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In a recent paper [Phys. Rev. Lett. 100, 164101 (2008)] and within the context of quantized chaotic billiards,
random plane-wave and semiclassical theoretical approaches were applied to an example of a relatively new
class of statistical measures, i.e., measures involving both complete spatial integration and energy summation
as essential ingredients. A quintessential example comes from the desire to understand the short-range approxi-
mation to the first-order ground-state contribution of the residual Coulomb interaction. Billiards, fully chaotic
or otherwise, provide an ideal class of systems on which to focus as they have proven to be successful in
modeling the single-particle properties of a Landau-Fermi liquid in typical mesoscopic systems, i.e., closed or
nearly closed quantum dots. It happens that both theoretical approaches give fully consistent results for
measure averages, but that somewhat surprisingly for fully chaotic systems the semiclassical theory gives a
much improved approximation for the fluctuations. Comparison of the theories highlights a couple of key
shortcomings inherent in the random plane-wave approach. This paper contains a complete account of the
theoretical approaches, elucidates the two shortcomings of the oft-relied-upon random plane-wave approach,

and treats non-fully-chaotic systems as well.
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I. INTRODUCTION

Finite and low-dimensional quantum systems often pos-
sess statistical properties whose deviations from universality
contain some basic dynamical information about the system
[1-4]. A recurring challenge is to understand precisely what
information is buried in those statistical deviations and how
to extract it. Before that can be addressed, the universal be-
haviors themselves must be understood. At the heart of many
such universalities generally lurks a connection to the
Bohigas-Giannoni-Schmit (BGS) conjecture [5,6], which as-
serts that systems with underlying chaotic dynamics have the
fluctuation properties found in random matrix theory [7]. If
interest lies in quantities for which the position representa-
tion of the eigenfunctions is critical, a random plane-wave
model is often introduced that augments the BGS conjecture
[8.9]. The primary goal of extracting system specific infor-
mation can then proceed, but generally requires a more pow-
erful theory.

The preponderance of statistical measures heretofore in-
troduced for analysis are local in energy, configuration space,
or both. Examples are given by the Dyson-Mehta cluster
functions [7], and the amplitude distribution and short-range
two-point correlation function c(Jr—r'|)=((r)y(r’)) of a
given eigenfunction, (r). On the other hand, there has been
a rather recent introduction of new nonlocal statistical mea-
sures [10-12]. They have been motivated by the need to
understand the interplay between interferences and interac-
tions in mesoscopic systems. For example, one place where
this interplay is known to have an important role is the ad-
dition spectra of quantum dots; other examples are coming
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from cold fermionic gases. Focusing on just one motivation,
the addition spectrum is experimentally accessible through
the position of the conductance peaks in the Coulomb block-
ade transport measurements [13-18]. Fluctuations of peak
spacings are associated with interference effects and experi-
mentally are clearly incompatible with a noninteracting de-
scription of the conduction electrons in the dots. Indeed, ex-
cept for very small dots with a circular symmetry [18] for
which additional degeneracies are expected, a noninteracting
description predicts a strong bimodality of the peak spacing
distribution—associated with an odd-even character of the
number of (spin-1/2) electrons—and this is not observed.
Assuming further that the dot possesses a chaotic dynamics,
the distribution for odd-N spacings should show a character-
istic Wigner surmise shape, whereas a density similar to a
Gaussian with extended tails is observed.

At first, it was argued that a non-Fermi-liquid description
of the interacting electrons might be necessary to interpret
the experimental data. However, the picture which has now
emerged [19-23] is that although an understanding of both
peak spacings and ground-state spin distributions is still in-
complete, it is reasonable to expect that most phenomena
will eventually be explained within a Fermi-liquid frame-
work. More specifically, the electrons can be thought of as
quasiparticles confined by a potential U, (r), which could
in practice be computed within a self-consistent Thomas-
Fermi-type approximation [24]. They also interact weakly
through a screened Coulomb interaction V. (r,r’). For dots
significantly larger than the screening length, confinement
does not modify appreciably the screening process, and the
bulk expression for V(r—r’) is appropriate. Furthermore,
for the experimentally relevant gas parameter r, being of
order 1, the screening length is not much different from the
Fermi wavelength Nr. Under these circumstances, the prob-
lem is well described by the short-range approximation
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Valr—1') = 251, (1)

with v as the mean local density of states (including the spin
degeneracy) (v=m/mh?* for d=2) and F} as the dimension-
less Fermi-liquid parameter [25] (for d=2 and r, of order 1,
F{ is in the range 0.6-0.8). Boundaries could potentially
modify this picture somewhat, but it is expected that a
slightly modified F{; would be sufficient to capture the ef-
fects; since this is not the focus of our study, we leave it for
future consideration.

In this approximation, the first-order contribution of the
residual interactions to the ground-state energy can be ex-
pressed in the simple form,

SER = Fjgj drn(r)n(r), (2)

with n, as the unperturbed ground-state density of particles
with spin o. This expression was the starting point for a
study demonstrating the increased importance of SER! if the
dynamics are not fully chaotic [10].

Because n,(r) can be expressed as a sum over the abso-
lute square of single-particle eigenfunctions which are occu-
pied, the mesoscopic fluctuations of the residual energy term
SER! of Eq. (2), or of similar quantities, are related to the
fluctuations of the one-particle eigenstates of the unperturbed
system. However, in contrast to the correlation function
c(Jr-r’]), Eq. (2) involves both an integration over space
and summation over energy, and therefore in this way, it is
probing new aspects of the fluctuation properties of the
eigenstates.

The goal of this paper is to follow up on our recent work
[26] on the average and fluctuating parts of the quantity in
Eq. (2) in several ways. To begin with a complete account is
given of two theoretical approaches using random plane
waves and semiclassical theory. As already shown, for fully
chaotic quantized billiards the two methods give identical
leading functional dependence on wave vector and system
size for average and fluctuation properties. In addition, the
significant differences between Dirichlet and Neumann
boundary conditions can be understood. On the other hand,
in the statistical limit of uniformity, the fluctuation properties
differ in two ways in the prefactor. The semiclassical treat-
ment in the spirit of the Gutzwiller trace formula [27,28]
helps identify dynamical correlations and a term missing
from the expressions derived with the random plane-wave
model. Thus, the Gutzwiller periodic orbit approach provides
both a deeper understanding of the mechanism underlying
the fluctuations and a good quantitative agreement with exact
numerical calculations for the examples considered. Next,
non-fully-chaotic systems are partially addressed. The fluc-
tuations are found to be greatly magnified in two essential
ways. One relates to nonuniform projected classical densities
and the other to enhanced dependence on wave vector and
system size.

The organization of the paper is as follows. In Sec. II, the
necessary background material and notations are introduced,
including a more precise definition of the statistical quanti-
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ties to be studied. Also introduced in this section is the ran-
dom plane-wave model, which is then used to analyze in
Sec. III the mean and fluctuating behaviors. The random
plane-wave modeling reproduces quite accurately the mean
behaviors, but it fails by most of an order of magnitude to
predict quantitatively the fluctuations. This motivates the in-
troduction in Sec. IV of the semiclassical analysis in terms of
classical trajectories. This approach corrects the random
plane-wave method overestimate of the fluctuations. In Sec.
V, extended semiclassical methods are introduced for sys-
tems which are not fully chaotic. Finally Sec. VI contains a
discussion and summary.

II. PRELIMINARY CONSIDERATIONS

To begin, it is worth motivating the introduction of a non-
local statistical measure in a little more detail. For example,
consider two-degree-of-freedom chaotic quantized billiard
systems with one-body eigenstates i;(r) and energies E;. In
the absence of interactions, the many-body eigenstates are
Slater determinants characterized by spin-dependent occupa-
tion numbers f; ;=0 or 1. Within the short-range approxima-
tion [Eq. (1)], the contribution of the residual interactions to
the ground state can be written in first-order perturbation
theory as

FiA

SEN === finf oMy (3)
L]

where A is the mean single-particle level spacing in the
neighborhood of the Fermi surface. M;; is given by

g 4)

M= Af dr|'ﬁi(l')|2|l/fj(l')

where A is the area of the billiard. With this definition, the
{M ,»J-} are dimensionless quantities with a mean value ex-
pected to be roughly equal to unity for i # j and to three for
i=j. These expectations would apply to uncorrelated Gauss-
ian random amplitudes assuming time-reversal invariance
holds; ahead more precise results are derived.

Of main interest is how the value of SER! changes when a
particle is promoted from one orbital to another (as opposed
to the variations in the residual energy as particles are added
into the system). Consider that the ground state of the non-
interacting N-particle system is such that the levels below the
Fermi energy are doubly occupied except for the last level i,
which may be singly or doubly occupied depending on the
parity of N. Promoting a particle from the orbital iy to
ip+1 has a one-particle energy cost (E; ,;—E; ). If however
this is compensated by the corresponding difference in re-
sidual energy, the ground-state occupation numbers f; (+y will
be modified by the interactions, yielding in some circum-
stances nontrivial, i.e., different from O or 1/2, ground-state
spins. Imagining {f; )M f; )} in the form of a (square or
nearly square) symmetric matrix, shifting an occupancy from
one level to another, subtracts the column or row being va-
cated, and adds a column or row to the newly occupied or-
bital (row or column depends on the spins of the removed
and added particles). Apart from a couple individual M;;’s
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near the diagonal, the difference in the residual interaction
can therefore be expressed in terms of the difference of two
sums of the form

i

Sz: 2 Mij~ (5)

J=1

As the {M,;} are positive definite, S; has a locally defined
increasing-with-index positive mean. However, because one
column or row is added and another subtracted, their means
largely cancel, and thus the mean S; behavior cannot be in-
volved in altering the ground-state occupancies of the single-
particle levels defined by U.,(r). (The mean of the few
individual M;;’s near the diagonal not included in S; might
though.) However, if the fluctuations of S; or {M;} are suf-
ficiently large, they have the potential to alter the nature of
the ground state. Thus, statistical measures based on the
properties of the S; are of fundamental interest, in particular
their mean values and fluctuations.

The S; have the unusual character that they are integrated
over space and involve a sum over eigenenergies. Their in-
vestigation thus requires two basic ingredients. With the defi-
nition

E 0
N(r;E) zf dE'n(r;E') = >, |[W,(r)PHE-E). (6)
0 i=1

S; can be expressed as

S;= .Af dr|¥(r)?Y, | (r)]* = Af ar| W (r)’N(r;E}),

j=i
(7)

with the understanding that E;<E; <E,,, (and assuming for
simplicity that there are no degeneracies). One of the two
required ingredients is the behavior of N(r;E). As it results
from a summation over the absolute square of eigenstates up
to a certain energy, it is dominated by a secular behavior; see
Fig. 13 in Ref. [29], for example. The secular component
Ngo(r;E) emerges from an energy smoothing which, al-
though local, is also necessarily broader than the Thouless
energy [30]; ahead the notation (-) is introduced to denote
this averaging. This energy smoothing implies that only dy-
namics on a time scale shorter than the shortest periodic orbit
is relevant, and thus this decomposition is independent of
whether the system dynamics is regular, fully chaotic, or has
some other character. N (r;E) has been shown to be given
by an excellent semiclassical (asymptotic) approximation
[29,31],

Nsec(r;E) =

NW(E)[l . Jl(zkx)} ®

A kx

where the coordinate x is defined locally as the perpendicular
distance from the boundary, k is the magnitude of the wave
vector at energy E, and the + sign is for Neumann boundary
conditions and the — sign is for Dirichlet boundary condi-
tions. Here Ny/(E) refers to just the leading term of the Weyl
formula, Ny(E)= 2”;22E. The validity is governed by kL>1,
where L is a length scale, specified ahead in the paper, but
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which necessarily must be shorter than the width of the sys-
tem. Away from the boundary, the secular behavior ap-
proaches an overall constant. However, the existence of
boundary conditions and a minimum wavelength scale com-
bine to create persistent oscillations (Friedel oscillations),
which are maximal near the boundary and which fade away
toward the interior of the billiard. The negative sign of the
Bessel function for Dirichlet boundary conditions respects
the vanishing of eigenfunctions at the boundary as it must.
Note that just as the critical portion of the density of states
can be expressed as a series with volume, boundary, curva-
ture, and oscillatory components, the same is true of N(r; E).
The above expression does not include the curvature compo-
nents and must therefore be missing at least part of the
O([kL]™?) corrections.

As noted N (r;E) is a smooth function of the parameter
E, but S; actually involves Ng.(r;E]), which changes
abruptly at the points where the energy surpasses each eigen-
value (i.e., is a function of ). The former quantity does not
have a monotonous dependence in the number of particles i
since E; contains the Gutzwiller corrections from periodic
orbit theory [27,28] that determine the precise positions of
the levels. We therefore consider instead the slightly modi-
fied and properly normalized decomposition;

N(r;E}) = Ny (13 E7) + SN(r; E7),

i . )[1 . J1(2k,~r)], o

kir

1+ —

Neeo(r;Ef) =
A5

where the £ is the billiard perimeter and not to be confused
with length scale L mentioned above. This decomposition
has the further advantage that the fluctuations SN(r;E;) not
contained in the secular behavior average to zero when inte-
grated over space. In this way, density of states oscillations,
which are not of interest here, do not get intertwined with the
fluctuations that are the focus of this study. To the order of
corrections incorporated in Eq. (9), k; can equally be defined
as \2mE,;/% or as the mean value obtained from the Weyl
series.

The other main necessary ingredient is the behavior of
|W.(r)|*> which leads to the two principal approaches con-
tained in this paper. One approach is to rely upon a statistical
model which uses an ensemble of random plane waves to
mimic the properties of chaotic eigenstates [8,9,32], and the
other is to use a semiclassical theory building on the work of
Bogomolny [33]. We begin with the random plane-wave
modeling as it is technically simpler.

III. RANDOM PLANE-WAVE MODELING

The random plane-wave model [8,9,32] has been intro-
duced in which the eigenstates are represented in the absence
of any symmetry by a random superposition of plane waves
>,a; exp(ik;-r) with wave vectors of fixed modulus |k;|=kg
distributed isotropically. Time-reversal invariance may be in-
troduced as a correlation between time-reversed plane waves
such that the eigenfunctions are real. Similarly, the presence
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of a planar boundary imposes a constraint between the coef-
ficients of plane waves related by a sign change of the nor-
mal component of the wave vector k;. Near a boundary and
using a system of coordinates r=X+y, with X and y as the
vectors, respectively, perpendicular and parallel to the
boundary (of norm x and norm y), eigenfunctions are there-
fore locally mimicked statistically by a superposition,

Nege

Yi(r) = N—E ajes(k; - X)cos(k; - ¥ + ¢;) (10)
eff /=1

def
where ¢s(-)=sin(-) for Dirichlet boundary conditions and
cos(-) for Neumann boundary conditions [34]. The phase
angle ¢, the real amplitude @;, and the orientation of the
wave vector K; are all chosen randomly. The amplitudes «;
are zero-centered independent Gaussian random variables
with (a,a,r>= 5”10'2.

To complete the model, it is necessary to determine the
variance o° which is fixed by the normalization of the wave
functions. Here this constraint is imposed only on average,
rather than for each individual state. A priori, proceeding in
this way might be expected to miss weak correlations be-
tween the eigenfunctions. The question is whether one
should expect them to be insignificant. In principle, the an-
swer is yes but only if local properties of the eigenfunctions
are being considered and the effective dimensionality is large
as it would be for kzL> 1, where k. is the Fermi wave vec-
tor. This issue is further discussed in the semiclassical theory
of Sec. IV ahead.

Using the random plane-wave representation Eq. (10) we
have

Nege
(0] = —- 2 aiapes(k;- Kes(k; - R)cos(k, - ¥
eff ;=1
+@)cos(k; - ¥+ @), (11)

whose expectation value is given by

Negr

o’ X
Y S+ cos(2k; - X)]
off =1

(o)) =

2
+ —
27T 0

= dé 2k 0
4Neff|: cos(2kpx cos ):|

[1 £ Jo(2kpx)], (12)

eff

where we follow the convention that the upper sign refers to
Neumann boundary conditions and the lower sign to Dirich-
let boundary conditions, respectively. The ensemble transfor-
mation tﬁlﬂﬁ Ik 3”(1 0, has been employed to simplify the
calculation. Above, the norms of the wave vectors, equal to
k;, are assumed at or near enough the Fermi surface that they
can be denoted by k. Integrating over the area of the billiard
to fix the normalization gives
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1= f dr(|(r)|?) = 4Neff|:A + ﬁfo erO(ZkFx)i|
A (1 L L ) "
AN\ T 2kpA)’ (13)

which fixes the variance o to next to leading order in kjL.

A. Average properties

The first step in calculating the average behavior of S; is
to isolate its secular and fluctuating behavior. The model
above implies

1=£

Al(r)|») = ( )[1 * Jo(2kex)], (14

2k

and that is consistent with N.(r;E7), i.e., the Friedel oscil-
lation contributions to N(r;E7). This form applies more gen-
erally than the random plane-wave model. Just as Ny (r; EY)
is independent of system dynamics, so also is this result for
the same reasons. For example, it would emerge for inte-
grable systems as well assuming the averaging is over energy
intervals greater than the Thouless energy. Finally, note that
from the correction to unity of the leading constant in this
expression, one sees that if the boundary conditions are Di-
richlet, the local mean behavior of (|¢;(r)[>) well into the
interior is slightly elevated above 1/.A to compensate for the
reduced density near the boundary and just the opposite for
Neumann boundary conditions.
Let

&(r) = Ay (r)* - 1
= A(g()]?) = 1+ Al (o) > = (g(0) )]

—+

= 2k A
+ Allg(0)]* = (| (0) ). (15)

_+__4__{ " _:;1
——< L) Jol Fx)_ZkF.A

Under spatial integration, €(r) as well as both halves of the
second expression above each separately vanish, whereas
only the second half of the expression is affected by taking
the expectation value and in that case it vanishes. Ahead, this
decomposition simplifies the discussion of the fluctuations.

Returning to the calculation of S;, substituting the rela-
tions from Egs. (9) and (15), integrating the constant terms,
and dropping second-order terms gives

j 2k
smis L[ a2, (16
F

and therefore
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FIG. 1. Drawing of the desymmetrized cardioid and stadium
billiard boundaries. The dashed lines illustrate the paths of the
shortest periodic orbits for each system. Whereas this orbit is iso-
lated in the cardioid billiard, in the stadium billiard it is a member
of a continuous one-parameter family of identical orbits, indicated
by the gray-shaded rectangular region.

<59=it:if 'Ighﬁ% (r))

o J(2kpx)
=1+Zfd lkFxF Jo(2kpx)

'(1 2L ) (17)
- +77ka4 ’

where we choose kp= \e’WEi/ﬁ. Note the first correction is
independent of whether the boundary conditions are Neu-
mann or Dirichlet (see Appendix A for the calculation of
second-order terms not related to curvature and discontinui-
ties in the boundary). We stress furthermore that Eq. (17) is
applicable independently of the nature of the dynamics, and
in particular apply equally well to integrable and chaotic
systems. A simple semiclassical proof of this will be given in
Sec. IV.

The well-known chaotic cardioid [35-37] and stadium
billiards [38—40] are highly suited to illustrating the preci-
sion of this relation. The two symmetry-reduced billiard
boundaries are illustrated in Fig. 1 along with their shortest
periodic orbits to which we return ahead in the discussion of
the Fourier transform of the fluctuations.

Comparison to Eq. (17) is shown with a computation of S;
using the first 2000 odd-parity eigenstates of the cardioid
billiard and the same number of even-even eigenstates of the
stadium billiard; the latter calculation tests the effects of
Neumann boundary conditions. Figure 2 plots the differ-
ences, S;—(S,), versus the state index for both billiards. As
often happens with semiclassical approximations, even
though the result is asymptotic, it is valid right down to
either ground state. Note that the second-order corrections
have not been included in the secular behavior equations
[Egs. (9) and (14)], and so it is seen that the cardioid results
are not centered on zero but on a constant somewhere
nearby. The same is also true for the stadium, except that the
mean constant was subtracted in order to compare with the
solid line predictions from Sec. V B ahead.
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FIG. 2. Comparison of §; and the approximation given in the
last line of Eq. (17). The difference S;—(S;) is plotted versus the
eigenstate number i. In (a), the results for the odd-parity eigenstates
of the cardioid billiard using Dirichlet boundary conditions are
shown. In (b), the same results for the even-even eigenstates of the
stadium billiard with Dirichlet boundary conditions are shown, ex-
cept that the mean overall constant term has been numerically sub-
tracted. Note the significant increase in the scale of the fluctuations
about the mean for the stadium billiard. Ahead in Sec. V B, a rudi-
mentary theory is given for bouncing ball modes that leads to Egs.
(75) and (76) shown as the dashed and solid lines, respectively, in

(b).

B. Fluctuations

Consider now the fluctuations of S;. The quantity that
actually sets the scale for the fluctuations in the residual in-
teraction energy is, as discussed in the introduction, approxi-
mately the variance Var[S;~S;]. It is understood that (i, j) do
not differ by more than some small integer. More specifi-
cally, the interest is in computing this quantity to the leading
order in the semiclassical parameter (kzL).

Using Eq. (7) along with the decomposition into a secular
and fluctuating part of N(r,E]) given by Eq. (9), results in S;
being written as the sum of two independent terms. The sec-
ond one, Afdr|W(r)]>SN(r;E}), has been considered in
[20,22] within the random plane-wave approximation. It has
a variance scaling as log(kgL)/ (kgL), which is of lower order
than the leading behavior of Var[S;] calculated ahead. Al-
though, the second term is potentially of physical interest
(see Sec. VI), the focus here is on developing the theory that
gets the leading term analytically. Applying Eq. (15) and
dropping all the lower corrections gives for the covariance
between S; and S;
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Covar(SiSj) = %J drlf dr2J1 (kaFxl) Jl(kQ,ksz)
FX1 FX2
X[<fi(1‘1)6j(l'2)> - <6i(r1)><6j(l‘2)>], (18)

As before, x and y are the coordinates perpendicular and
parallel to the boundary. Not surprisingly, since eigenstate-
to-eigenstate correlations are not included in random plane-
wave modeling,

<Ei(r1)fj(l'2)> - <6i(1'1)><5j(l'2)>
= 5,[(€i(r)) €(ry)) — (&(r)Xe(ry))], (19)

and thus, Var[S;-S;]=2Var[S,].
Performing a little more algebra gives

(g(r))€(ry)) — (€i(r)))€(ry))

= A2[<| ¢i(r1)|2| ‘r/fi(l'z)|2> - <| '/fi(rl)|2><| '/’i(l‘z)|2>],
(20)

where Eq. (10) is applied to evaluate the right-hand side (rhs)

82 1 J1(2kpxy) J,(2kpxy)
N drydr,
A" Nes1mm1 ki, kpx,

Xcos[k,, - (y1 = y2)].

Var[S;]=

Reflection of either of the vectors (Kk;,K,,) leaves the inte-
grand unchanged. Thus, cos[K;- (y;—¥,)lcos[K,,- (y;—¥,)] is
equivalent to exp[i(k;—K,,)-(y;—y,)] and can be replaced in
the integrand. The summations can be replaced by angular
integration again as was done in Eq. (12).

For the purpose of understanding the asymptotic limit,
one is tempted to extend the limits of integration in these
integrals. However, that generates divergences associated
with large dy=y;—y, and small sin(6,- 6,,) (where 6, is the
angle between the vector k; ,, and the direction X). This indi-
cates that over large distances the random plane-wave model
as given by Eq. (10) cannot be applied. One way to think of
this is to imagine a true eigenstate of some chaotic billiard.
Locally, one could project onto the form of Eq. (10) and
approximately solve for a set of coefficients {a;} and plane-
wave orientations. However, the solution set {a;} would be
dependent on the location along the boundary where the pro-
jection was performed due to the rotating orientation of the
local coordinate system. Even if the Gaussian random mod-
eling were perfectly fine from state to state, as r, got further
from r;, the two cross terms in Eq. (21) that generate the
variance would progressively decay on a length scale given
by the typical dimension L of the system. This is related to
the behavior observed for the spatial autocorrelation func-
tion; see Fig. 2 of [41]. (Note that the first term, which re-
produces the square of the mean, would on the other hand
not decay.) Ahead, it is seen that the results depend only
logarithmically on this parameter for Neumann boundary
conditions and not at all for Dirichlet so that it is not neces-
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of this equation. Each resulting term has a product of four
Gaussian random coefficients. The fluctuations are thus
given by pairwise correlating coefficients such that

<alal'amam’> = <alal'><amam’> + <alam><al’am’>
+{aa, Xapa,)

= 0'4(5”76,",”/ + 5lm51’m’ + 5lm’5l’m)’ (21)

where (1,1”) are linked to the first coordinate, r,, and (m,m")
are linked to the second coordinate, r,. The first term, which
correlates the wave functions taken at the same position just
reproduces the mean {|¢;(r;)[*){|¢:(r,)[>) and cancels from
Eq. (20). The two remaining terms give the same contribu-
tion, which can be understood as a consequence of time-
reversal invariance. Only one of those terms would be non-
zero for a time-reversal noninvariant system, and the result
for the variance of S; would just be divided by 2 in that case.

Therefore, together with averaging over (¢;, ¢,), the vari-
ance is

es(k; - x))es(k; - x;)es(k,, - x)es(k,, - xy)cos[k; - (y; —y2)]

(22)

sary to describe very precisely this decay as long as the
proper length scale is introduced.
A Gaussian form exp(—dy?/2L?) is convenient and gives

8i2 J‘ﬂ'/2 /2
e, f de,
772"42 —/2 —m/2

* N2k :
X {J dxucs(kFx cos 6)es(kpx cos 0,,,)]
0 X

Var[S;]=

cn
X [,f d(6y)

-L/2
&
Xexp(— E +i(k,—k,,) - (y; - Y2))- (23)

Including the Gaussian cutoff and noting that the dominant
contributions come from regions in which sin 66 is
small (with 66=6,—4,), it is possible to approximate

Sin 01_Sin HmZCOS(E) 50’ Wlth 52(01"' gm)/z The integrand
7(6, 56) becomes

p— 2 _

0 1+ |sin(f kel cos 056)°

2(6,59)=\EL5{M] expl_w]

(24)

where the sign — and + correspond to Dirichlet and Neumann
boundary conditions, respectively. Performing the integration

over the variables 860 and 6 yields
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FIG. 3. Variance of S; for the cardioid (odd parity only) and
quarter stadium (even-even symmetry only) billiards using Dirichlet
boundary conditions. In (a), the discrete points are the cardioid
billiard results, the dotted line is the result of the random plane-
wave model, i.e., Eq. (25), and the long-dashed line is the semiclas-
sical theory, Egs. (52) and (53), given in Sec. IV A ahead. In (b),
the discrete points are the stadium billiard results, the dotted line is
the result of the random plane-wave model [Eq. (25)] and the long
dashed line is the prediction [Eq. (77)] from the semiquantitative
semiclassical theory developed in Sec. V B ahead for the bouncing
ball modes.

kel . _
VarS;] = m()\z(ﬁ))o, (25)

where we have introduced the function

defl'] = |sin(6)|]

A6)= |cos(8)| (26)

and the average is defined in terms of the variable sin(6) so
that

1
(N2(0))y= f d(sin ON*(0)=(21n2—-1), Dirichlet,
0
(27)
WkFA
=2In2-1)+41n Y Neumann. (28)

Note that caution must be exercised in evaluating the Neu-

mann case. There the angle 6 cannot be allowed to decrease
to less than the inverse of kL where the cut-off expression
becomes invalid. In the absence of other considerations, a
very reasonable choice for L is just half the average length
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between two reflections; see Appendix B. For a two-
dimensional (2D) concave billiard, this gives exactly
L=mA/(2L), and this value has been substituted into the
Neumann form.

Finally, consider the difference between Dirichlet and
Neumann boundary conditions. Equations (27) and (2§) both
roughly imply a kL behavior. The prefactor In(2/\e)/2m
=().0031 is rather small in the first case, whereas for Neu-
mann boundary conditions there is a logarithmic enhance-
ment which can be understood as a (much larger) effective
prefactor (a factor 40 larger for i=1000). From the point of
view of the calculation, the difference between these two
cases can be related to the sign change between
1—|sin(6)| and 1+]sin(6)| in Eq. (24), in such a way that
whispering gallery modes (for which the corresponding clas-
sical orbits have 6=1/2) are suppressed for Dirichlet
boundary conditions, whereas they dominate (because they

are less affected by the exp[—(kzL cos #56)%/2] factor) in the
Neumann case. This makes sense since the main source of S;
fluctuations originates from the wave-function fluctuation
probability  density  |¢(r)]*> in the mean field
oo{[1£J,(2kpx)]/ (kpx)} generated by the Friedel oscillations
of all the other particles below the Fermi energy. Dirichlet
boundary conditions however impose that |#(r)|>*—0 as r
approaches the boundary and therefore inhibits this contribu-
tion.

Figure 3 illustrates the comparison between the analytical
results of the random plane-wave model for the variance [Eq.
(25)] for the cardioid and quarter stadium billiards. For the
stadium, kL is replaced by kpLy, i.e., the length of the
straight edges where Neumann boundary conditions are im-
posed (even-even symmetry class). The theory for the Di-
richlet case, cardioid billiard, appears to be roughly a factor 6
too great. In order to understand the discrepancy, the more
powerful approach of semiclassical theory is developed in
the next section. For the stadium, both Neumann boundary
conditions and bouncing ball modes must be considered.
This involves additional complications treated in Sec.V B
ahead.

IV. SEMICLASSICAL APPROACH

It is important to develop a semiclassical approach. It
gives a more powerful theory and sheds some light on the
difficulties that the random plane-wave model is having in
providing a quantitative description of the S; fluctuations.
The most immediate conceptual difficulty in getting started
is that a treatment of the S; implies, through Egs. (15) and
(16), addressing the fluctuations of individual wave func-
tions, whereas semiclassical approximations valid for chaotic
systems—such as the ones based on the semiclassical Green
functions—converge only for quantities smoothed on an en-
ergy range containing a significant number of levels. Here,
however, this difficulty can be overcome.

For this purpose, let us, following Bogomolny [33], intro-
duce a local energy averaging that is generally much nar-
rower than the Thouless energy
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FIG. 4, Correlation function Cor[S;S,4;]

=Covar[S;S;,;]/Var[§;] for the cardioid and stadium billiard ex-
amples. In both cases the correlation function (or covariance) of the
billiard is consistent with zero to within sample size fluctuations as
assumed in the random plane-wave model and as implied by the
semiclassical theory ahead leading to Eq. (51).

_ defl
Say=— > S;. (29)

A1VE—AE/2<E,4<E+AE/2

def
The notation AN =N(E+ ATE) ~N(E- ATE) represents the num-
ber of levels in the energy interval [E— % JE+ ATE] With this

notation, the variance is

_ def
Var[Syy]=((Say = <S>)2>

LV [S]+AN
AN arf o;

-1
AN COVariqgj[Sl‘(S]'], (30)

def

with ((5)=(S;)=(San)). Computing the locally averaged
quantity Sy, for which convergent semiclassical approxima-
tions can be used, it is possible to extract the variance and
the covariance of the S; from the scaling in AN of Var[Syy].
In addition, as expected from the random plane-wave de-
scription, the correlations among the S; are entirely negli-
gible. This is illustrated in Fig. 4, where the average for the
covariance is performed over 400 levels starting from
i=1500. Both cardioid and stadium billiard exhibit correla-
tions which are within the expected statistical errors for be-
ing consistent with zero. It is therefore expected (and actu-
ally turns out) that the semiclassical evaluation of Var[Syy]
scales as 1/AN, and it is possible to interpret the correspond-
ing multiplicative factor as Var[S;].

PHYSICAL REVIEW E 79, 056217 (2009)

The remaining task is to evaluate semiclassically the lo-
cally smoothed quantity S,y. For this purpose, two ingredi-
ents are needed, the wave-function probabilities |¥,(r)|* and
the density of particles N(r,E). For the eigenfunctions, a
semiclassical orbit summation was given by Bogomolny
[33]. It is based on the semiclassical approximation of the
retarded Green function (given here for two dimensional sys-
tems),

11 i
GR(I',I',,E) S —F——=eXp =S (I',I',,E)
ih N2imh o Nk g, R
Ky
_lgnﬂ 5 (31)

where the sum runs over all closed (i.e., not necessarily pe-
riodic) orbits, with S, as the classical action of the ™ orbit,
my, ,=dr' /dp, as the stability matrix element, and 7, as
the appropriate geometric index (primed and unprimed vari-
ables correspond, respectively, to the initial and final coordi-
nates). GX(r,r,E) is related to the local density of states and
thus to the eigenfunction probability density via

w(r,E) = >, |W,(r)?SE-E)=- lIm GR(r,r,E).

(32)

Introducing the density of states p(E) =X ,0(E-E;), we ob-
tain

(1, E}) a
p(E:")AE ’

where on the rhs the overline notation has the same meaning
as previously introduced except that the division is by AE
instead of AN.

In the semiclassical evaluation of »(r,E), it is typical to
distinguish between the ‘“zero-length” orbit contribution
vy(r)=m/2h? and the contribution of the remaining orbits,
whose lengths remain finite as r—r’. Here however, interest
is in the fluctuations of the eigenfunctions, and thus of
v(r,E), near the boundary of the billiard. The orbit respon-
sible for the Friedel oscillations, namely, the one returning to
its initial location immediately after bouncing off the bound-
ary will therefore be extremely short, implying that (i) the
corresponding contribution will not be sensitive to local en-
ergy averaging and (ii) if r is at a distance x from the bound-
ary shorter than or of the order of the Fermi wavelength, the
semiclassical approximation [Eq. (31)] cannot be applied. On
the other hand, assuming x much smaller than the curvature
of the boundary, this contribution can be approximated by
the exact result valid (in two dimension) for a straight
boundary vpgieqe(X)= = vydo(2kpx). This gives

|Wi(r)[*an = (33)

I 1 _
v(r)ap= Vw[l * Jo(szX)] - ;Im Gose(r,v)ap, (34)

valid near the billiard boundary. The tilde on éosc indicates
that the short orbits giving rise to the Friedel oscillations
have been excluded from the semiclassical sum [Eq. (31)].
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Similarly, the density of states is split into a smooth com-
ponent and an oscillatory one. Once the local energy averag-
ing is performed over a range much larger than the mean
level spacing, the oscillatory components are small com-
pared with the smooth term. Thus, the density of states can
be expanded in the denominator. Addressing still two-
dimensional billiard systems for which py(E)=Awvy, gives

—_— 11 =
A|q,i(r)|2AN: 1+ JO(ZkFx) - ——Im Gosc(r’raE)AE
Dy T
1+ Jo(2kpr) ———
- #posc(E)AE- (35)
(47

This equation could be thought of as a slight generalization
of the result given by Bogomolny [33], with the only differ-
ence that the Bessel function Jy(2kxx) has been introduced to
account for the Friedel oscillations (which turn out to be
important here); see Appendix C for an improved normaliza-
tion of this equation.

For AE large on the scale of the mean level spacing,
but small on the classical scale, the energy smoothing
can be performed for each orbit contribution noting that
38,/ dE=1,, with 7, as the time of travel of the orbit, giving

: - AE
exp(éSﬂ>AE=exp(éSJsinc(%), (36)

def
with [sinc(x) = sin(x)/x]. Energy smoothing therefore implies
that orbits with periods greater than #/AE are cut off in the
semiclassical sums Egs. (31)—(35).
As a direct (and expected) consequence, if the smoothing
takes place on a energy range larger than the Thouless en-

ergy, no orbit can contribute t0 G (r,r,E) sz OF posc(E) aps
and the average wave-function probability reduces to
A W,(r)>y=1+Jy(2kpx). Inserting this equality into Eq.
(16) with the definition Eq. (15), we readily obtain the result
[Eq. (17)] for the mean value (S;), but here without any
assumption regarding the nature of the dynamics; i.e., it ap-
plies equally well for integrable, mixed, or chaotic systems.

A. Chaotic quantized billiards

Up to this point, the nature of the dynamics has played no
role in the semiclassical approach. However, beginning here,
the approach is specialized to chaotic systems. The oscillat-
ing component (a sum over periodic orbits [28]) of the den-
sity of states is given by

1 T
posel E)=— 2
mh y=periodic orbit |Det(My_ l)|1/2
S(E}) 77)
X = _p—, 37
cos( P My (37)

where 7, is the period of the periodic orbit, M, is the mono-

dromy matrix, and 7, is the appropriate geometric index.
For a two-degree-of-freedom billiard, A|W,(r)[’sy

=]=x Jo(zkpx) + fl-l (r)AN+ 6[2 (r)AN, with
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(a) (b)
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FIG. 5. Sketch of the four orbits which, as x— 0, coalesce into
the same [nearly] periodic orbit. The top row corresponds to two
(nearly) periodic orbits such that r lies on the trajectory either (a)
just before or (b) just after the bounce off the boundary. The bottom
row corresponds to two nonperiodic orbits (p,=-p,) such near r (c)
one of them does not touch the boundary and (d) the other one
touches twice.

—
2\ i 1
PO ——
& (Nay=~—Im—— e &
m N2 i u=closedorbit \ |XIU}C ,umllﬂ|
S, (r,r T
Xexp{i—ﬂ(h—)—ivﬂg]u’ (38)

2h
€D (r)y = L 0(2k)] >

y=periodic orbit

T S T
oS
|Det(M7—1)|“2COS(h Yy, JAE (39)

Note that the u-orbit sum here includes all returning orbits,
not just those in the neighborhood of a complete periodic
orbit.

One might also be tempted to use the same expressions
integrated over energy to deduce a similar expression for
N(r;E]). However, the energy integral generates a factor
~#/7E for the oscillating contribution of an orbit of period
7;, and therefore the oscillating terms obtained in this way
would be of lower order in 7 than those generated by
|W,(r)[>. In leading order, it is therefore only necessary to
keep the terms of N(r;E]) associated with the Friedel oscil-
lations, i.e., begin with Eq. (16) directly and drop further
subleading terms. Thus, S,»=§i [S(l) +S? 1, where

1,08C 1,08C
] J (2kpx)
S =~ J dr = o 40
ftose ™ 4 r (kpx) € (r) ( )

(a=1,2). Here, two remarks are in order. First, because only
the very short orbit contribution [i.e., the term proportional
to J,(2kgx)/ (kgx)] is kept for N(r, E), it is not sensitive to the
local energy average and can be taken out of the bracket.
Second, note that the main contribution to the integral over
space in the rhs of Eq. (40) is restricted to the vicinity of the
boundary. As before we can unambiguously use a system of
coordinates r=(x,y), with x perpendicular and y parallel to
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FIG. 6. Fourier transform of the density of states and S;—(S;) of
the cardioid billiard using Dirichlet boundary conditions. In (a), the
solid line is for the density of states using the first 2000 odd-parity
levels of the cardioid billiard. The dashed line is for the density of
states using the corresponding form of the Gutzwiller trace formula.
In (b), the solid line is the Fourier transform of
S;—(S;) for the first 2000 S; and the dashed line is the result of Eq.
(45) calculated for the shortest periodic orbits as the one shown in
Fig. 1 and the insets (along with their retracings). The agreement is
quite good.

the boundary. To compute Sl ose» insert Eq. (39) into Eq. (40).
A stationary phase condition has to be imposed in the y di-
rection but not in the x direction since the effective range of
interaction is not large even on the scale of the Fermi wave-
length. As a consequence, the dominant contributions of the
integration involved in Eq (40) come from the neighborhood
of trajectories such that p;=p, [where the primed (unprimed)
correspond to initial (ﬁnal) momentum] but for which the
initial and final x momenta may differ. Energy conservation
however imposes p.=*p,. As illustrated in Fig. 5, these
trajectories can be associated to a cluster of four orbits
which, as x— 0, converges smoothly toward the same nearly
periodic orbit (or fixed point of the boundary Poincaré map):
(i) two nearly periodic orbits such that r lies on the trajectory
just before or just after bouncing off the boundary and (ii)
two nonperiodic ones (p,=-p,) either touching the boundary
twice or not at all near r.

Denoting SIO(O ,y) the action of the nearly periodic orbit to
which all of these orbits converge as x—0, leads to
Si(x,y)= Sty (0,y)+68S)(x,y), where &S,=(p.—p,)x, which
vanishes for the two periodic orbits and give
with 6, as the angle of incidence of the perlodlc orbit on the
boundary, for the two nonperiodic ones. Noting that

PHYSICAL REVIEW E 79, 056217 (2009)

exp(i2kx cos 6,)+exp(—i2kx cos 6)) + 2=4cs*(kx cos 6))?

gives
—
OB 8Vh . [ TAE
Si,loscAN=_A E s1nc( 2% )
MA —fixed point
“ 1 (2kx
Xf dx (k )cs2(kx cos 6)
1:/2
N2 £/2 x,||x,||m12,|

XCXp{islno,y),(o,y);E]

T
P —iv,g}, 41)

where the sum runs over all the fixed points of the boundary
Poincaré section. As in the previous section

[odx g 2kx)csz(kx cos 0)=[1=|sin 6)]/2k. Furthermore, the
integral in the parallel direction can be performed in a very
similar way as in the derivation of the Gutzwiller trace for-
mula. Using the fact that near the periodic point (0,y,)

D -1
SAL(0,y; + 6),(0,y; + &) ETy = S)(E) + Det(M,-1) PE:

2myy,
(42)
and |x;|=]%/|=v/|cos 6|, we get
BN
Si,oscAN }\( 01)
AkFl =fixed point
S(E) _m
os| — -y—
no 2] (T,AE) W)
VIDet(a, - 1) 2h )

def

with N(6) =[1 = |sin 6]]/ |cos 6] as the same function that was
introduced in the random plane-wave approach [cf. Eq. (26)].

The computation of S o oscAN is even simpler as the only
spatial dependence of e arises from the Bessel function
Jo(2kpx). To facilitate the comparison with Eq. (43), replace
the sum over periodic orbits by a sum over fixed points of
the Poincaré section, in which case the period 7, of the pe-
riodic orbit has to be replaced by the average time of flight
7, /n,=€ /v, (€, and n, are, respectively, the total length
and total number of bounces of the periodic orbit y) between

two successive bounces on the boundary. Using
Joldu/u)d, ()1 = Jo(u)]=(1£2/m) gives
0 i Le, (1 . 2)
i,0scAN = -
AkFl fixed point ZVL]A m
Sl(E) _aT
os| —— -V
2] (7AE
- sinc , (44)
V[Det(M, - 1) 2h

def
where n;=n.;) is the number of bounces of the periodic orbit
to which / belongs, and a similar notation is implied for the
other parameters. This actually depends only on the periodic
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orbit 7y and not on the specific periodic point / on 7. The
(2/7) factor can be traced back to the Jy(2kpx) term and
therefore eventually to the Friedel oscillations of the local
density of states.

The two terms can be combined to give

4 s

San—(S) =
v AkF y=periodic orbit
S (E)
cos{—(L v Z]
fi , (qAE)
X 7 simc
VIDet(M,— 1)] 2h
L, 2

X > [x(a)— (1:—)].

I=fixed point of y : 2An ™

(45)

This form is suitable for performing the calculation of the
variance. However, as rederived briefly in Appendix B, note
that the mean length per bounce in a billiard is

i (46

E )
Also, the density of fixed points is uniform for long orbits in
the measure d sin 6. Averaging with that measure while re-
placing £€,/2.An; by its mean value 7/2 gives

co( 2
(-2 (1=2)),

1(™  (1=xlsing) = 2
=_ dsing———-—-—(1=%x —
2 —/2

lcos 6] 2 T
T T 2
=—=*1-—|1x—|=0. (47)
2 2 T

[,d 2
% [M@)—M (1+W>”M0ﬂ)—

fixed point of 7y
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Thus, the constant 5 A(] * —) can be understood as arising
from S, ocAr (i.e., associated with the density of states) as the
angular mean (\(6)), of the corresponding term in Sl oscAE-
To compute the variance, it is necessary to square
Eq. (45) and average the resulting expression over a
large energy range. For two periodic orbits y and v/,
(cos[@— .5 Jcos SVT(E)— v,,5 ) equals one-half if y and 7'
are either the same orbit or time-reversal symmetric but zero
otherwise, which makes cross terms from different periodic
orbits vanish. Note however that it does not eliminate cross
terms of the various fixed points for a given orbit since these
contributions oscillate with the same frequency. This gives

&1a2§:

B ) 1 T AE
(San=(SNH) = |Det(M,—1)| 2< 2h )

2 k4A20rbit b%
L 2
X > \6) - 7(1¢—>
, 2An,, T
Ll
fixed point of y
L 2

X| NG - —(1+= =] 48

l(;) 2Any( 77)} (48)

For long orbits, which are going to dominate this sum, it is

possible to identify €,/n, with d=mA/L, the mean length
per bounce in the billiard, and assume that the angles 6, are
uncorrelated and uniformly distributed with the measure
d sin 6. It turns out for the last sum in Eq. (48)

Ldy (1 + 2)
I’l.y m

= N &%1+3)2 1 N £‘-z(1+3) 2— A6O) = (\)p)? 4
_n'y () 24 _7T 9+ny(ny_ ) ()_2./4 _7T o_ny<( ()_< >0) >0’ (9)

where Eq. (47) has been used to cancel the cross terms between different fixed points. Making use of the Hannay—Ozorio de

Almeida sum rule [42] in the form

>

fixed points /

with n bounces

|Det(M; - 1)|

L (50)

(where the sum runs over all fixed points belonging to a periodic orbit with n bounces), identifying the period 7 of the orbit

with nd/vp (vp=hkg/m is the Fermi velocity), replacing the sum over the number of bounces by an integral, and making use

of Eq. (46) gives
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162

TTon oo 8
(S)an—38)*= 5 a2

ndAE\ g kil 1
xa—xzfd'2< >=—°—>\9—>\2—. 51
((M(0) = (\)p) g | dn sinc 2oy 5 2,7 MO =MDy (51)
As expected, the variance of S, is inversely proportional to AN=py/(E)AE. Applying Eq. (30), the absence of a term constant
with AN confirms that, as assumed in the random plane-wave approach, there are at this level of approximation no correlations

among the §;. Thus, the variance of the S; are given by

kel ,
Var(§) = 75 X ([M6) = (Mol (52)

with

2
(21n2—1)—(5—1>

((N(0) = (9= 2 oA
o TKE o
(21n2—1)—(5—1> +4(1n ——) Neumann.

B. Periodic orbit spectrum

Beyond the Var[S;], which here characterizes the univer-
sal (long time) behavior of the system under consideration,
the semiclassical treatment developed in the previous subsec-
tion provides information on system specific quantities. In
particular, it makes it possible to address phenomenon re-
lated to shorter time dynamics, and thus quantum mechani-
cally, to longer energy range. For example, Eq. (45) can be
used directly to compute the Fourier transform of the S,
Interestingly, Eq. (45) has a structure very similar to that of
the density of states Eq. (37). This gives a simple and strik-
ing prediction, namely, that the Fourier transform of the S;
will display peaks at the same locations and with the same
shapes as the Fourier transform of p(E) (up to the transfor-
mation i« E) and will be simply scaled by factors which
depend only on the lengths of the orbits and on their angles
of incidences {6} at the various places where they bounce
along the boundary. In Fig. 6(a), the Fourier transform of the
cardioid billiard density of states is shown in comparison
with the Fourier transform of the {S;} displayed in Fig. 6(b).
The peaks are in precisely the same positions and their
shapes are similar but the amplitudes differ as expected; as a
parenthetical remark, for technical reasons the Fourier trans-
form of the {S;} uses a slightly different Fourier transform
than the density of states (effectively divided by the wave
vector), which is denoted by a subscript in the remaining
figures, but this has no effect on the overall discussion of the
physics involved. In addition, the prediction of Eq. (45) for
the shortest periodic orbits and their retracings is shown. The
predicted amplitudes for the {S;} are reasonably close al-
though perhaps slightly too large by 30-50 %. Otherwise,
the agreement with Eq. (45) is excellent. The excess in the
prediction for short orbits is curious because if the predicted
amplitudes for all of the orbits were too large, it should be
found that the prediction of the variance is slightly too large
instead of a bit too small (say factor of 2) as in this case. We
have checked that in fact the predictions for long orbits,
which dominate the calculation of the variance of {S;}, are

T ..
Dirichlet

(53)

2L 2

indeed a bit too small, the opposite of the short orbits. Why
it has turned out this way for this particular example remains
for future consideration.

As a last remark, note that the tendency for long orbits to
explore uniformly the phase space implies both that sin 6, is
distributed uniformly and that the mean length between

bounces €,/n,, for a given orbit y can be identified with d,
the full system average distance between bounce. This is
what made it possible to apply Eq. (47) and to cancel the
cross terms between various fixed points of the same orbit in
Eq. (49). Had the term proportional to ni in Eq. (49) not
been zero, it would have given rise to a contribution para-
metrically larger (in %) than the computed one [~ (kpL)? in-
stead of (kzL)]. Short orbits, for which the cancellation of
cross terms done in Eq. (49) cannot be applied may therefore
have a stronger influence on the fluctuations of the S;’s than
what might be naively expected from Eq. (51).

C. Basic distinctions in the two theoretical approaches

Interestingly enough, the expressions in Eq. (53) are ex-
actly the same results as the random plane-wave approach
Egs. (27) and (28), except for two differences. First, the
mean square (A%(6)), has been replaced by the variance of
N\(6), giving now a much better agreement with the billiard
results (see Fig. 3). Second there is a factor two difference in
the prefactor.

1. Proper normalization

The replacement of the mean square by the variance can
be related to the lack of proper normalization of the wave
function in the random plane-wave model. Indeed, fluctua-
tions of the local density of states v(r) can either imply fluc-
tuations of the wave-function probabilities |W(r)|?>, which
have to integrate to zero because of the wave-function nor-
malization, or fluctuations of the total density of states for
the part which survives the integration over space. The role
of the term proportional to p,.(E)af in the right-hand side of
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Eq. (35) can therefore be understood as ensuring the normal-
ization of the eigenfunctions. As this term is precisely the
one giving rise to the contribution proportional to ()\)%), it
turns out that in the semiclassical calculation, proper normal-
ization of the eigenfunction is what generates the variance of
N\(6) rather than its mean square. Since the random plane-
wave model used here imposes normalization on average
rather than for each individual eigenfunction, this contribu-
tion is necessarily missing there. A modified version of the
random plane-wave model in which normalization is better
enforced [43,44] should, however, properly address this is-
sue.

2. Dynamical correlations

The factor two difference in the prefactor (or conversely,
the fact that except for this factor 2 and the normalization
effect, the random plane wave, and the semiclassical expres-
sions are identical), although less important from a quantita-
tive point of view, is however puzzling enough to deserve
further discussion. To focus better on the main point, con-
sider two simplifications of the problem under discussion.
First, assume as understood the issue of eigenfunction nor-
malization and consider below only the contribution from the
Green function (i.e., ignore density of states fluctuations).
Second, consider that the procedure used to extract the
variance Var[S;] from the locally smoothed quantity Say
[see Eq. (30)] is equivalent to the effective rule according to
which the various quantities under consideration should be
smoothed over an energy window of width A (so that
AN=1).

Having this local smoothing in mind and ignoring for the
moment the fluctuations of the density of states (i.e., assum-
ing there is exactly one state in each interval &) gives

W (r") W (r') (54)

‘ ’ # /— _l
| S o= 3

1
=——Im[GR(r',x",E)]. (55)
T
Close to some reference point r and not considering yet the
proximity of a boundary, this gives for the oscillating part of
the wave-function probability

1 .
AW = - T{ S A, expl(pl, - pl)r'] +c.c.}.

(4% r—T
(56)

Above, the sum runs over all closed trajectories u starting
and ending on the reference point r, with initial and final
momenta p’ﬂ and pft, time of travel Ty and

[.Sﬂ(r,r) ) 77]
Xp| i —iv,—|.

. 1 1
a # )

1
ik 2imh \,/|xMx'

ﬂmlz,u|

(57)

In the semiclassical calculations of Sec. IV, it is taken into
account that as the integration over space is performed,
closed trajectories are continuously deformed, and in particu-
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lar the initial and final momenta piL and pi: vary. As a con-
sequence the dominant contributions, which correspond to
nearly periodic trajectories (to within a bounce off the bil-
liard boundary in this particular calculation), can be under-
stood as arising from the neighborhood of periodic orbits,
leading to the periodic orbit sum [Eq. (43)]. The calculation
of the variance is then done using the Hannay—Ozorio de
Almeida sum rule [Eq. (50)].

Consider that if the dynamical correlations, i.e., variations
in the orbital properties (initial, final momenta pL, p/ , pref-
actor A w etc.) are neglected, the semiclassical expression for
W*(r')W(r’') greatly resembles the random plane-wave
model. Indeed, if long orbits are dominant:

(i) Initial and final momenta PL and p’l; are independent
and uniformly cover the energy surface, i.e., the model can
be taken as a “random pair of plane-waves” model.

(i) Applying the diagonal approximation in the semiclas-
sical calculation amounts to A;A w €0y, or if the system is
time-reversal invariant u and w' are related through time-
reversal invariance. Near a boundary, the correlations are in-
cluded between the trajectories related to one another by a
bounce off the boundary.

(iii) Although the A, are not Gaussian distributed, the fact
that the number of trajectories is extremely large for long
orbit makes it possible to use a central limit theorem, imply-
ing that only the variance of these quantities are relevant
(and that one can as well consider them as Gaussian).

(iv) The variance of the A, is constrained by the sum-rule
valid for closed orbits (a slightly different rule than the
Hannay—Ozorio de Almeida sum rule used for periodic or-
bits) [45],

27
2 |A;/.|25(T_ Tp,) = ?VWPcl(r’r’ T); (58)
o

where for long orbits in billiards, the probability of return
P (r,r,7) can be taken uniform and equal to 1/.A. Properly
carrying out the smoothing on the range A produce the

damping factor sinc(%) of Eq. (36) so that

2a vy [ T,A
Slaf==—- sinc(—L>dt=2772V2. (59)
T A, 21 "

Thus, neglecting the spatial variations in the orbits properties
which contain dynamical correlations, quite standard semi-
classical approximations, namely, the diagonal approxima-
tion and the assumption that P(r,r,7) is uniform, makes it
possible to derive a “pair of random plane-waves” model,
not completely identical to the original random plane-wave
model but similar in spirit. It can be shown furthermore than
computing Var[S;] under this model gives exactly the same
result as the random plane-wave model.

Indeed, one can compute (€(r;)e(ry))—(€(r;))}e(ry))
= AX| ()2 (r,) |2 in this way [see Eq. (20)]. To be
more precise, let the {A M} be uncorrelated unless the corre-
sponding trajectories are time-reversal symmetric, or related
one to each other by a bounce off the boundary of the billiard
near the initial or final point of the trajectory, i.e.,

[P0, (P 1[0, (00,] and [P (9,01
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=[i(p£) M(pg) xJ. If the reference point r is taken on the
boundary, and measuring the distance x from the boundary,
this amounts to taking A, equal for these trajectories, giving

AZ([' lpi(rl)|2]osc[| lpi(r2)|2]osc>
212 o .
= 3 1A, Peos[ (- k)1 = ) Jes(plxi/h)

><cs(p;xl/ﬁ)cs(p/xxz/ﬁ)cs(pixz/h), (60)

which using the sum rule [Eq. (59)] and inserting the result-
ing wave-function correlations in Eq. (18) gives exactly Eq.
(22) derived with the random plane-wave model.

To summarize, neglecting dynamical correlations in the
semiclassical approach generates a random pair of plane-
waves model that, in essence is derived with usual approxi-
mations. For the problem we consider here, this model gives
exactly the same result as the random plane-wave model.
The random pair of plane wave is however not ad hoc,
whereas the random plane-waves model is. This makes it
possible to discuss precisely what approximations have been
made, and therefore in what way we could expect the ran-
dom model to differ from the purely semiclassical treatment.
In particular we see that the interferences between reflected
wave at the boundary is treated in the same way in both the
semiclassical and the random approaches, giving rise to the
same A\(6) dependence. On the other hand the prefactor is
related, in the semiclassical approach, to the way classical
orbit with nearly matching initial and final momenta are
structured around periodic orbit. This aspect is completely
ignored in the random models, and we therefore cannot ex-
pect them to give exactly the correct prefactor.

V. NONCHAOTIC SYSTEMS

Included in the class of nonchaotic dynamical systems are
three main subclasses: (i) the limiting case of integrable sys-
tems, all of whose dynamics are regular; (i) near-integrable
systems, characterized by having classical perturbation
theory generally work well in describing its dynamics; and
(iii) mixed systems, which contain an intricate mixture of
both regular and chaotic dynamical regions in their phase
spaces. Generally speaking, semiclassical theories and what
is known vary according to each subclass. For example, trace
formulae exist for integrable [46,47] and near-integrable sys-
tems [48,49] but not for mixed systems. In fact, a proper
treatment of semiclassical theory for mixed systems is lack-
ing. However, for the purpose here of investigating the prop-
erties of the set of {S;}, only the simplest level of semiclas-
sical theory is considered. In other words, in regular
dynamical regions (whether from integrable, near-integrable,
or mixed systems), structures called tori are assumed to exist,
which are invariant manifolds under classical motion, and
possible complications from resonances, diffraction, or tun-
neling are ignored. In chaotic regions, only the complication
of a family of marginally stable orbits is considered beyond
that which was already treated in the previous section.

Unlike chaotic dynamical regions in phase space, for
regular regions there are two possible overarching semiclas-
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sical approaches. In the first, particular tori quantize allowing
the detailed evaluation of S; for each eigenstate. This is
based on the Einstein-Brillouin-Keller (EBK) scheme
[50-52]. In the second, a periodic orbit trace formula results
from applying a Green-function approach, much like the cha-
otic case. However, this Green-function approach is not
given here since the information about each individual S,
the mean, and variance are already understandable through
the EBK approach.

A. Einstein-Brillouin-Keller quantization
1. General expression for S;

Continuing with two dimensional billiards, each torus is
characterized by two action variables (/;,J,), and it is al-
ways possible to choose the corresponding angles (¢, ¢,)
such that the intersections of the torus with the boundary of
the billiard are parameterized as ¢;=f(¢,) and
k=1,...,Kpu With k., as the number of bounces on the
boundary for the considered torus.

An eigenstate W, is constructed on a quantizing torus
[Jl=277ﬁ(n(1i)+0'1/4),J2=27Tﬁ(n(2i)+0'2/4)], where (o, 05)
are the Maslov indices and can be expressed as

1 ’ |
win=3-3 | 228 el Lsn). o

The sum runs over the various sheets of the torus projecting
onto the point r=(x,y) and S,(x,y) is the corresponding ac-
tion (including the Maslov phases).

Consider in greater detail, the neighborhood of the
¢,=f,(¢,) boundary. To further simplify the discussion, as-
sume that the torus has only two sheets [corresponding to
negative and positive ¢,—f,(¢,)] projecting on any given
point (x,y) near this boundary. The results derived under this
hypothesis apply in the general case, as is justified
below. Adding the two ¢; <f,(¢,) and ¢, > f,(¢,) contribu-
tions and expanding the action from the boundary as
S(x,y)=S(x=0,y)+p,x generates

1 d(¢q, i
W(x,y) = - \/ E;(P;_;P)z) exp(gS(x = 0,y)>2cs(pxx/h);

(62)

assuming that the local variation of the Jacobian determinant
in the direction perpendicular to the boundary can be ne-
glected. Inserting this expression into Eq. (16) we obtain

L -
S=il1l¥F — | =S, 63
, ( o A) , (63)
with
= i (@1, ¢0) | J1(2kpx) )
S;=— | dxd /h). (64
j sz ) o (px/f).  (64)

If the torus has more than two sheets projecting onto
the neighborhood of the boundary [in which case
Eq. (62) involves a sum], the rapidly oscillating phases,
{exp[iS(x=0,y)/A]}, eliminate cross terms upon integration
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over y, and thus the calculation of S‘,» would involve just a
single sum.

Changing the integration variables to (<p3, 7), with 7 mea-
suring the time from the bounce on the boundary of the
billiard and cpg as the angle ¢, at that bounce, we can further
simplify Eq. (64). Indeed

Pr= @)+ Wy, (65)

o1=rd@) + o, (66)

with  w;=0H/d¢p,(i=1,2) as the angular frequencies,
Ap1.¢2)

and therefore the Jacobian can be expressed as J =|W
22

=|w,—w,(df, /dg))|. Noting furthermore that x(¢,,7)
=vp cos[ 8(¢5)]7, the integral on the variable 7 can be per-
formed explicitly, giving

Kmax 2

> — | dedw, — wydf AN O.(¢D)].
ThpUF o1 27

i

gi =
(67)

2. Circular billiard

Beyond the orders of magnitude, the explicit evaluation
of the variance of the set {S;} for integrable systems
is very much system dependent as it is usually not
possible to make general assumptions about the
correlations between the various quantities involved
1o d0. 0 @], 012105 df JdQILT1 5, 0,(e)]).  We
therefore consider now a specific system, namely, the circu-
lar billiard.

The computation of expression (67) for this billiard is
made somewhat simpler because the angle # at which trajec-
tories bounce off the boundary is a constant for a given torus,
and thus a function of the actions (J,,J,) only. Furthermore,
for a given invariant torus, we can construct the paths on
which the action variables (J,,J,) are constructed as the cut
of the torus in the radial direction (for J,), and the caustic (or
any topologically equivalent path) for J,. In this way, the
angle ¢, can be identified with the angle of the polar
coordinates, and the boundary of the billiard can be taken as
¢1=0 (i.e., fiex -1 =0). Furthermore the angular frequency
w;(J,,J,) can be identified with 27/¢(J,,J,), with ¢(J,,J,) as
the time between two successive bounces for trajectories of
the corresponding torus. Expression (67) thus takes the
simple form

~ 20 N6U,,Jy)]

= (68)
kpvp  t(J1,J5)

Quantizing tori sample uniformly the plane (J;,J,), and
therefore statistical quantities such as average and variance
should be computed with the measure dJ,dJ,. However, us-
ing that the change of variable (J,,J5,¢;,¢)) = (E,£,7.py)
introduced in Appendix B (p;= pj sin 6) is canonical, imply-
ing dJ,dJ,de\de,=dEdpd7d§, and that for the circular bil-
liard @ and E depend only on the action (J,,J,), and 7 and &
on the angles (¢, ¢,), one can write, in the neighborhood of
the Fermi energy Ep,
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djldjzg(E—EF) o t(]l,Jz)d(Sin 6), (69)
and thus use the probability measure
1(6)
dP = d sin(#6), (70)
(1(6))

with (T(6)) given by Eq. (B6) arising from the normalization
(given for allowed values of sin @ in the range 0=sin §=1).

One can in this way recover in the particular case of the
circular billiard the general expression [Eq. (17)] of the mean
value (S,). Indeed

S _HL d (S
( i>—kFﬂ_A<7\(9)>0 and (S))

_'<1—i)+2' E (7_T+1)—(1 2£)
TN T A T T meA\ 2 T ) T T A

(71)

Similarly, the expression for the variance reduces to

AL N [£< +£)r
Var[S;]= k?:UFWA_fO d(sin H)TI(G) - oA | -

4;? fl d(sin 6) (1 = sin 6)?
0

B klzp'n'R2

2i 2\ |2
—{ﬁ(l_;>1 . (72)

As before, the constant for Dirichlet boundary conditions is
quite small, and the divergence of Neumann boundary con-
ditions increases the order. In this case, the effect is greater
than logarithmic. Using the same cutoff for the Neumann
case as at the end of Sec. III B and that i%.Ak%/ 411, we
obtain

cos @  cos’d

2 1 2\? .
————|1-—| =0.00457 Dirichlet
T 2 T

2 2
+ apl2l4 (1 -— Neumann.
T

(73)

Thus the variance scales proportionally to i for Dirichlet
boundary conditions and "4 for Neumann boundary condi-
tions.

B. Bouncing ball modes in the stadium billiard

Even for fully chaotic systems, it is possible to have a
situation where some (with vanishing measure) of the trajec-
tories behave more like those of integrable systems. An ex-
ample is provided by the bouncing ball orbits of the stadium
billiard [53]. Tanner [54] showed that for the purposes of a
semiclassical theory of eigenstates, the phase space in the
neighborhood of the bouncing ball orbits behaved much like
an island of regular motion and that families of orbits that
cannot be taken as isolated contribute in essential ways. This
greatly complicates the desire for a rigorous semiclassical
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theoretical approach. Although these states can be thought of
as EBK-like states like those studied in Sec. V A, they do get
connected through diffractive terms to the chaotic states, and
thus some of them behave more like resonances rather than
individual quantized states.

A complete semiclassical description is beyond the scope
of this study. Indeed, as mentioned in the beginning of Sec.
V, as many dynamical system complications as possible are
being neglected here. Instead of attempting a rigorous semi-
classical theory for the bouncing ball modes, a rough ap-
proximation is given instead. To be specific, we consider
here the even-even symmetry states of a stadium billiard
with Dirichlet boundary conditions or equivalently a
symmetry-reduced quarter stadium with Dirichlet boundary
conditions on the original boundaries and Neumann bound-
ary conditions on the symmetry lines. To start, consider the
eigenstates of a rectangle with one side length equivalent to
the side length L, of the symmetry-reduced quarter stadium
and the other, the radius of curvature R. These states can be
used to give an approximation to the bouncing ball modes. In
essence, the bouncing ball modes with few nodes along the
side length (ignoring mixing into the chaotic states) vanish
quickly upon entering the quarter circular end cap. A quan-
tization along the side length direction with Dirichlet bound-
ary conditions on the side entering the end cap and along the
side length itself is a good starting point. Since our calcula-
tions have been done for even-even symmetry eigenstates,
consider Neumann boundary conditions for the remaining
two sides. The normalized states are given in the Cartesian
coordinates by

4 2m+ 1 2n+1
L9210 = 1 2/
Wi(q1.9)) 2L cos’ o™ cos’ k™

(74)

where the origin is the corner. m is a small integer, say
0,1,2,3, or so, and most of the kinetic energy is in the other
direction and so n is a large integer.

To write the equation for the S;, the coordinate system of
the state must be rotated and translated to the boundary co-
ordinate system used for the Friedel oscillations separately
along the two symmetry lines and the side length. This gives
three terms to evaluate for the bouncing ball contributions,

S(bb)zi(l . M)
! kpA
2ir J,(2kpx) 2(2m+1 )
+— | dx cos X
LS 0 k]:.x 2LS

2i (% J1(2kpx) [ 2n+1
+— dx——| cos X
R 0 kF.X 2R
. 2 2n+1 . ‘CD - ‘CN 20
+ Sin mX =i|ll+— |+ —
2R kpA kgR

. 2
+L(1+\/1_ M )Sgbb)_<5i>
kpLy 4kpL
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FIG. 7. Fourier transform of S;—(S;) and the density of states
from the even-even stadium eigenstates using Dirichlet boundary
conditions. The dashed line is for the density of states (which has a
different vertical scale shown at the right side).

2L 1
=—[£D—£N—7+2A(—+Z):|, (75)

where the straightforward integrals over the y coordinates
have been evaluated before writing the first expression, and
Lp=L+mR/2 and Ly=L,+2R are the perimeter lengths
with Dirichlet and Neumann boundary conditions, respec-
tively. In the last expression, the overall mean Eq. (17) is
subtracted and the square root reduces to unity since bounc-
ing balls with significant momentum toward and away from
the end cap do not exist.

There are a number of interesting consequences of Eq.
(75). The last line captures the scale of the deviation from the
mean. Putting in the parameters used for the stadium calcu-
lations of Figs. 2 and 3 (R=L,=1) generates a growing ex-
pected deviation from the mean that hits about 30 for
i=2000. This result also implies that S; for the nonbouncing
ball modes fluctuate about a negative bias given by

—foo @
1= fonkpA

2L 1 1
X ‘CD_‘CN_;+2A E‘FZ 5
(76)

Sl(non bb) _ <81> —

where the fraction of bouncing ball modes is denoted fy,.
The best known estimate of f, for the stadium billiard to our
knowledge comes from Tanner [54], which implies that fy;,
zy[ﬁ()jﬁm)]3/41'_1/4; we have introduced the ratio y=L,/R
and used that 4i =Ak§. For other systems with bouncing
ball modes, their fraction may scale differently [55]. The
results of Egs. (75) and (76) are given by the dashed and
solid lines in Fig. 2(b). The dashed (upper) line crosses right
through the neighborhood of the peak values. For such a
rough approximation, Eq. (75) is quite good. In addition, the
solid (lower) line captures the negative bias implied for the
nonbouncing ball modes quite well.

Second, to the level of approximation here, any of the
bouncing ball modes contribute fairly equally locally in en-
ergy (determined by the quantum number n); i.e., there is
almost no dependence on sequence number m. Although, the
peak values from the bouncing balls do not appear to be
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constant in the figure, presumably due to weak admixtures of
chaotic states, this feature greatly simplifies a calculation of
the fluctuations. The variance can be inferred by noting the
following: (i) the square of the bouncing ball deviation from
the mean multiplied by their fraction denoted f},, gives their
contribution and (i) the contribution of the remaining
1 - f,, nonbouncing ball modes can be taken as the square of
the average amount they must each be in deficit of the mean
plus the [subleading] variance from the chaotic system re-
sults. The combined consequences lead to the expression

foo [ 2L (1 1)]2
Var§]= 2 ——| £, - Ly- =+ 24—+ —
ar[ l] l—fbb477./4 b N a * A R+LX
+ Var[Si]chaotic s
with

kL - 2
VaI'[Si]chaotiCZ ﬁ|:(2 In2 - 1) - (E - 1) :|

"or T2

+

2kF£N( -

w

Taking account of the decreasing fraction of bouncing ball
modes with increasing i, the variance scales as ¥4, See Fig.
3 for a comparison of this formula with Var[S;] for the even-
even eigenstates of the stadium billiard. Again, the rudimen-
tary approach here captures the main behavior fairly well.

To conclude this subsection on the bouncing ball orbits, a
few remarks are in order. First, we stress that although the
classical dynamics of the stadium billiard is, mathematically
speaking, purely chaotic as far as S; statistics are concerned
the existence of the marginally stable bouncing ball family
makes this system behave very much like an integrable bil-
liard. In particular the scale of the fluctuations are order of
magnitude larger than for the “genuine” chaotic billiard con-
sidered in Secs. III and IV. Second, because of the presence
of two classes of states with drastically different properties,
the covariance among the S; is, again in contrast with genu-
ine chaotic systems, nonzero. Furthermore, both the variance
and the covariance show an energy dependent structure
which complicates significantly the extraction of these quan-
tities from the locally smoothed S,y as was done in Sec. IV.

As a final remark, although the periodic orbit formula is
not derived here, Fig. 7 is shown for completeness. As in Fig.
6, the results are compared between the density of states and
the {S;}. Again, the peaks are in the same positions, i.e.,
those determined by periodic orbits but with differing ampli-
tudes. The importance of the bouncing ball modes is quite
visible.

VI. DISCUSSION

The mean and variance of the quantities {S;} treated in
[26] and in greater detail in this paper have been introduced
as examples of a nonlocal class of statistical measures with
physical relevance; the {S;} are connected to the addition
spectrum of quantum dots. By no means should they be
taken as the only possible measures representing this class.
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Indeed, in recent works on finite-size fluctuation properties
in ultracold Fermi gases [12,56], involving fluctuations in the
Bardeen-Cooper-Schrieffer pairing gap, a quantity was intro-
duced for the order parameter that is similar to the {S},
although with additional complications. Not surprisingly,
several common features are found for both quantities. As
the fluctuations are dominated by a term arising from the
interplay of the Friedel and eigenstate oscillations, there is a
significant decrease in fluctuation magnitude due to Dirichlet
boundary conditions, either through reduction or even van-
ishing of the prefactor of the leading term in kL. In the case
of the {S;}, the prefactor is decreased by more than an order
of magnitude with respect to the prefactor for Neumann
boundary conditions. Another critical feature is the role of
dynamics in the scale of the fluctuations. Chaotic dynamical
systems lead to a fluctuation scale of lower order in kL than
integrable or mixed dynamical systems. Again, this leads to a
fluctuation scale decreased by an order of magnitude or
more. The decrease in scale for chaotic systems can be traced
to an ergodic nature of the individual eigenstates. Con-
versely, the much larger fluctuation scale for integrable and
mixed phase space systems, suggests the possibility of new
physics associated with more regular dynamics or the possi-
bility of measurements that can be used to deduce informa-
tion about the dynamics.

The ik A/ L (or i'? In i) dependence for chaotic sys-
tems, and faster-growing dependence for integrable systems,
implies that the fluctuations embodied in Var[S;] in fact
grow with the size of the system, becoming eventually larger
than of order unity. This implies that the corresponding re-
sidual interaction contributions will in that case become
larger than the mean level spacing A. In other words, since A
is the energy scale set by the one particle energies, the fluc-
tuations in the residual interactions may become large
enough that they generate a modification in the ground-state
orbital occupation number and more generally reach a point
where a first-order perturbation treatment of the interactions
is not adequate.

Returning to the two theoretical approaches included
here—a random plane-wave model for chaotic systems and
semiclassical theory, whatever the dynamics—we have seen
that the basic random plane-wave model is intrinsically less
powerful than semiclassical theory, but on the other hand, it
is technically much simpler to implement. Surprisingly,
given the excellent results it generates in other contexts, the
random plane-wave model here displays a couple of signifi-
cant faults. The most simple to track down is the effect of
having its normalization be across the ensemble as opposed
to the individual eigenstates. For chaotic systems, this led
directly to the replacement of the mean square of \(6) by its
variance. Inclusion of the variance improved the theory con-
siderably as the mean square largely overestimated the pref-
actor. In addition, the proper treatment of dynamical correla-
tions in the semiclassical theory led to a factor 2 increase in
the prefactor constant. Truth be told, for the cardioid billiard
example, the results seem to agree better without the factor 2
(see Fig. 6), but a concerted search for an error in the semi-
classical calculation never resulted in its removal.

Finally, it is important to be aware of some consequences
of decompositions such as given in Eq. (9). The separation of
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average and fluctuating parts of a nonlocal statistical mea-
sure may not be the full story from a physical perspective. In
fact, this is the case for the {S;} treated here. As noted earlier,
the mean of S; does not lead to any modification of the
ground-state occupations numbers as its effects gets can-
celled. On the other hand, the fluctuating part of S; does
affect the ground state, but there are two components. The
leading order fluctuations that come from the use of the term
Ngo(r;E7) in the fluctuation expressions is essentially a
mean-field effect, analogous to scrambling. These fluctua-
tions, if large enough, can reorder the filling of the single-
particle levels. They do not however lead to high spin states
or other unusual behaviors. The remaining term SN(r;E}) is
responsible for exotic physics in those cases where it is suf-
ficiently large. As the focus throughout this paper was on
developing the theory of the nonlocal statistical measures
themselves, the leading behaviors have been emphasized,
which though dominant are not necessarily the only ones that
deserve to be considered—that depends on the physical con-
text (other types of problems exist, such as the fluctuations of
superconducting gap mentioned earlier, where the dominant
terms in the relevant nonlocal statistical measures do contain
all the important physics). Therefore, revisiting the
fluctuation-fluctuation term involving SN(r;E;) will some-
times be important but is left for future work.
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APPENDIX A: SECOND-ORDER TERMS IN THE
AVERAGE PROPERTIES OF THE S;

There are second-order terms in the computation of the
average properties of the S; coming from the boundary,
which are given here. Although, the other second-order terms
from the curvature and boundary discontinuities are not be-
ing derived and hence this calculation is incomplete, the nu-
merical calculations necessary to isolate the average behav-
ior before calculating the variance or covariance are
improved by including them. Therefore, an account is given
here.

The decomposition of Eq. (9) giving 8N(r;E;) implies

SN(r;ED) = 2 [g(0)] = |y (0) ). (A1)

J=i

Substituting the relations from Egs. (9) and (15) and integrat-
ing the constant terms gives

[

i Jl (ZkFx)

1+£> kF.x
kA

The last term merits some discussion: its leading behavior is

Sizii

=

X €(r) £ ASN(r;E)e(r) |.

—

(A2)
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seen to be 2 orders weaker than the overall expression and is
straightforward to evaluate because only its leading contri-
bution is required. Under the operation of taking the expec-
tation value, the only surviving term is

(8N(r; E)ei(r)) = AL (o) = ()P, (A3)
so that after integration over space, this is essentially equiva-
lent to (M;;)—(M,;). Indeed, the local Gaussian random be-
havior is uncorrelated from state to state in the random
plane-wave model so that the only surviving term comes
from the ith state with itself, all others vanishing. Locally,
before squaring and taking the expectation value, the expres-
sion on the rhs of Eq. (A3) can be thought of as being like
the square of a zero-mean unit-variance Gaussian random
variable with unity subtracted. However, it does have a vari-
ance, which is position-dependent and given by the right-
hand side of Eq. (14); i.e., the rhs acts as an envelope. Inside
of the billiard (excluding the semiclassically vanishing
boundary region), its value is however constant and equal to
the inverse of A to leading order. This generates a constant,
equal to 2, after integration. Therefore, the expectation value
of §; is approximately

i ) J KD (o)

A(l + »C kF.x
 kpA

<Si>=l'+2i

J1(2kpx)

=i+2+ ! fdr
L () S
Al — |1 =

T kpA T 2kpA

X l]o(ZkFx) - 2k A]
F

1

n L 1 2 L
! +kFA( C )( C ) 7 2 A
+ |+

T kA 2 A
2=i|1 2L (3] £ 2 (A4)
i ey R Py el R

where we choose kyp= \s’TE,»/ﬁ. Interestingly enough, if a
length £, of the boundary follows Dirichlet conditions and a
length Ly follows Neumann conditions, it is not correct just
to make the substitution =L — Ly—L. Rather, the above
expression becomes

26 (3L Ly-Lp\Ly—L
(Sy=if 14— | =+ =2 |1y
mkpA T 2 kpA
(A5)

after redoing the algebra. The distinction arises because
some of the correction terms depend on the sign of the
boundary conditions, whereas other correction terms depend
on the sign squared.
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APPENDIX B: MEAN LENGTH OF A TRAJECTORY
BETWEEN TWO SUCCESSIVE BOUNCES

This appendix briefly rederives Eq. (46), which gives the
mean length of a trajectory between two successive bounces
off the boundary of a billiard. While this is a well-known
result (see [57] and references therein), several equations
used in the derivation are needed in the main text. The result
can actually be obtained by computing in two different ways
the energy surface volume of the billiard

V(E) = f dpdr 8 E - H(r,p)], (B1)
with H(p,r)=p?/2m+V(r) and V(r)=0 inside the billiard
and o outside. The first way is to perform this integral with
the original coordinates (r,p), giving V(E)=2mm.A.

The second way to perform this integral is to use another
set of coordinates, constructed as follows. Any point (r,p) of
the billiard’s phase space can be considered as belonging to a
trajectory which has last bounced off the boundary a time 7
ago at a location on the boundary labeled by the curvilinear
abscissa & Denote ry(§¢) the corresponding point on the
boundary and introduce the action

def [r=(ry,rp)

S(ry,ry, 1,6 = L(7)d7, (B2)

ro(é)

with L=pr—-H as the Lagrangian function. Since dS/dr=p,
S(ry,ry,7,&) can be used as the generating function of the
canonical transformation

(r,p) — (Q.P),

with Q=(&,7). The new momentum coordinates are thus
given by

(B3)

as a8

P=- -—=-E,
&Ql 07’
P o"S <9S
2=— =Pg
00, &

with p; as the projection of the momentum p on the direction
parallel to the boundary at &.

As Eq. (B3) is a canonical transformation, drdp=dQdP
and the energy surface volume is

V(E) = f dédp dEdTS(E - H). (B4)

Performing the straightforward integration over energy and
noting that for given (&,p,) the integral over dr yields the
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time of travel #(&,p;) of the corresponding trajectory be-
tween & and the following bounce gives

V(E) = f dédpg(§,p,) =2pLt, (B5)

with p=\2mE and 7 as the mean time of travel between two
successive bounces. Identifying this expression with the one
obtained using the original coordinate system gives

_ 7wA
b= (B6)

. (46).

and finally, using p/m=|¥|,

APPENDIX C: NORMALIZATION CORRECTIONS TO EQ.
39)

Note that in Eq. (39) only the terms which are of leading
order near the boundary have been kept. Others have been
neglected which, though smaller near the boundary, are of
the same size as some of the terms kept when integrated over
the full area of the billiard. In particular, as it is, Eq. (39)
gives the normalization of the wave function only up to
L/kpA corrections. If however py(E)(1*= L/kpA) is used
rather than py/(E) for the smooth part of the density of states,
Eq. (35) is replaced by

. L2
W(r)Pav—1= = J,(2k
AW (1) an 0(2kpx) + ZkFA ak A2

2kFAJ0(2kFx)A2 2 posc(E)AE

+ C(E)AE Im Gosc(r r E)AE

1
Azpos
L
1+

Y E—
——————Im Gy (r,r,E) 5p
TVy

1+ Jo(ZkFX) +
FA———
- E)zg. (C1
AVW posc( )AE ( )

Integration over the rhs gives precisely zero with each pair of
terms from the beginning in order, respectively, canceling
each other. Thus, the eigenstate normalization is unity from
the leading constant term on the left-hand side.
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