Vdr�−�

� dte−i�k·r−�t�a�r , t�, where V is the volume.

II. MODEL

We consider a spatially uniform, unmagnetized, two-
temperature plasma consisting of one species of ions �mass
mi, number density ni, charge Ze, temperature Ti� and free
electrons �me, ne=Zni, Zee, Te� in a volume V. We assume
that, at any time t, the electronic and ionic components of the
plasma each may be characterized by temperatures Te�t� and
Ti�t�, respectively. Because of the large difference between
me and mi, it is indeed reasonable to assume that the energy
exchange between electrons and ions occurs on a time scale
that is much larger than the equilibration times �� within
each subsystem �=e , i.

The �classical� ion dynamics can be completely described
by the kinetic equation for the single-particle distribution
function f i�r ,p , t� in the phase space consisting of the posi-
tion r and momentum p �15�,

� f i

�t
= −

�

�p
· ��Ni�Fi� . �1�

Equation �1� is readily obtained as the ensemble average �¯�
of the evolution equation for the microscopic �Klimontovich�
distribution function

Ni�r,p;t� = �
a=1

Ni

�„r − ra�t�…�„p − pa�t�… ,

where ra�t� and pa�t� are the position and momentum of the
ath ion at time t. Since we are looking at time scales larger
than the equilibration times �e,i within each subsystem, �¯�

denotes an average not only over microscopic replica of the
same macroscopic state but also over a time scale of order
max��e,i�. The notation �A denotes the fluctuations of a quan-
tity A around its average, i.e., �A=A− �A� and ��A�=0. In
Eq. �1� f i= �Ni� and �Fi is the fluctuating part of the total
force acting on the ions that is induced by the density fluc-
tuations �ne,i=�dp�Ne,i in the electronic and ionic systems.

The ionic temperature at time t is given by

kBTi�t� =
1

3mini
	 dpp2f i�r,p,t� . �2�

Using Eqs. �1� and �2�, we obtain the equation of evolution
for Ti,

dTi

dt
=

2

3nikB
��ji�r,t� · �Fie�r,t�� . �3�

Here �ji�r , t� is the fluctuating part of the ionic current den-
sity �dp�Ni�r ,p , t�p /mi. Without magnetic fields, �ji is lon-
gitudinal and is related to �ni through the continuity equation
��ni�r , t� /�t=−� ·�ji�r , t�. In Fourier representation, �ji
=��ni�k ,��k /k2. The term �Fie�r , t� is the force induced by
the electronic density fluctuations �ne�r , t�. In Fourier repre-
sentation, �Fie�k ,��= ikvie�k��ne�k ,��, where the e-i inter-
action potential is vie �16�. According to Eq. �3�, the evolu-
tion of the ionic temperature Ti is determined by the
statistically averaged work done on the ions by the fluctuat-
ing force �Fie exerted by the electrons

Introducing the expressions for �ji�k ,�� and �Fie�k ,�� in
Eq. �3�, we obtain

dTi

dt
=

2

3nikB

1

V�
k
	 d� �vie�k�Im��ni�k,���ne�− k,− ��� ,

�4�

where Im denotes the imaginary part. We remark here that
when the system is at equilibrium, Te=Ti, the right-hand side
of Eq. �4� vanishes as it should. Indeed, it follows from time
invariance that at equilibrium ��ni�k ,���ne�−k ,−��� is
real and equal to �2��2Sie�k ,��, where Sie�k ,��
=1 / �NeNi�1/2� dt

2�ei�t��ni�k , t��ne�−k ,0�� is the e-i dynamic
structure factor �15�.

According to Eq. �4�, an equation for dTi /dt can be ob-
tained by modeling the density fluctuations in the two-
temperature plasma, which we proceed to do as follows. Fol-
lowing Ichimaru �15,17�, the fluctuations �Ni can generally
be split into two parts, �Ni=�Ni

�s�+�Ni
�ind�. �Ni

�s� represents
the spontaneous fluctuations due to the discrete nature of the
particles and that are present even in the absence of interac-
tions,

Ni
�s��r,p;t� = �

a=1

Ni

�
r − ra −
p

mi
�t − t0����p − pa� , �5�

where ra and pa are the particle position and momentum at
some initial time t0. �Ni

�ind� describes the fluctuations that are
induced by the interactions between the particles. Upon mo-
mentum integration of Eq. �5�, a similar splitting holds for
the electronic and ionic density fluctuations, namely,
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�n��r,t� = �n�
�s��r,t� + �n�

�ind��r,t�, � = e,i , �6�

where �n�
�s��r , t� is the spontaneous fluctuations in the par-

ticle density of species � and �n�
�ind��r , t� is the density fluc-

tuations that develop due to e-e, e-i, and i-i interactions. We
shall assume that the fluctuations are small quantities, i.e.,
��n��	n�. This is a very reasonable assumption since each
subsystem � is supposed to be in “internal” equilibrium at
temperature T�, and the plasma is supposed to be uniform.
Accordingly, we extend the results of equilibrium linear-
response theory to a two-temperature system and express
density fluctuations �6� as �15,17�

�n��k,�� = �n�
�s��k,�� + 
�

0�k,�� �
�=e,i

v���k�

��1 − G���k,����n��k,�� . �7�

In Eq. �7�, v��
ef f�k ,��
v���k��1−G���k ,����n��k ,�� is the

local effective potential seen by a particle of species � due to
the density fluctuations �n�, so that the product

�

0�k ,��vab
ef f�k ,��, where 
�

0 is the free-particle response
function of species �, the density fluctuations resulting from
the interactions of particles of species � with those of species
�. When 1−G���k ,��
1, Eq. �7� corresponds to the
random-phase approximation �RPA�, also known as the Vla-
sov or mean-field approximation in plasma physics. In this
approximation, the effective field seen by an electron or an
ion in the plasma is the field that would be seen by a classi-
cal, external test charge embedded in the plasma. This ap-
proximation fails to account for the correlations that exist
between the particle under scrutiny and all the other particles
in the plasma. For instance, it does not account for the fact
that the effective field seen by a particle must not include the
contribution from that very same particle. The so-called local
field corrections �LFCs� G�� in Eq. �7� account for the ne-
glect of those correlation �and exchange� effects inherent to
the RPA.

Model �7� for the density fluctuations is used to calculate
the right-hand side of Eq. �3�. To this end, we need the cor-
relation function for the spontaneous density fluctuations,
��n�

�s��k ,���n�
�s��k� ,����. Using Eq. �5� and that at t0 the

positions of two different “spontaneous” particles are uncor-
related, we obtain �15�

��n�
�s��k,���n�

�s��k�,���� = ����2��2��k + k��

���� + ���n�VS��
0 �k,�� , �8�

where S��
0 �k ,��= 1

N�
� dt

2�ei�t��n�
�s��−k ,0��n�

�s��k , t�� is the dy-
namic structure factor of the ideal gas of species � at tem-
perature T�. The latter can be related to the free-particle re-
sponse function 
�

0 through the fluctuation-dissipation
theorem,

S��
0 �k,�� = −




�n�

n
 
�

kBT�
�Im 
�

0�k,�� , �9�

with n�x�=1 /1−e−x for quantum particles and n�x�=1 /x for
classical particles. Introducing Eqs. �7�–�9� into Eq. �4�, we
obtain

dTi

dt
= −

2


3kB�niV
�
k
	 d�� vie�k�

D�k,��
�2

�1 − Gie�k��

���n
 
�

kBTi
� − n
 
�

kBTe
��Im 
e

0�k,��Im 
i
0�k,�� ,

�10�

where

D 
 �1 − uee
e
0��1 − uii
i

0� − ueiuie
e
0
i

0

and u��
v���1−G��� �18�. In obtaining Eq. �10� we have
assumed the static LFC approximation G���k ,��=G���k ,0�,
which is enough here given the additional approximation
performed below; the general result is given in Appendix A.

Equation �10� can be further simplified by �a� noting that
typically meTi	miTe and �
meTi /miTe	1 can be used as a
small parameter, �b� keeping the lowest-order term in �, and
�c� using the f-sum rule to perform the � integral. The details
of these operations are given in Appendix C. Equation �10�
reduces to the rate equation

dTi

dt
= − �ie�Ti − Te� , �11�

where the temperature-relaxation rate is

�ie = −
1

3�2mi
	

0

�

dkk4� vei�k�
�e�k,0�

�2

��1 − Gie�k��� � Im 
e
0�k,��

��
�

�=0
. �12�

Here �e�k ,0�=1−vee�k��1−Gee�k��
e
0�k ,0� is the static elec-

tronic dielectric function, G���k�=G���k ,0� are the static
LFCs.

Our model �12� is conveniently rewritten in the Landau-
Spitzer form

�ie = �0 ln � ,

i.e., as the product of a universal rate,

�0 =
8neZ

2e4�2�memi

3�mikBTe�3/2 ,

and of a �dimensionless� generalized Coulomb logarithm,

ln � = −� 2

�me

�kBTe�3/2

ne

1

�4�Ze2�2	
0

�

dkk4� vei�k�
�e�k,0�

�2

��1 − Gie�k��� � Im 
e
0�k,��

��
�

�=0
. �13�

Our approach, which consists of modeling the density
fluctuations in a two-temperature plasma to obtain dTi /dt,
does not rely on the concept of isolated binary collisions and
allows us to treat the plasma as a single entity and to include
self-consistently the electron-ion interactions. For instance,
the collective behavior typical of a plasma and in particular
the screening of the e-i interaction due to both electrons and
ions are present through the dielectric function D�k ,�� in Eq.
�10�. The short-range correlations, which especially affect
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the contribution of close encounters, are self-consistently
added through the local-field corrections �see, e.g., the factor
1−Gie in the numerator of Eqs. �10� and �13��. The effect of
particle statistics, e.g., electron degeneracy, is included
through the response functions. All these effects are not ad
hoc constructs but are self-consistently derived. Their contri-
butions are analyzed in Secs. III and IV.

A detailed comparison of our model with others models
such as the Fermi-golden-rule formula �12�, the Lenard-
Balescu formula �14,19�, and the coupled-mode theory of
Dharma-wardana and Perrot �13� is presented in Sec. V. Here
we just make the following remarks. When only e-i correla-
tions are neglected, Gie=0, and Gee is approximated by its
value in the jellium model, Gee

jel. Our model reduces to the
so-called FGR formula obtained within the framework of
linear-response theory assuming weak e-i interactions �12�.
Our model can thus be regarded as an extension of the FGR
formula where the plasma is treated as a whole and e-i in-
teractions are treated self-consistently. When the LFCs are
completely neglected, G��=0; our model reduces to the re-
sult obtained using the Lenard-Balescu kinetic equations.

Finally, it is worthwhile to remark that Coulomb loga-
rithm �13� differs from the Coulomb logarithm entering the
Ziman formula for the electronic conductivity and its exten-
sions to strongly coupled plasmas �15,20,21� in that the latter
involve, in addition to the terms in the integrand of Eq. �13�,
the static ion-ion structure factor Sii�k�. Thus, contrary to the
e-i momentum exchanges that govern the electronic conduc-
tivity, e-i energy exchanges are globally insensitive to the
details of the ion fluctuation spectrum �12� �see discussion in
Appendix C�. This is reminiscent of Bethe’s result on stop-
ping power �15,22� that the energy loss of a fast charged
particle in a plasma is fixed by the total number of scatterers.

III. VALIDATION OF THE MODEL

We validate Eq. �12� using ab initio MD simulations of
classical e-i systems with a pure Coulomb potential. We
avoid Coulomb collapse �recombination� by using positively
�like-�charged electrons and ions immersed in an inert, neu-
tralizing background. As explained in Sec. I, this is done
because fully quantum-mechanical simulations are not yet
feasible. Again, this is legitimate since our theory can also be
applied to classical like-charged systems. In the classical
limit �see Appendix B�, we have

�

��
Im 
e

0�k,0� = −
ne

�kBTe�3/2��me

2

1

k
,


e
0�k,0� = − ne/kBTe,

and Eq. �12� becomes

ln � = 	
0

� dk

k

1 − Gie�k�
��e�k,0��2

, �14�

where �e�k ,0�=1+ �kDe
2 /k2��1−Gee�k�� and kDe

= �4�nee
2 /kBTe�1/2 is the inverse electronic Debye length.

The Coulomb logarithm ln � for temperature relaxation
in a like-charged, classical plasma �Ze=Z=1� is shown in

Fig. 1 from various calculations as a function of the plasma
coupling parameter g=rL /�De, where rL=e2 /kBTe is the dis-
tance of closest approach �Landau length� and �De=1 /kDe is
the electron Debye length. The curved line is a fit to results
from accurate, large-scale MD simulations �8�. For g	1, the
MD simulations confirm the theories �10,11�, which regular-
ize the divergent collision integrals at small and large mo-
mentum transfers k, and yield ln�0.765�De /rL� �blue line�.
However, these theories break down at g�0.1, since they do
not satisfactorily describe correlation effects and ln ��0.
Our model �14�, whose results are shown by the black dots
in Fig. 1, not only recovers the weak-coupling limit
ln�0.765�De /rL� but also is in very good agreement with the
MD calculations over the whole range of coupling.

Correlations effects are accounted for by the LFC term
1−Gie. When correlations are neglected �G��=0�, Eq. �14�
diverges logarithmically at large momentum k for all plasma
coupling,

ln � = 	
0

�

dkk3/�k2 + kDe
2 �2 = � ∀ g .

The integral diverges due to close encounters �large k� be-
cause the neglect of correlations assumes that the pair-
distribution functions g���r��1 everywhere. However, as il-
lustrated in Fig. 3, repulsion at small interparticle distances r
forces g���r� to vanish continuously at r=0. In our model,
we account for the “hole” in gab�r� by the term 1−Gie�k�
since the two quantities are related by the Ornstein-Zernicke
�OZ� relation between the pair-distribution functions and the
direct correlation functions c���k�=−v���k��1−G���k�� /kBT
�15�. In particular, as shown in Appendix B 3, the OZ rela-
tion implies

1 − Gie�k� =
Ze

4�e2�Z

D�k,0�

e

0�k,0�
k2Sie�k� , �15�

where Sie�k�=�neni�dk�gie�r�−1�e−ik·r is the i-e structure
factor. We calculate G���k� and g���r� self-consistently
by using the hypernetted chain �HNC� closure g���r�
=exp�−v�� /kBT+g��−1−c��� in the OZ relations. The HNC

FIG. 1. �Color online� Coulomb logarithm vs plasma parameter
for like-charged systems. The curved �red line� line is a fit to the
MD data �8�.
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closure is known to accurately describe correlations in
classical Coulomb systems �15,23�. Results for gie�r� and
1−Gie�k� are shown in Figs. 2 and 3 for various values of
coupling. As a consequence of short-range correlations and
for all coupling parameters,

gie�r = 0� = 0,

and Eq. �15� implies �see Appendix D�

lim
k→0

1 − Gie�k� = 0. �16�

As a consequence Eq. �14� converges for all plasma cou-
pling,

ln � = 	
0

� dk

k

1 − Gie�k�
��e�k,0��2

� � ∀ g .

Thus, while Debye screening cuts off integral �14� at small k
�distant encounters�, short-range e-i correlation effects em-
bodied in 1−Gie�k� are crucial to provide the large momen-
tum cutoff. The results obtained for ln � �black dots in Fig.
1� are in very good agreement with the MD calculations over
the whole range of coupling. At small g, Eq. �14� recovers
the weak-coupling limit ln�0.765�De /rL�. At higher coupling,
it joins the weakly to strongly coupled regimes. We also find
�not shown here� that ln � is insensitive to the ion charge Z
at constant g, consistent with MD simulations �8�.

It is remarkable that Eq. �14� recovers the result of Kihara
and Aono �KA� �10�, which was rederived recently with
modern regularization techniques by Brown, Preston, and
Singleton �BPS� �11� �see also �24��. Both KA and BPS used
sophisticated regularization techniques to eliminate the di-
vergences encountered when dealing with Coulomb colli-
sions in a plasma with the traditional particle and wave pic-
tures. In the particle picture, particles undergo binary
Coulomb collisions and the dynamics of each charged spe-
cies is governed by a Boltzmann equation with Rutherford
cross sections. The collision integrals, expressed as integrals
over the impact parameter, diverge logarithmically at large
impact parameter because collective interactions between
charged particles are not included. In the wave picture, those
collective �screening� effects are included through the
plasma dielectric function. In the traditional approach of
Landau, large momentum transfers are neglected and par-
ticles momenta diffuse in the fluctuations of the total electric
field of the plasma. As a consequence, close collisions are
not treated correctly and the collision integrals diverge at
large momentum transfer. At first sight, the agreement be-
tween our model for like-charged plasmas and �10,11� might
seem curious since these authors considered real plasmas
with negatively charged electrons in the so-called classical
regime where rL��th, where �th=
 /�mekBTe is the thermal
de Broglie wavelength. This is because the fundamental
quantities underlying KA and BPS theories, namely, the Ru-
therford cross section and the dielectric function �10,11�,
scale similarly as the square of the charges and their results
are therefore insensitive to the sign of the electron charge.

Following the original works of Landau and Spitzer �9�,
we note that the result ln�0.765�De /rL� can be interpreted in
terms of maximum and minimum impact parameter cutoffs
by writing ln �=ln�bmax /bmin� with bmax=�De and bmin
=rL /0.765�1.4rL, respectively. bmax is the widespread used
maximum cutoff that arises from electronic screening, while
bmin corresponds to the distance below which gie�bmin��0.5.
Figure 4 indeed shows that at small coupling gie�r� is always
equal to 0.5 when r�1.4rL. Our approach therefore allows
us to understand the statistical origin of bmin: close collisions
below that distance are statistically rare and do not contribute
to the Coulomb logarithm.

Finally, our model �14� diverges when applied to fully
classical and negatively charged electron. Indeed, as
illustrated in Fig. 3, since gie�r��exp�−vei�r� /kBTe�
=exp�−ZeZ /rkBTe�→� at r=0, limk→� 1−Gie�k�=−� at all

FIG. 2. �Color online� 1−Gie�k� �on a semilogarithmic scale� for
classical, like-charged hydrogen �lower full curves� and for real
hydrogen with quantum, negative electrons �upper dashed curves�
at ne=1.6�1024 cm−3 and for �=0.01, 0.1, 1, and 10.

FIG. 3. �Color online� Electron-ion pair-distribution function
�on a semilogarithmic scale� for like-charged hydrogen �full lines�
at �=0.001, 0.01, 0.1, 1, and 10. The dashed line shows gie�r� for a
purely classical plasma with negatively charged electrons at �
=0.01. Here �=e2 /aekBTe= �g /�3�2/3 is used to characterize the
plasma coupling, where ae= �3 /4�ne�1/3 is the mean interparticle
distance.
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coupling when Ze=−1, indicating the infinite attraction be-
tween classical ions and classical, pointlike electrons. On the
contrary, KA and BPS theories converge in the classical limit
because the Rutherford cross section is independent of the
particle distributions, and in particular of gie�r�. In our
model, negatively charged electrons must be treated quantum
mechanically, as shown in Sec. IV.

IV. APPLICATION TO DENSE HYDROGEN PLASMAS

Having validated our model for classical like-charged
plasmas, we now consider fully ionized �hydrogen� plasmas
with negative �Ze=−1�, quantum-mechanical electrons. We
define the usual coupling parameter �=e2 /aekBTe, where ae
= �3 /4�ne�1/3 is the mean interparticle distance, the degen-
eracy parameter �=kBTe /EF, where EF=
2kF

2 /2me and kF
= �3�ne�1/3 are the electronic Fermi energy and momentum,
and rs=ae /aB, where aB is the Bohr radius. Using the quan-
tum expression for �

�� Im 
e
0�k ,0� �see Appendix B�,

�

��
Im 
e

0�k,0� = −
ne

�kBTe�3/2��me

2

1

k
f�k/2� , �17�

where f�k�= 3��
4 �3/2�1+e�k2/kF

2−�/EF�/��−1, simply adds a
Fermi distribution factor f�k /2� to the classical expression
used in Sec. III. Our model �12� becomes

ln � = 	
0

� dk

k

1 − Gie�k�
��e�k,0��2

f�k/2� . �18�

Equation �18� differs from classical limit �14� in two ma-
jor ways. First, it converges even when correlations are ne-
glected, i.e., G��=0, because f�k /2� vanishes exponentially
at large k and cuts off the integral for k on the order of
2kF

�1+�,

	
0

� dk

k

1

��e�k,0��2
f�k/2� � � ∀ �, ∀ � . �19�

For instance, in the nondegenerate limit ��1, Eq. �19�
gives

ln � = 	
0

�

dk
k3

�k2 + kDe
2 �2e−k2/4kF

2
� � ln�0.742�rs/��, � � 1.

�20�

This result corresponds to that obtained using the quantum
Lenard-Balescu kinetic equation �19�. It was more recently
derived by BPS �11� and can also be found in �24�. Follow-
ing Landau and Spitzer, Eq. �20� can be rewritten as ln �
=ln�bmax /bmin� in terms of the maximum and minimum im-
pact parameters bmax=�De and bmin�0.778�th, where �th

=
 /�mekBTe is the thermal de Broglie wavelength. This re-
sult is to be compared to bmin=1.4rL obtained in Sec. III for
classical like-charged systems.

In the degenerate limit �	1, f�k /2����2kF−k� and the
range of integration is limited to 2kF �only those electrons
near the Fermi surface take part in energy exchanges�,

ln � = 	
0

2kF dk

k

1

��e�k��2
�

1

2
�ln
1 +

4kF
2

kTF
2 � −

4kF
2

4kF
2 + kTF

2 � .

�21�

For illustration, we used in the last equation the large-
wavelength approximation �e�k��1+kTF

2 /k2, where kTF is
the finite temperature Thomas-Fermi screening length �25�.
By comparing Eq. �21� with the Brysk formula �3,4�, we
remark that Brysk et al. �3� used only the logarithmic part. At
high density, the second term makes a negative correction to
the logarithmic part of typically 20–30 %.

As shown in Appendix B, the presence of the converging
factor f�k /2� in Eq. �17� and its absence in Eq. �14� are due
to the difference in the energy excitations �=k ·p /me
+
k2 /2me and �=k ·p /me, respectively. In particular, in
the quantum electron gas and for the small energy transfers
��0 of interest here, large momentum transfers
�k2�mekBTe /
2� characteristic of close encounters can only
involve electrons in the tail of the Fermi distribution. Since
the latter vanishes exponentially at large momentum, the cu-

FIG. 4. �Color online� Electron-ion pair-distribution functions
�on a semilogarithmic scale� for like-charged hydrogen as a func-
tion of r /rL, where rL is the Landau length for and for coupling
0.001��=e2 /aekBTe�10. It is remarkable that for all ��0.1,
gie�r�=0.5 when r�1.4rL.

FIG. 5. �Color online� Electron-ion pair-distribution functions
�on a semilogarithmic scale� for like-charged hydrogen �lower full
curves� and for real hydrogen plasmas with quantum, negative elec-
trons �upper dashed curves� at ne=1.6�1024 cm−3 and for �
=0.01, 0.1, 1, and 10.
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mulating effects of recoil energy and Fermi statistics, here-
after referred to as quantum diffraction effect, naturally cuts
off Eq. �18� at large k irrespective of the strength of the e-i
correlations.

Second, as illustrated in Figs. 2 and 5 for dense hydrogen,
real plasmas exhibit correlation effects that differ from like-
charged plasmas. Here gie�r� varies from

gie�r = 0� � 1,

at the origin to gie�r�=1 at large distance r. Moreover,
gie�r�→1 everywhere as the temperature increases. The
quantity 1−Gie�k� still obeys OZ relation �15� �see Appendix
B 3�, and varies from 1 at k=0 to �see Appendix D�

lim
k→0

1 − Gie�k� � gie�r = 0� � 0, �22�

at large k, as illustrated in Fig. 2. Thus, in contrast with the
classical limit, 1−Gie�k� does not cut off integral �18� at
large k. The cutoff is instead provided by the Fermi distribu-
tion f�k /2�. Moreover, the calculations of �26–28� suggest
that Gie�k��0 and Gee�k��0. Therefore Eq. �18� suggests
that correlations tend to increase the Coulomb logarithm
from its value obtained assuming G��=0, in agreement with
the conclusions of �19�.

We estimated the LFCs needed in Eq. �18� following the
approach prescribed in �28� for dense hydrogen plasmas. For
all the densities studied �1023�ne�1027 cm−3�, a similar
behavior illustrated in Fig. 6 is observed. At small tempera-
ture, �ie stays nearly constant up to kBTe�0.5EF at a value
slightly higher than when correlations are neglected �19�.
Indeed, ln � scales like Te

3/2 at small Te, which cancels with
the Te

−3/2 in �0. Beyond kBTe�0.5EF, the rate decreases and
at high temperature it follows the quantum Lenard-Balescu
result �0 ln � with ln � given by Eq. �20�, indicating that, in
contrast with the classical system studied above, correlations
do not play any important role. Here, quantum diffraction
effects play a bigger role than e-i correlation effects in deter-
mining �ie, and the FGR formula decently estimates the re-
laxation rates. Note that at these high densities, electron de-

generacy is always important when the plasma coupling is
large than unity; i.e., ��1 when ��1. We expect that cor-
relations will play a bigger role whenever gie�r=0� �and in
turn �1−Gie�����gie�r=0�� significantly increases while the
large momentum cutoff 2kF

�1+� imposed by f�k /2� also
increases. This certainly occurs at densities and temperatures
low enough for bound states to emerge and below which our
model breaks down �28�.

V. COMPARISON WITH OTHER MODELS

In this section, we provide a comparison between our
model and three other models that have recently been dis-
cussed in the literature, namely, the “Fermi-golden rule”
model described by Hazak et al. in �12� and also in �13�, the
LB model discussed, e.g., in �14� and the DWP model devel-
oped in �13�.

To this end, the four models are conveniently expressed
into similar-looking expressions for the evolution of the en-
ergy density Ei=3nikBTi /2 as

dEi

dt
= − 2
	 dk

�2��3	 d�

2�
�vie�k��2��N�k,��Im 
e

ocp�k,��Im 
i
ocp�k,�� �Fermi golden rule �12,13�� �23�

=− 2
	 dk

�2��3	 d�

2�
�vie�k��2��N�k,��

Im 
e
lb�k,��Im 
i

lb�k,��
�1 − �vei�k��2
e

lb�k,��
i
lb�k,���2

�Lenard-Balescu model �14�� �24�

=− 2
	 dk

�2��3	 d�

2�
�vie�k��2��N�k,��

Im 
e
dp�k,��Im 
i

dp�k,��
�1 − �vei�k��2
e

dp�k,��
i
dp�k,���2

�Dharma-wardana – Perrot model �13�� �25�

=− 2
	 dk

�2��3	 d�

2�
�vie�k��2��N�k,��

�1 − Gie�k��Im 
e�k,��Im 
i�k,��
�1 − �vei�k��2�1 − Gei�k���1 − Gie�k��
e�k,��
i�k,���2

��our model, Eq. �10�� , �26�

FIG. 6. Relaxation rate �ie for dense hydrogen at ne=1.3e
�25 g cm−3 obtained using Eq. �18� �full line�, the FGR with
Gee=Gii=0 �dashed line�, and the widely used Brysk formula �3�
�dotted line�.
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with �N�k ,��
n�
� /kBTi�−n�
� /kBTe�.
Equation �26� is nothing but our model �10� written in

terms of the quantities


e�k,�� 


e

0�k,��
1 − vee�k��1 − Gee�k��
e

0�k,��
, �27�


i�k,�� 


i

0�k,��
1 − vii�k��1 − Gii�k��
i

0�k,��
. �28�

Indeed, using Im 
�=Im 
�
0 / �1−v��k��1−G���
�

0 �2 in Eq.
�10� leads to Eq. �26�. Recall that here Gee and Gii are the
static LFCs of a two-temperature, two-component electron-
ion plasma introduced in Sec. II.

FGR model �23� was obtained by calculating the energy
transfers in the first Born approximation in the e-i interac-
tion. As a result, in Eq. �23�, 
e,i

ocp are the response functions
of the interacting one-component electron and ion plasmas,


e
ocp�k,�� 



e
0�k,��

1 − vee�k��1 − Gee
ocp�k,���
e

0�k,��
, �29�


i
ocp�k,�� 



i
0�k,��

1 − vii�k��1 − Gii
ocp�k,���
i

0�k,��
, �30�

where Gee
ocp and Gii

ocp are the LFCs for the one-component
electron and ion gases at temperatures Te and Ti, respec-
tively.

LB model �24� is obtained from momentum integration of
the LB kinetic equations �14�. The response functions in Eq.
�24� are


e
lb�k,�� 



e
0�k,��

1 − vee�k�
e
0�k,��

, �31�


i
lb�k,�� 



i
0�k,��

1 − vii�k�
i
0�k,��

. �32�

Comparing our model with the LB and FGR models, we
remark the following:

�a� The physical interpretation of the three models goes as
follows. The FGR formula describes the energy exchanges
between two weakly interacting one-component electron and
ion plasmas. The two subsystems are independent from each
other. For instance, electrons do not affect the interionic in-
teractions. In reality, however, electrons screen the i-i inter-
actions and the ionic plasmon excitation becomes an ion-
acoustic mode. Conversely, both the LB model and our
model treat the entire plasma, i.e., electrons plus ions, as a
single system, in which the collisions are due to the interac-
tions via an effective, screening potential. In both models the
effective potential is not an ad hoc construct but is derived
from a model such as Eq. �26� for the density fluctuations
�ne,i in the plasma. In the LB model, the plasma is assumed
to be weakly coupled and the density fluctuations �ne,i are
accordingly described at the level of the random-phase ap-
proximation �RPA� �15�, which amounts to neglect the LFCs
in Eq. �7� and therefore in Eq. �26�. It is therefore not sur-
prising that our model reduces to LB result �24� by setting

the LFCs G�� to zero in Eq. �26�. In our model, the effects of
particle correlations neglected in the RPA are modeled using
LFCs in Eq. �7�. Correlations modify the LB model in two
major ways. First, they modify the dispersion relation of the
collective modes in the plasma, i.e., the poles in Eqs. �24�
and �26�. However, as discussed in Sec. II and below, this
effect barely affects the relaxation rate when meTi /miTe	1
since in this limit the e-i energy exchanges are globally in-
sensitive to the details of the fluctuation spectrum. Second,
they account for the short-range e-i correlations �gei�r=0�
�1 and therefore 1−Gie�k=���0 in real plasma; gie�0�=0
and therefore 1−Gie�k=��=0 in like-charged plasmas� and
bring in the contribution of close encounters. �As discussed
in Sec. IV, in real plasma, both short-range correlations and
quantum diffraction determine the effect of close encoun-
ters.�

�b� From Appendix C, it is clear that in the limit
meTi /miTe	1 both the LB and FGR models become

ln � = 	
0

� dk

k

1

�1 − vee�k��1 − G�k,0��
e
0�k,0��2

f�k/2� ,

�33�

with G=0 for LB and G=Gee
ocp�k ,0� for FGR. Equation �33�

was previously derived and validated in �12� for the FGR
model and in �19� for the LB model. As discussed in Sec. III,
our model reduces to Eq. �33� with G=Gee when the e-i
correlation effects are neglected, i.e., Gie=0 in Eqs. �14� or
�18�. The three models agree when all the LFCs are ne-
glected.

�c� As discussed in Sec. III, Eq. �33� diverges when elec-
trons are treated classically �i.e., when f�k /2�
1 in Eq. �33��
because of the inadequate treatment of close e-i encounters.
Short-range correlation effects described by the 1−Gie term
in Eq. �14� are crucial in purely classical plasmas at any
density and temperature to provide the large momentum cut-
off. The LB and FGR models do not describe those correla-
tions properly and accordingly diverge at large k for classical
electrons.

�d� Equation �33� converges when electrons are treated
quantum mechanically, because f�k /2� vanishes exponen-
tially at large k and cuts off the integral for k on the order of
2kF

�1+�. With G
0, all three models lead to the Coulomb
logarithm,

ln � = 	
0

�

dk
k3

�k2 + 1�2e−��th
2 /8�De

2 �k2
� ln
0.742�rs

�
�, � 	 1.

�34�

Note that BPS �11� also recovered the same result in the
so-called quantum limit rL��th; see also �24�.

DWP theory �25� was proposed as the nonperturbative
extension of the FGR theory. DWP attributed the energy re-
laxation to the dynamically coupled electron and ion modes
in the plasma resulting from the strong e-i interactions. These
modes are accounted for by the dynamical response func-
tions 
e,i

dp�k ,�� discussed below. At melting temperature, the
DWP relaxation rates predicted for metals are an order of
magnitude smaller than the FGR rates �29�. For hot dense
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hydrogen, according to the results recently reported in �7� for
densities rs=0.5 and rs=1 and temperatures 50�T
�4000 eV �see their Fig. 2�, the DWP relaxation rates are
systematically lower than the FGR rates, both rates are close
�but not equal� at temperatures T�1 keV, and the DWP
model deviates non-negligibly and increasingly at lower tem-
peratures. These findings differ from the conclusions of our
model described in Sec. IV.

The description and the notations in �7,13,29� are rather
confusing concerning the definition of the quantities

e,i

dp�k ,�� to be used in Eq. �25�. According to the recent
paper �7�, the DWP model is simply obtained by including
the denominator 1−vie

2 
e
ocp
i

ocp in integrand �23� of the FGR
formula �see Eq. �9� and related text in �7��, i.e., 
e,i

dp=
e,i
ocp in

Eq. �25�. This seems unlikely since in that case DWP model
�25� would be nothing more than LB model �24� corrected
by the LFC Gee,ii

ocp �in practice �7,13,29�, use static LFC�.
Then, just like the LB and FGR models, DWP would also be
well approximated by Eq. �33� and would not significantly
differ from FGR.

According to a previous paper �29�, the 
e,i
dp in Eq. �25� are

the electron and ion response functions of a two-component
plasma, namely,


�
dp = 
�

0�1 − v���1 − G���
�
0�/D, � = e,i ,

D = �1 − vee�1 − Gee�
e
0��1 − vii�1 − Gii�
i

0�

− veivie�1 − Gei��1 − Gie�
e
0
i

0.

With these definitions, it is hard to see how to perform ana-
lytically the � integral in Eq. �25� as is possible with all the
other models using the f-sum rule. Indeed, since 
e

dp is sen-
sitive to the low-frequency �ion-acoustic� mode, the quantity
Im 
e

dp Im 
i
dp / �1− �vei�2
e

dp
i
dp�2 cannot easily be written as

the product of two quantities, one that resides on a very-low-
frequency range over which the other barely varies. Accord-
ingly, the DWP theory is sensitive to the details of the ion
fluctuation spectrum and finds results that differ from FGR in
the way recalled above.

Comparing our model with DWP, we remark the follow-
ing:

�a� As discussed earlier, both our model and the LB model
describe self-consistently the electron-ion interactions in a
plasma and therefore the coupled modes at the root of DWP
theory. The LB model describes those modes at the level of
the RPA, while our model brings in correlation effects.
Again, because in practice electrons are much faster than
ions, �=meTi /miTe	1, the temperature-relaxation rates are
insensitive to the mode spectrum and both the LB model and
our model reduce to Eq. �33�. We suspect that the prescrip-
tion of DWP, supposedly based on some of the Feynman
diagrams discussed in �13�, overestimates �multiple counts�
the effect of screening.

�b� Unlike our model, DWP expression �25� does not in-
clude a term such as 1−Gie�k� in the numerator. As a conse-
quence, when applied to a classical like-charged system, the
DWP model diverges logarithmically at large k �the inte-
grand scales like 1 /k at large k as the LB and FGR formu-
las�. The DWP is therefore unable to explain the classical

MD data discussed in Sec. III, while the concept of coupled
modes at the basis of DWP does not only pertain to real
plasmas but also applies to classical like-charged systems.

�c� For dense hydrogen, our model predicts rates at most
50% larger than the FGR, in contrast with the findings of �7�
mentioned above.

VI. CONCLUSION

In summary, we describe a model for the rate of tempera-
ture relaxation between electrons and ions that treats the ef-
fects of electron statistics and particle screening and correla-
tions in a self-consistent fashion. Such a treatment is
necessary in order to calculate the Coulomb logarithm with-
out ad hoc cutoffs and with improved accuracy for the vari-
ous physics regimes encountered in inertial confinement fu-
sion and stellar interiors. The key result in our model for the
relaxation rate removes the uncertainty in the Coulomb loga-
rithm because it resolves the close and distant particle en-
counters in a self-consistent fashion. The distant encounters
are limited by the plasma dielectric response for Boltzmann
or Fermi statistics as needed. The close encounters are lim-
ited by quantum diffraction effects and short-range particle
correlations. By treating these effects together and self-
consistently, the Coulomb logarithm that we obtain for a
low-temperature, oppositely charged plasma is 50% smaller
than the often-used Brysk �3� result and 50% larger than the
Fermi-golden-rule result.

In order to validate our model with ab initio MD simula-
tions, we also applied our formalism to a plasma of like-
charged electrons and ions. This is motivated by the fact that
experiments with real plasmas have not been able to provide
data of sufficient accuracy to resolve any of these issues. The
available MD simulations can be much more accurate but
they are fundamentally classical. Moreover, when the inter-
particle potential is modified at short distance to include to
some degree quantum effects, the simulations are no longer
ab initio. We thus abandoned the semiclassical approxima-
tion and used the real Coulomb force in our MD simulations,
but we had to make the electron and ion charges alike in
order to avoid Coulomb collapse. Our model is applicable to
such a system and our results are in excellent agreement with
MD simulations. This is a valid test of our formalism be-
cause the extension to a real and quantum plasma is straight-
forward.

In the future, we plan to perform MD simulations with
modified potentials in order to test the semiclassical approxi-
mation for both like- and opposite-charged plasmas �30�. In
addition, we will compare our model results with previous
models in ICF experiments.
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APPENDIX A: GENERAL EXPRESSION

Equation �10� is obtained assuming the static LFC ap-
proximation Gab�k ,��
Gab�k ,0�. In general, we obtain the
more complicated expression
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dTi

dt
=

2

3kBniV
2�

k
	 d�

vie�k�
�D�k,���2

��Im Aei�k,��Sii
0�k,��

− Im Aie�k,��See
0 �k,��� , �A1�

with A��=u��
�
0�1−u��

� 
�
0,��, D= �1−uee
e

0��1−uii
i
0�

−ueiuie
e
0
i

0, and u��
v���1−G��� �the star denotes the
complex conjugate.� Equation �A1� reduces to Eq. �10� when
Gab�k ,��
Gab�k ,0�. In that case, the LFCs are real and
Im A��=u�� Im 
�

0 . To first order in the small parameter
meTi / �miTi, both Eqs. �10� and �A1� lead to expression �12�
for �ie. Note that the right-hand side of Eq. �A1� is equivalent
to Eq. �4� and therefore vanishes when Te=Ti.

APPENDIX B: IMPORTANT PROPERTIES OF RESPONSE
FUNCTIONS

For completeness, we list in this appendix a number of
basic properties satisfied by quantum and classical response
functions. Most of these properties can be found �sometimes
with different notations�, for instance, in �15,31�.

1. Classical and quantum free-particle response functions

We consider a homogeneous system consisting of a single
species of noninteracting particles of mass m and character-
ized by the particle density n, the �inverse� temperature �
=1 /kBT, and the chemical potential �. If the system is
treated quantum mechanically, the density-density response
function 
0�k ,�� is given by


0�k,�� = −	 dp

�2��3

F�p + 
k� − F�p�

� − �E�p,k� + i0+

, �B1�

where F is the Fermi distribution

F�p� =
1

1 + exp ����p� − ��
, �B2�

and �E�p ,k�=��p+
k�−��p�, where ��p�=p2 /2m is the en-
ergy of a particle of momentum p. Equation �B1� implies

Im 
0�k,�� = �	 dp

�2��3 �F�p + 
k� − F�p���„
� − �E�p,k�…

�B3�

=
m2

2�
4�

1

k
ln

1 + e��−�+
2�F+��

1 + e��−�−
2�F+��

, �B4�

with ��= �
qvF

�
q

2kF
. By differentiating Eq. �B4� with respect

to �, we find

�

��
Im 
0�k,� = 0� = − n���m�

2

1

k
f�k/2� , �B5�

with

f�k� 

3��

4
�3/2F�
k� . �B6�

In the classical limit �
→0�, Eq. �B3� becomes

Im 
0�k,�� = n�
	 dp

�2��3k · �Fcl�p��„
� − �E�p,k�…

�B7�

=− n���Ye−Y2
, �B8�

where Y =�m� /2� /k, �E�p ,k�=
k ·p /m, and Fcl is the
Maxwellian distribution

Fcl�p� = 
m�

2�
�3/2

exp
− �p2

2m
� . �B9�

The frequency derivative at �=0 is

�

��
Im 
0�k,� = 0� = − n���m�

2

1

k
. �B10�

The only change between the quantum and classical expres-
sions for �

�� Im 
0�k ,�=0� is in the factor f�k /2�. The differ-
ence stems from the difference in the quantum and classical
recoil energies �E�p ,k� appearing in the delta functions of
Eqs. �B3� and �B7�, viz.,

�E�p,k� = ��p + 
k� − ��p� = 
k · p/m

+ 
2k2/2m �quantum� = 
k · p/m �classical� .

In the classical case, energy is always conserved only to
lowest order in the momentum transfer k. In the quantum
case, the leading term at very large k is 
2k2 /2m, indepen-
dent of the momentum p. As a consequence, at �=0, the
energy-conserving delta functions in Eqs. �B3� and �B7�
bring in the k-dependent factor f�k /2� in the quantum case
and the k-independent factor Fcl�p=0�=1 in the classical
case. Hence the additional term f�k /2� in the Coulomb loga-
rithm of real plasmas, often attributed in the literature to
electron degeneracy, arises from quantum diffraction.

2. f-sum rule

As a consequence of causality, a density-density response
function 
�k ,z� in a one-component system satisfies


�k,z� =
1

�
	

−�

�

d�
Im 
�k,��

� − z
, �B11�

for any complex number z. Because Im 
�k ,�� is odd with
respect to �, the previous relation implies


�k,z� = −
1

�
�
n=0

�
�2n+1

z2n+1 , �B12�

where �n�k� is the frequency moment of order n,

�n�k� = 	
−�

�

d��n Im 
i�k,�� . �B13�

The first moment �1, which carries information on the very-
short-time dynamics of the system, is independent of the
interparticle interactions �over very short time scales, the
particles motion is purely kinetic� and is equal to the ideal
gas value,
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�1�k� = 	
−�

�

d�� Im 
0�k,�� =
�nk2

m
. �B14�

3. Derivation of Eq. (15)

Equation �15� is obtained by solving the coupled OZ re-
lations for a two-component system in terms of the structure
factors and the local field corrections. The classical OZ rela-
tions for a classical, two-component electron-ion system are
�15�, in Fourier space,

hii�k� = cii�k� + nihii�k�cii�k� + nehie�k�cei�k� ,

hie�k� = cie�k� + nihii�k�cie�k� + nehie�k�cee�k� ,

hee�k� = cee�k� + nihei�k�cie�k� + nehee�k�cee�k� ,

where h�� is related to the pair correlation functions as
h���r�=g���r�−1. Solving this system of equations for
h���k� and using the static structure factors S���k�=���

+�n�n�h���k�, we obtain for Sie

Sie�k� = − kBT�ni

ne


e
0�k�

D�k�
cie�k� , �B15�

with D�k�= �1−nicii�k���1−necee�k��−nenicie�k�cei�k�. Since
c���k�=−v���1−G���k�� /kBT, Eq. �B15� reduces to Eq. �15�.

For a real plasma with quantum-mechanical electrons, the
above equations have to be modified such as �see, e.g., �32��

hii�k� = cii�k� + nihii�k�cii�k� + nehie�k�cei�k� ,

−
ne

kBT
e
0�k�

hie�k� = cie�k� + nihii�k�cie�k� + nehie�k�cee�k� ,


e�k� − 
e
0�k�


ee
0 �k�

= ninehei�k�cie�k� − kBT
e�k�cee�k� .

Solving this system for hii, hie, and 
e, we again obtain Eq.
�15� and therefore Eq. �15�, with D�k�= �1−nicii�k���1
+kBT
e

0�k�cee�k��+nikBT
e
0�k�cie�k�cei�k�. Alternatively, Eq.

�15� can also be obtained from the fluctuation-dissipation
theorem relating the structure factors to the response func-
tions.

APPENDIX C: DERIVATION OF EQ. (11)

In this appendix, we show how to obtain Eq. �11� from the
more general result �10�. To this end, we note that in most
practical applications �
meTi /miTe	1 �me /mi�1 /1815
	1 when Te=Ti� and, as a consequence, the � integral can
be performed analytically by exploiting the f-sum rule. Simi-
lar but not identical calculations were performed by Hazak et
al. �12� to simplify the full FGR formula of �ie, and by Boer-
cker et al. �21� to simplify their extended Ziman formula for
the electrical conductivity. Throughout this appendix we use
the general properties of response functions recalled in Ap-
pendix B.

First, we rewrite the integrand of Eq. �10� with the help of
the following quantities:


ee�k,�� 


e

0�k,��
1 − uee�k�
e

0�k,��
=


e
0�k,��

�e�k,��
, �C1�


ii�k,�� 


i

0�k,���1 − uee�k�
e
0�k,���

D�k,��




i
0�k,��

�i�k,��
,

�C2�

where D and uee are defined as in the main text. 
ee re-
sembles the response function of the interacting one-
component electron gas �classical or quantum jellium
model�, while 
ii is similar to the ion-ion density response
function of the ions in an electron-ion plasma �15�. Since
uab�k�=vab�k��1−Gab�k�� is real, the imaginary parts of 
ee
and 
ii are Im 
ee=Im 
e

0 / ��e�2 and

Im 
ii =
Im
i

0

��i�2
+ ueiuie Im 
ee�
ii�2. �C3�

Therefore, the quantity Im 
e
0 Im 
i

0 / �D�2 that appears in the
integrand of Eq. �10� writes as

Im 
e
0 Im 
i

0

�D�2
=

Im 
e
0

��e�2
Im 
i

0

��i�2
= Im 
ee Im 
ii − uei�k�uie�k�

��Im 
ee�2�
ii�2. �C4�

Because �	1, ions are much slower than electrons and
the ionic spectrum of fluctuations Im 
ii�k ,�� resides on a
very-low-frequency range. First, at small k, where collective
effects predominate and Y =�mi�i /2� /k	1, Im 
ii�k ,��
rapidly vanishes as the frequency � exceeds the ion plasma
frequency �pi=�4�neZe2 /mi, while Im 
ee�k ,�� peaks at
the electronic plasma frequency �pe=�4�nee

2 /me

=�mi /Zme�pi��pi. Therefore the quantities in Eq. �C4�
vanish in this limit and do not contribute to the � integral in
Eq. �11�. Second, Im
ii�k ,�� drops to zero very rapidly as
the phase velocity � /k of the excitation exceeds the ion ther-
mal velocity �kBTi /mi, i.e., Y =�mi�i /2� /k�1, since in this
limit Im 
ii�k ,��� Im 
i

0�k ,�� and

Im 
i
0�k,�� = − ni�i

��Ye−Y2
. �C5�

Overall, the range of frequencies that contributes to the �
integral in Eq. �10� is characterized by Y �1 and therefore
�Y 	1. In this limit, Im 
ee can be replaced by its low-
frequency limit,

Im 
ee�k,�� � �
�

��
Im 
ee�k,0� �C6�

=�
1

��e�k,0��2
�

��
Im 
ee

0 �k,0� , �C7�

since �	�pe and Im 
ee�k ,�� depends on k and �Y accord-
ing to �see Eq. �B4��
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Im 
e
0�k,�� =

me
2kBTe

2�
4k
ln

1 + e−��1/mekBTe�
k/2� + �Y�2+�/kBTe

1 + e−�− �1/mekBTe�
k/2� + �Y�2+�/kBTe
�quantum� = − ne�e

����Y�e−��Y�2
�classical� .

Accordingly, Eq. �C4� becomes

Im 
e
0�k,��Im 
i

0�k,��
�D�k,���2

�
�

��
Im 
ee�k,0�� Im 
ii�k,��

− uie�k�uei�k�

�
 �

��
Im 
ee�k,0��2

�2�
ii�k,���2.

�C8�

Direct numerical calculations show that second term in
the right-hand side of Eq. �C8� contributes negligibly to the
Coulomb logarithm �systematically around 0.1% of total
Coulomb logarithm� and we neglect it from now on.

Keeping only the first term of Eq. �C8� in Eq. �10�, we
obtain

dTi

dt
= −

2

3kB�ni
� me

2kBTe
	 dk

�2��3vie�k�uei�k�
�

��

�Im 
ee�k,� = 0�S�k� , �C9�

with

S�k� = 
	 d��2�n
 
�

kBTi
� − n
 
�

kBTe
��Im 
ii�k,�� .

For classical electrons, n�x�=1 /x and

S�k� = kB�Ti − Te��1�k� , �C10�

where

�1�k� = 	
−�

�

d�� Im 
ii�k,�� . �C11�

For quantum electrons, 
� /kBTe,i	1 over the low-frequency
range outlined before, and therefore

n
 
�

kBTi
� − n
 
�

kBTe
� �

kBTi


�
−

kBTe


�
�C12�

and S�k� is again given by Eq. �C10�.
The moment �1�k� can be calculated exactly by noting

that 
ii satisfies the f-sum rule satisfied by ordinary response
functions �see Appendix B 2�. Indeed, at large frequency �
�1 and according to Eqs. �B12� and �B14�,


i,e
0 �k,�� �

�ne,ik
2

mi,e�
2 , � � 1. �C13�

Substituting Eq. �C13� into Eq. �C2� implies


ii�k,�� �
�nik

2

mi�
2 , � � 1. �C14�

If we assume that 
ii is causal like its equilibrium counterpart
�see the remark in Appendix A�, then according to Eq. �B12�,


ii�k,�� � �1�k�/�,2 � � 1, �C15�

and therefore, comparing Eqs. �C14� and �C15�,

�1�k� =
�nik

2

mi
. �C16�

Equation �C16� is valid for both quantum and classical elec-
trons. Direct numerical evaluation of Eq. �C11� confirms sum
rule �C16�.

Finally, for both quantum and classical electrons, we find

S�k� = kB�Ti − Te�
�nik

2

mi
�C17�

and

dTi

dt
= − �ie�Ti − Te� , �C18�

where �ie is given by Eq. �12�
The high accuracy of the small �=meTi /miTe expansion

described here is illustrated in Figs. 7 and 8 for classical
electrons and for quantum electrons with degeneracies �
=1 and �=0.1, respectively. Figures 7 and 8 show a com-
parison between the k integrands in the following two ex-
pressions for the Coulomb logarithm with vie�k�
=4�ZZee

2 /k2:

FIG. 7. �Color online� Dimensionless k integrands of Eq. �C19�
�full line� and Eq. �C20� �crosses� for a classical, like-charged
plasma obtained assuming G��=0.
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ln � = −� 2

�me

�kBTe�3/2

ne

mi

�ni
	 dk

1

k2

��1 − Gie�k��	 d�
Im 
e

0�k,��Im 
i
0�k,��

�D�k,���2
,

�C19�

obtained by calculating numerically the � integral, and

ln � = −� 2

�me

�kBTe�3/2

ne
	

0

�

dk�1 − Gie�k�
�e�k,0�

�2�
�

� Im 
e
0�k,��

��
�

�=0
, �C20�

obtained as before by exploiting the f-sum rule. As expected,
both calculations agree very well.

APPENDIX D: limk\� 1−Gie(k)

In this appendix, we prove results �16� and �22� used in
the main text. To this end, we combine OZ relation �15� valid
for both classical and quantum electron with the following:

�a� The asymptotic limit of Sie�k�,

Sie�k� = �neni	 dr�gie�r� − 1�e−ik·r = 	
0

�

drf�r�e−ikr

=
4��neni

k
�−

2gie� �0�
k3 +

4gie��0�
k

+ ¯�, k � � .

Therefore, using the cusp condition at the origin gie� �0�=
−2gie�0� /aB �28� for real plasmas and gie� �0�=0 for liked-
charged plasmas,

Sie�k� � �
16�ne

�ZaB

1

k4gie�r = 0� , k � �, quantum

16�

k6 g�3��r = 0� , k � �, classical.�
�b� The asymptotic behavior of 
e

0�k ,0�, using the results
of Appendix B,


e
0�k,0�


e
0�0,0�

� � 1

k2 , k � � , quantum

1, k � � , classical.
�

�c� The asymptotic limit of D�k ,0�,

D�k,0� � 1, k � � .

Combining these results in Eq. �15�, we obtain

1 − Gie�k��� gie�r = 0� � 0, k � �, quantum

=0, k � �, classical.
�
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