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Based on information theory, we present a method to determine an optimal Markov approximation for
modeling and prediction from time series data. The method finds a balance between minimal modeling errors
by taking as much as possible memory into account and minimal statistical errors by working in embedding
spaces of rather small dimension. A key ingredient is an estimate of the statistical error of entropy estimates.
The method is illustrated with several examples, and the consequences for prediction are evaluated by means
of the root-mean-squared prediction error for point prediction.
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I. INTRODUCTION

Given is a univariate time series �xi : i=1, . . . ,N�, obtained
from the time evolution of some deterministic or stochastic
dynamical system by applying a scalar measurement func-
tion to the state vectors of this system. We will assume that
the measurements are equidistant in time. A meanwhile stan-
dard approach to the modeling and prediction based on
univariate time series data starts from the construction of a
multidimensional state space. Commonly used is the time
delay embedding space. In the case of deterministic dynam-
ics, the Takens theorem �1� states that if the embedding di-
mension m satisfies m�2Df, where Df is the fractal dimen-
sion of the attractor, then m-dimensional delay vectors �DVs�
�xn−k�m−1� ,xn−k�m−2� , . . . ,xn� with delay k can be uniquely
mapped onto the nonobserved state vectors. Hence the pro-
cess in the m-dimensional delay embedding space is deter-
ministic in the sense of the existence and uniqueness of the
solution of the initial value problem. In special cases, smaller
values of m might be sufficient for reconstruction of the un-
derlying dynamics.

As it has been argued recently �2,3�, also the modeling
and prediction of time series data from stochastic processes
can profit from the concept of state space reconstruction: in
an ideal situation, there exists a time delay embedding space,
in which the stochastic dynamics is Markovian of �possibly
higher� order m, i.e., in which the conditional probability
density function �pdf� ��xn �xn−m , . . . ,xn−1� to find a given
future value cannot be made narrower by including more
past values into the condition. In the framework of time se-
ries analysis, the conditional pdf has to be estimated from the
data. This can be done by either estimating conditional prob-
abilities through binning and counting �3� or by kernel esti-
mators �4�. Two consequences arise: These estimates are sub-
ject to statistical errors, and a length scale � is introduced,
i.e., the estimated conditional probabilities do not vary as a
function of the condition �xn−m , . . . ,xn−1� on length scales
smaller than �. The statistical error is a function of not only
the data set size N but also of the spatial resolution �. When
models have to be fitted to observed data, model parameters

are to be determined. The estimated conditional probabilities
can be interpreted as the model parameters of a Markov
model. In data analysis tasks the Markov order m, however,
usually is not a priori known and has to be obtained from the
data.

In both the deterministic and the stochastic cases, finding
the suitable embedding dimension is one of the practical is-
sues. In the stochastic case the embedding dimension can be
associated with the number of time steps of nonvanishing
condition, which under absence of intermediate time steps of
vanishing condition reduces to the Markov order m. Whereas
for the deterministic case mathematically rigorous results �5�
as well as numerically efficient and reliable algorithms �6�
exist, for the stochastic case only statistically demanding
tests of the Chapman Kolmogorov equation are currently in
use �7�. In both cases, there exists the practical problem that
from a theoretical point of view the embedding dimension
for the process could be very large. If the amount of data is
insufficient in view of statistical robustness of either the al-
gorithms to determine empirically the embedding dimension
or of estimates of, e.g., model parameters in a corresponding
space, then a high dimensional model is practically irrel-
evant, even if theoretically justified. Hence, in many situa-
tions an effective model and a different embedding dimen-
sion might be superior to the model advised by the structure
of the underlying dynamics. We will illustrate this statement
later and will convince the reader of its relevance.

When identifying the optimal embeddings, i.e., when
looking for the optimal Markov approximations, we have to
take into account two types of errors. The first one is a mod-
eling error, which we make if we ignore components in the
past of the time series which are relevant for its future. In the
deterministic setting, this would mean that we use an embed-
ding dimension which is too small. In the stochastic setting,
it means that the Markovianity of in general higher order or
the cardinality of time steps of nonvanishing condition is not
fully captured by the chosen embedding space. The second
error is a statistical error. Regardless of which quantity is
estimated from a finite data set, its value is always subject to
a statistical error. In the context of prediction and modeling,
the corresponding samples are usually obtained from neigh-
borhoods of delay vectors. Sample sizes are small and cor-
respondingly statistical errors large if we work in embedding
spaces whose dimension is too large compared to the amount*holstein@ua.pt
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of available data and compared to the diameter of neighbor-
hoods, i.e., locality of the estimate.

Hence, what we are proposing here with the intention of a
rather general applicability is a concept to identify optimal
resolution-dependent Markov approximations, in which the
combined effect of modeling errors and statistical errors is
minimal.

Practically, we will relate the modeling error to the dis-
crepancy between conditional entropies and entropies with
sufficient conditioning. The statistical error of a model will
be related to the statistical error in entropy estimation. There-
fore, we will carry out explicitly error estimates for entropy
estimations. On the route of searching for models which cap-
ture the memory of a process but involve an as small as
possible embedding dimension, we will consider also non-
standard so-called perforated embeddings, namely, those
where the temporal spacings between successive elements of
a delay vector are not identical for all pairs of adjacent com-
ponents. Such embeddings were also discussed in �8,9�. This
paper makes a suggestion on how to find optimal ones.

In Sec. II the basic quantities of information theory are
introduced, which in the development of the criteria for op-
timal Markov approximations play a certain role. In Sec. III
we remind a widely used procedure for the estimation of
entropies and discuss the statistical errors in numerical esti-
mation of the correlation entropy. In Sec. IV a method for the
selection of usual Markov approximations is presented, but it
is immediately pointed out that the framework has to be
generalized in order to be suitable for arbitrary dynamics. A
unified notation for entropies in the time series analytical
framework suitable for the treatment of variable future lead
times, jointly conditioned joint entropies, noncausal condi-
tionings, downsampling, and arbitrary omissions in condi-
tionings is introduced in Sec. V, which remedies the formerly
mentioned problems. The notion of perforatedness is intro-
duced. In Sec. VI we present the method to identify optimal
generalized Markov approximations as a function of the data
accuracy � for a given time series of fixed length N. Subse-
quently, the success of the introduced criterion for the deter-
mination of optimal perforated Markov approximations is
illustrated for several model processes with nontrivial short-
range memory in Sec. VII. We show that indeed the theoreti-
cally optimal embedding of the process from the dynamical
law behind the generated data sets is not necessarily the op-
timal state space representation of a finite time series for all
resolutions. Furthermore the dependence on the length of the
underlying data set is discussed in detail. Some conse-
quences for prediction with the example of the generalized
Hénon map are outlined in Sec. VIII In Sec. IX the results of
this paper are concluded.

II. RELEVANT QUANTITIES
OF INFORMATION THEORY

The resolution ���-dependent joint Renyi block entropy of
order q is given by

Hm
�q���� =

1

1 − q
ln� 	

l1=1

L1���

. . . 	
lm=1

Lm���

�pl1,. . .,lm
����q
 . �1�

It estimates the joint uncertainty of random variables corre-
sponding to m successive time steps of a time series. In case

of dependences of random variables a conditional probability
distribution is narrower than the corresponding uncondi-
tioned probability distribution. Further conditioning into the
past in general further decreases the width of the distribution
and the uncertainty of the outcome of the random experi-
ment. This behavior can also be quantified with conditional
entropies defined by

H1�m��� ª Hm+1��� − Hm��� �2�

as the difference of joint block entropies with different block
length. In this formula and the subsequent ones the Renyi
order q is notationally omitted. Conditional entropies are in-
terpreted as the remaining uncertainty after having used the
information from the chosen conditioning. In case of maxi-
mal, i.e., infinite conditioning, the irreducible uncertainty is
obtained as

H1����� � lim
m→�

H1�m��� . �3�

The redundancy is defined by

Rm��� ª H1��� − H1�m��� �4�

and hence is interpreted as the uncertainty reduction of the
immediate future random variable from conditioning on the
adjacent m past time steps. The quantity

Qm��� ª H1�m��� − H1����� �5�

is called ignored memory. It is the in principle accessible but
renounced uncertainty reduction of the immediate future ran-
dom variable. From combining Eqs. �4� and �5� it is possible
to see that the total uncertainty of a single random variable is
decomposable according to

H1��� = H1����� + Rm��� + Qm��� . �6�

III. ESTIMATION OF ENTROPIC QUANTITIES AND
STATISTICAL ERRORS OF CORRELATION ENTROPIES

Our method for finding optimal Markov approximations
will find a balance between maximal uncertainty reduction of
future values of the time series and minimized statistical er-
rors. To this end, we will discuss here the estimation of en-
tropies from finite time series and in particular the statistical
errors involved in this estimation. A comprehensive over-
view of methods of entropy estimation can be found in �10�.
Because it is a statistically robust and algorithmically conve-
nient quantity, we will concentrate here on the order-2 Renyi
entropy H�q=2�=−ln	 pi

2, which is estimated from the
Grassberger-Procaccia correlation sum �6�

Cm
�2��N,�� =

1

N�N − 1�	i=1

N

	
k�i

��� − �xi − xk�� �7�

by

Hm
�2��N,�� = − ln Cm

�2��N,�� . �8�

We use the maximum norm in the argument of the Heaviside
function �. The conditional entropy of Eq. �2�, our construc-
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tion element for ignored memory and redundancy, is ob-
tained from

H1�m
�2� �N,�� = ln Cm

�2��N,�� − ln Cm+1
�2� �N,�� . �9�

As it was shown by Grassberger �11�, the correlation sum
does not suffer from systematic finite sample effects, i.e., it is
an unbiased estimator of the correlation integral. Conse-
quently, the mean value of estimated quantities such as the
correlation entropy or the correlation dimension on data sets
of fixed size N for arbitrarily small � will be correct, as long
as the combination �N ,�� is such that the correlation sum is
nonzero. However, each individual result is subject to statis-
tical errors. In the following we want to estimate the magni-
tude of these errors.

To begin with, it is introduced the random variable
Wm�� ,xi� for the number of similar vectors xk of xi with
distance smaller than � according to the chosen norm,
i.e., the random variable for the cardinality of the set
�xk�U�� ,xi� :k� �1, . . . ,N−m��, where the �-neighborhood
of the vector x is defined by

U��,x� ª �z:�z − x� � �� . �10�

Wm�� ,xi� is distributed according to a Binomial distribution.
For a given data set, the realization of Wm�� ,xi� is given by

wm�N,�,xi� ª 	
k=1;k�i

N

��� − �xi − xk�� . �11�

With this expression the correlation sum �Eq. �7�� can be
written as

Cm
�2��N,�� =

1

N�N − 1�	i

wm�N,�,xi� . �12�

Except for very large � or extremely small N the distribution
of the random variable Wm�� ,xi� can be excellently approxi-
mated by a Poisson distribution. This leads to the property

Var�Wm��,xi�� = E�Wm��,xi�� , �13�

and therefore

�wm�N,�,xi� 
 �wm�N,�,xi� . �14�

Assuming mutual independence of Wm�� ,xi� and using the
standard rules for error propagation �additivity of the vari-
ances� as well as the approximate relation �Eq. �14��, the
statistical error of the correlation sum is estimated by

�Cm
�2��N,�� =

1

N�N − 1��	
i

��wm�N,�,xi��2



1

N�N − 1��	
i

wm�N,�,xi� . �15�

Thus it can be computed by using the non-normalized corre-
lation sums, which are needed anyway to estimate entropies.
From Eqs. �8�, �12�, and �15� the statistical error of the Renyi
entropy can be calculated as

�Hm
�2��N,�� =

�Cm
�2��N,��

Cm
�2��N,��



1

�	i
wm�N,�,xi�

, �16�

and the statistical error of the usual conditional entropy is
obtained from

�H1�m
�2� �N,�� = ���Hm+1

�2� �N,���2 + ��Hm
�2��N,���2


� 1

	i
wm+1�N,�,yi�

+
1

	i
wm�N,�,xi�

.

�17�

Further error propagation for the estimated redundancy

�Rm�N,�� = ���H1�N,���2 + ��Hm+1�N,���2 + ��Hm�N,���2

�18�

is possible in the same way. This quantity will be needed for
the criterion given in Eq. �19�.

The assumptions entering the arguments for usual error
propagation are the following:

�1� Independence of the random variables.
�2� Gaussian error statistics.
�3� Errors are small so that nonlinear expressions can be

approximated by first-order Taylor expansions around the
mean.

The authors are aware of the fact that item 1 is violated
since if �xi−xi����, then the phase space points have over-
lapping neighborhoods and Wm�� ,xi� and Wm�� ,xi�� are not
independent of each other. Correlations among the Wm�� ,xi�
yield a smaller effective sample size, such that Eq. �16� is an
underestimation of the true statistical error of entropies. The
violation of the assumption of item 1, however, becomes the
less relevant the smaller � since then the overlap of neigh-
borhoods decreases. Item 2 is violated since the error statis-
tics of our basic random variables Wm�� ,xi� is explicitly non-
Gaussian. This violation becomes the stronger the smaller
the values of wm�N ,� ,xi� become, i.e., for small �. Neverthe-
less, in spite of those arguments, usual error propagation is
used as an approximation of the true errors of the estimation
of entropic quantities.

Except for Eq. �22� in the following the dependence on
the length N of the data set will only be shown for the sta-
tistical errors since for the expectation value of entropies and
derived quantities there is no dependence on N.

IV. CRITERION FOR USUAL MARKOV
APPROXIMATIONS

As already mentioned in Sec. I, there are two kinds of
errors involved in our strategy for the determination of opti-
mal Markov approximations: first, there is a modeling error.
If a Markov approximation is carried out, typically informa-
tion about the future is truncated, which is not anymore
available for uncertainty reduction. This renounced uncer-
tainty reduction can be quantified by the ignored memory Qm
given in Eq. �5�. The value of Qm should be small. It is the
smaller �or remains the same� the more components in the
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past are taken into account, i.e., the higher the order m of the
Markov approximation. Naively, one could be tempted to
demand that the ignored memory in optimal Markov ap-
proximations should vanish, but in case of infinite range of
memory in the past the resulting Markov order would be
infinite, what cannot be desired with respect to practical ap-
plications.

Second, a statistical error has to be discussed. There is an
unavoidable statistical error in the estimation of entropies,
which is propagated to a nonvanishing statistical error of the
performed uncertainty reduction from conditioning. This sta-
tistical error quantified by �Rm given in Eq. �18� describes
the unreproducibility of uncertainty reduction. Also this term
should be rather small in order to make the uncertainty re-
duction confident. �Rm increases with larger Markov order m
because less neighbors are found in the estimation of the
correlation sum under the more restrictive conditions. De-
manding only the minimization of the statistical error of the
redundancy in a criterion for optimal Markov approxima-
tions would thus lead to empty conditionings. It is intuitively
clear that also this can in general not be a reasonable solu-
tion.

Since in contrast to Qm the term �Rm is the smaller the
fewer past components are taken into account, the reduction
in both errors are complementary demands and one faces an
optimization problem. The aim is now to give a criterion
such that for arbitrary dynamics a resolution-dependent op-
timal Markov approximation can be found. The ad hoc
choice for such a criterion reads as

mopt��� = max�m � N0:�Rm�N,�� � Qm���� . �19�

The reason for the criterion can be understood from the fol-
lowing: the maximal memory, which in a senseful way to
take into account is restricted by the condition that the sta-
tistical error of redundancy, i.e., the statistical error of the
uncertainty reduction has to be smaller than the ignored
memory. Otherwise the ignored memory is anyway not any-
more resolvable by enlargement of the order of the Markov
approximation. It is used that the statistical error of the re-
dundancy increases with the Markov order, whereas the ig-
nored memory decreases with the Markov order. Hence start-
ing from the smallest possible Markov order m it is increased
as long as the statistical error of the redundancy remains
smaller than the ignored memory.

The whole reasoning is resolution dependent. In the Mar-
kov model conditional probabilities,

pln�ln−m,. . .,ln−1
��� = �

Bln−m,. . .,ln
���

��xn�xn−m, . . . ,xn−1�

�dxn−m ¯ dxn, �20�

that a state inside some �-subset of the state space is mapped
onto some �-interval corresponding to the future, are treated.
Bln−m,. . .,ln

��� is a resolution-dependent �m+1-dimensional
box as an element of the partition of the underlying embed-
ding space�. The results are approximations to the true con-
ditional probability density, which vary only on spatial scales
which are larger than �, e.g., a model obtained for relatively

small � has the potential to represent very fine structures in
the state space, but it suffers from poor statistics. Since for
larger � statistics gets better, but only coarser structures are
resolved, the optimal Markov order �and later on the optimal
perforated model�, as well as prediction errors which will be
discussed in Sec. VIII, depend on the spatial resolution �.

Eventually we want to make plausible that the criterion
Eq. �19� for mopt derived from information theory really
yields the optimal order of the Markov model describing the
underlying dynamics. The conditional probabilities of Eq.
�20� corresponding to a Markov model of order m are esti-
mated from a finite data set. Hence they are subject to statis-
tical errors, which are the larger the larger m. Exactly the
same statistical errors of conditional probabilities would lead
to statistical errors of the redundancy �Rm if we defined all
information theoretic quantities through Shannon entropies
�q=1� and they enter indirectly the statistical errors of quan-
tities based on the Renyi entropy of order q=2 through �wm
�cmp. Eqs. �14� and �11��. Hence the statistical error of the
redundancy is related to uncertainty of the corresponding
Markov model. Since furthermore with increasing condition-
ing the minimization of the ignored memory Qm is in accor-
dance with the minimization of the modeling error of the
Markov model the plausibility argument is complete.

As an example the autoregressive �AR� process,

xn+1 = 	
i=0

p−1

aixn−i + 	n+1, �21�

of order p=3 with parameters a0=0.2, a1=0.3, and a2=0.4 is
treated, i.e., a memory depth of three time steps is used. As
usual 	n+1 is Gaussian white noise with unit variance and
zero mean. A data set of length N=50000 is used. The result
is shown in Fig. 1.

For intermediate resolutions the memory depth m= p=3
is exactly found with the algorithm, visible in the upper
panel of Fig. 1. For higher resolutions, i.e., smaller �, the
statistical error dominates the criterion and a truncation for
shorter Markov order is enforced. This means that although
the data stem from a process of Markov order p=3, for the
given data set size and chosen � an m=2 model is superior
when estimated from the data. For large � a suggestion for
a larger Markov order can be found. The order of the
Markov property given by Eq. �21� is also not preserved
under coarse graining, which can be observed by the splitting
of entropies with higher conditioning in the lower panel of
Fig. 1, because for coarser resolutions the mapping onto dis-
crete states becomes noticeable and causes extra depen-
dences among the involved random variables shifting infor-
mation about the future into the further past. Since for coarse
resolution the statistical error is extremely small, the splitting
of entropies is detected by the criterion as shown in the upper
panel of Fig. 1.

Whereas the application of the criterion given by Eq. �19�
was successful in the previous example, problems do arise in
case of more general dynamics, e.g., the discretized Mackey-
Glass dynamics to be discussed in Sec. VII B leads to a
memory structure with omissions, i.e., certain intermediate
time steps in the past do not contribute to uncertainty reduc-

DETLEF HOLSTEIN AND HOLGER KANTZ PHYSICAL REVIEW E 79, 056202 �2009�

056202-4



tion of the future. Under the conditions of this section mini-
mization of the modeling error is in general accompanied by
large statistical errors such that true joint minima of both
types of errors are not accessed. Hence a more subtle proce-
dure for obtaining optimal Markov approximations should be
necessary, in which the minimization of the modeling error
by contributions from the further past is not statistically sup-
pressed. A notation for joint entropies on time series seg-
ments with omissions has to be introduced. We call such
situations “perforated,” which are worked out in Sec. V. As
we will see, on the other hand, the perforated framework
introduces the problem that with respect to a criterion for an
optimal Markov approximation a monotonicity of the rel-
evant entropic quantities in a parameter as the Markov order
m in the former case describing all possible conditionings
is not anymore available. A solution with a qualitatively
slightly different generalized criterion, which nevertheless

follows essentially the same idea as in this section, will be
offered in Sec. VI.

V. PERFORATION

Whereas in Eq. �1� the uncertainty of m random variables
corresponding to successive time steps in a time series is
assessed, in this section a notational framework for evalua-
tion of uncertainties of random variables corresponding to
arbitrary sets of time steps is introduced. Instead of the num-
ber m of successive time steps, which is not anymore enough
for characterization of the uncertainty-assessed set of time
steps, the relevant set has to be given explicitly. We will
denote such sets of integers by J �or K�, and they will be
called perforated if omissions of time steps are involved. For
example, Eq. �8� for the estimation of order-2-Renyi entro-
pies has to be generalized for the perforated case by

HJ
�2��N,�� = − ln CJ

�2��N,�� , �22�

where the vectors xi and xk in Eq. �7� for the correlation
sum adopt the perforation structure given by J, i.e., if J
= �j1 , j2 , . . . , j�J��, then the corresponding generalized delay
vector �GDV� with index i reads xi= �xi+j1

,xi+j2
, . . . ,xi+j�J�

�.
This in general leads to nonstandard embeddings.

Conditional entropies can be defined in general as

HK�J
�2� ��� ª HK�J

�2� ��� − HJ
�2���� . �23�

where K is a set of integers which is disjoint from J. This
quantity in principle allows for the evaluation of entropies
with noncausal conditioning. In prediction situations the con-
vention is made that the presence is indicated by the index
zero. Hence a set J of conditioning indices in the past only
consists of negative integers �J�Z0

−�, which indicate the re-
spective distances to the presence. With respect to optimal
Markov approximations we are interested in single element
sets K. In this case the single element denoted by f corre-
sponds to a certain future time step, and Eq. �23� reduces to

H�f��J
�2� ��� ª H�f��J

�2� ��� − HJ
�2���� . �24�

With conditioning on full past for a single time step f in the
future the conditional entropy becomes H�f��Z0

−���. As a spe-
cial case of one step ahead the nonperforated conditional
entropy with infinite conditioning of Eq. �3� is obtained:

H�1��Z0
−��� � H1����� . �25�

Under perforated circumstances the ignored memory of Eq.
�5� is redefined by

Q�f�;J��� ª H�f��J��� − H�f��Z0
−��� , �26�

and the redundancy of Eq. �4� now is obtained from

R�f�;J��� ª H1��� − H�f��J��� . �27�

As a generalization of Eq. �18�, the statistical error of the
redundancy in Eq. �27�, which will be essential for the crite-
rion for optimal perforated Markov approximations, still ob-
tained from usual error propagation, reads as
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FIG. 1. �Color online� Upper panel: resolution-dependent opti-
mal usual Markov approximation for the autoregressive process ac-
cording to Eq. �19�. Furthermore the conditional entropies H1�m���
with varying conditioning as a function of the resolution and the
corresponding resolution-dependent statistical error in the estima-
tion of the conditional entropies are shown. Lower panel: zoom of
the upper panel with the intention to make visible the splitting of
entropies for rather coarse resolutions, which is detected by the
algorithm.
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�R�f�;J�N,��

= ���H1�N,���2 + ��H�f��J�N,���2 + ��HJ�N,���2.

�28�

After having fixed the notational framework for a perforated
treatment, a suitable generalization of the criterion for opti-
mal usual Markov approximations of Sec. IV can be given
such that simultaneous minimization of as well the modeling
error as also the statistical error makes sense also for gener-
alized dynamics containing inhomogeneously distributed
memory in the past. Moreover, this notation in principle al-
lows for a treatment of variable future time steps, jointly
conditioned joint entropies, arbitrary omissions in condition-
ings, noncausal conditionings, and downsampling in a uni-
fied framework.

VI. CRITERION FOR OPTIMAL GENERALIZED
MARKOV APPROXIMATIONS

Also in the perforated case we consider the two types of
errors already discussed in the context of usual Markov ap-
proximations, i.e., the modeling error and the statistical error,
which have to be minimized jointly. As in Sec. IV the two
errors are again quantified by the ignored memory, i.e., ig-
nored potentially usable information, and the statistical error
of redundancy, however, in this case with usage of variants
of those quantities respecting perforatedness as introduced in
Sec. V. The minimization of the single errors is again
complementary in the number of conditioning indices but
more subtle here because in particular the ignored memory is
not only a function of the cardinality of the conditioning set
but depends explicitly on its single elements.

For finding the resolution-dependent optimal perforated
Markov approximation, i.e., the optimal conditioning sets
J����, as the central criterion and most important formula of
this paper, it is demanded

Q�f�;J��� + b�R�f�;J�N,��=! min, �29�

where for given � the minimum is taken in principle over all
possible, practically over all numerically accessible condi-
tionings J�Z0

−, instead of over all Markov orders m as in
Sec. IV. The ignored memory Q�f�;J��� in the perforated case
was defined in Eq. �26�, and the statistical error of the redun-
dancy �R�f�;J�N ,�� is obtained from Eq. �28�. The parameter
b accounts for the weight of the statistical error of the redun-
dancy in the criterion. However, all results of Sec. VII will
be based on the choice b=1. A short discussion on balance
factors b�1 can be found in Sec. 7 of �12�. If the solution
for a certain � is not unique, it is taken in a second step the
set J��� as J���� with

min�J���� = max �30�

among the preselected ones.
The result is a resolution-dependent suggestion for opti-

mal perforated Markov approximations. The chosen criterion
will obtain its justification by the ability to recover known

models behind sufficiently large data sets in a suitable inter-
mediate interval of resolutions shown in Sec. VII

For the criterion of Eq. �29�,

Q�f�;J��� + b�R�f�;J�N,��

= H�f��J��� − H�f��Z0
−��� + b��H1

2�N,�� + �H�f��J
2 �N,��

=! min, �31�

a simplified approximative representation can be given by

H�f��J��� + b�H�f��J�N,��=! min �32�

because H�f��Z0
−��� and �H1�N ,�� are independent of J and

hence act as constants for given resolution �. Equation �32� is
a very good approximation of Eq. �31� since �H1�N ,�� is in
general small compared to �H�f��J�N ,��. The interpretation
of this approximation of the criterion is that the value of the
conditional entropy including its statistical error has to be
minimal.

VII. EXAMPLES

In order to evaluate the ability of the introduced criterion
for determination of optimal perforated Markov approxima-
tions, it is tested on data sets, for which the structure of
dependence is known. The test is carried out with linear sto-
chastic and with nonlinear deterministic dynamics. In the
context of the example of the autoregressive process further-
more the dependence of the output of the criterion on the
length of the underlying data set is explicitly addressed.

A. Autoregressive processes

1. Suggestion of the optimal perforated Markov approximation
and comparison with the memory structure underlying

the data set

The map of AR processes was given in Eq. �21�. For the
first analysis a data set of N=40000 data points is generated
for a simple autoregressive process with parameters a0=a2
=0.4, which fixes the structure of dependence in the iteration
procedure. Parameters not mentioned are understood to be
zero. The time step with index “1” depends on the time steps
given by the set J0= �−2,0�. A full search for the �-dependent
optimal conditioning structure according to the criterion
stated in Eq. �29� is carried out. Here additionally in case of
an estimated result of H�f��J����H�f��Z0

−��� as a consequence
of statistical fluctuations, what is theoretically impossible,
the estimated value of H�f��J��� was replaced by the value of
H�f��Z0

−���, thus from Eq. �26� avoiding negative Q�f�;J��� in
Eq. �29�. The result is shown in Fig. 2.

A first result is that the found optimal conditioning struc-
ture J���� is indeed resolution dependent. Interpreting Fig. 2,
it is possible to extract three regimes: for high resolution,
i.e., small �, the statistical errors of the entropy estimations
are rather large because in particular for longer conditioning
fewer neighboring delay vectors for the estimation of the
correlation sum can be found, and hence the criterion is
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dominated by the statistical error of the redundancy, which
causes perforated structures with fewer elements to be de-
tected as optimal. Interestingly, the single conditioning on
the further past is selected as superior to single conditioning
on the presence. The statistical errors of H�1���0� and of
H�1���−2� are about the same, but the conditional entropy is
estimated slightly smaller in the latter case.

For intermediate resolutions, the most interesting part of
the plot, the model behind the data set is found, i.e.,

J���� = J0, �33�

because the statistical error is sufficiently small and the res-
olution is sufficiently large that the information term domi-
nates the criterion without being disturbed by either statisti-
cal or resolution effects. Nevertheless, in this domain of
resolutions the statistical error of the redundancy has the task
to exclude all conditionings longer than necessary among
those which are equal and optimal from the informational
point of view.

For even coarser resolution, there is the domain of coarse
graining splittings. The statistical error typically does not
play a role anymore and the information term becomes in-
fluenced by resolution effects. Even though the components
do not carry information from the dynamical law, analyzing
the data set with coarse resolution they are frequently chosen
to appear in the optimal perforated Markov model. This is
the same effect as shown already for the usual Markov ap-
proximation of the autoregressive process in Fig. 1.

The criterion is tested by the question if the components
of conditioning J0 in the dynamics behind the generated data
set can be retrieved. In the rather simple case of autoregres-
sive processes hence the criterion can be applied success-
fully.

An alternative and widely used approach to the Gaussian
time series data is to directly fit the parameters of a linear
model �Eq. �20�� to them. Such routines minimize the vari-
ance of the residuals without making use of information
theoretic concepts. For preselected model order p, using the
whole data set each single parameter ai is estimated explic-
itly instead of only selecting components. Hence, such fitting

methods appear to be superior to what we propose here, and
indeed for data from AR-processes, they are superior. How-
ever, first, our goal is to identify the relevant components of
a delay vector, which includes the determination of the
model order p, without preselection. Second, our approach is
neither restricted to data from linear models nor to Gaussian
data but develops its full strength for nonlinear �stochastic�
systems, as we will demonstrate later.

2. Data set length dependence of the optimal
perforated Markov model

Since an essential part of criterion �29� consists of a sta-
tistical error it is immediately clear that the result always
depends crucially on the length of the underlying data set.
The consequences of the influence of the length of the data
set are outlined in the following. As the analyzed example a
special AR�7� process,

xn+1 = 0.3xn + 0.3xn−4 + 0.3xn−6 + 	n, �34�

is used, for which the structure of dependence in the iteration
procedure can be described by the set J0= �−6,−4,0�. With
this iteration procedure data sets of different lengths �N
=3000,8000,20000,50000� are generated and then analyzed
with respect to the optimal resolution-dependent perforated
Markov approximations. The results are shown in Fig. 3.

It is possible to conclude that in the case of longer data
sets the time steps of memory in the used dynamics can be
retrieved on a broader interval of resolutions with higher
reliability. For shorter data sets the influence of the statistical
error in criterion �29� increases, and the domain of domi-
nance of the information term is shifted to coarser resolu-
tions seen in the selection of fewer components for the opti-
mal model, where the statistical error term is dominant. The
structure of conditioning J0 of the underlying dynamics be-
comes blurred if the domain of dominance of the statistical
error starts to touch the domain of coarse graining effects for
sufficiently short data sets. In the bottom right panel of Fig.
3 this case is almost reached.

In the hypothetical case of infinite data set length all sta-
tistical errors become zero for all resolutions, and criterion
�29� is governed by the ignored memory. Optimality is se-
lected for minimal modeling error quantified by vanishing
ignored memory. If memory ranges infinitely far into the
past, then a Markov approximation is always accompanied
by a loss of information. According to the criterion a Markov
approximation of finite order can thus not be selected as
optimal. If the range of memory is finite into the past, a
Markov approximation is possible where no information is
found in the further past, but it would not be necessary be-
cause components of the past without information about the
future nevertheless kept do not diminish the quality of the
model with respect to the first part of the criterion in Eq. �29�
in case of infinite data sets. The second part of the criterion
given in Eq. �30� decides for the shortest conditioning in the
set of degenerated selected perforated Markov models.

-8

-6

-4

-2

0

2

0.01 0.1 1

pa
st

tim
e

st
ep

s

ε

selected components

FIG. 2. Resolution-dependent optimal perforated Markov model
for a data set of N=40000 data points of an AR�3� process with
a0=a2=0.4. The optimal conditioning structures can be found in
vertical direction.
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B. Mackey-Glass dynamics

As a second example for testing the performance of cri-
terion �29� we analyze the Mackey-Glass dynamics �13�
given by

ẋ�t� =
ax�t − 
�

1 + �x�t − 
��c − bx�t� , �35�

a time-continuous nonlinear deterministic example with
memory. The state at time t depends explicitly on the state at
time t−
. Mackey-Glass dynamics is a representative of the
class of delay differential equations, a subset of the set of
infinite-dimensional dynamical systems. It serves as a model
for the regeneration of white blood cells for patients with
leukemia. Discretized, the equation of motion reads as

xn+1 = �1 − b�t�xn +
axn−k

1 + xn−k
c �t , �36�

with the delay

k =



�t
� N . �37�

Typical parameter values �14,15� are

a = 0.2, b = 0.1, c = 10. �38�

As an example taking �t=0.01 time units, a delay of, e.g.,
k=1800 time steps leads to a time delay of 
=18 time units.
For 
�16.8 time units it is known that the dynamics is es-
sentially chaotic. Using every 300th time step in the data set
to analyze leads to an effective delay of K=6 time steps. For
the following analysis, data sets of 12000 effective data
points are used.

Even though in Fig. 4 for usual �nonperforated� condi-
tional entropies the delay is invisible, the entropic-statistical
criterion �Eq. �29�� selects it. This is seen in Fig. 5, where a
whole series of optimal perforated Markov models for differ-
ent effective delays is shown.

The right part of the panels is again subject to coarse
graining effects. For higher resolution more structure is vis-
ible. The most important point to stress is that all panels have
in common that there is an interval of resolutions, where the
optimal perforated Markov model contains omissions behind
the first step of conditioning and the first following time step
taken into account is exactly the time step corresponding to
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FIG. 3. Resolution-dependent optimal perforated Markov mod-
els of an AR�7� with coefficients a0=a4=a6=0.3 under changed
length N of data sets. The results are obtained from a full loop over
all possible conditionings restricted only by the maximal number of
10 past time steps.
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FIG. 4. �Color online� Conditional entropies of the Mackey-
Glass dynamics with effective delay K=6.
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the effective delay of the dynamics. Index 0 is always part of
J���� because of the xn term in Eq. �36�.

Concluding, the very long range of the memory of the
Mackey-Glass system requires strong downsampling, from

which the complication arises that the resulting effective
memory underlies some smearing effects. Nevertheless,
since it was detected by the criterion, also this example has
to be interpreted as a successful test of the criterion.

Without going into detail here it should be mentioned that
in �12� various further variants for the selection of condition-
ing components as, e.g., a restricted cardinality of condition-
ing components or a priori omissions of indices were sug-
gested in order to reach the further past for detection of
potential memory.

VIII. CONSEQUENCES FOR PREDICTION

A. Point prediction and prediction error

General point prediction one time step into the future
reads as

x̂n+1 = F�xn� �39�

with a suitably chosen function F. The average quality of
predictions can be evaluated by an accuracy measure. We
choose the root-mean-squared �rms� prediction error given
by

ê = ��xn+1 − x̂n+1�2. �40�

As a consequence the mean value of the estimated distribu-
tion of Xn+1, the random variable corresponding to the mea-
sured value xn+1 is the optimal F. This distribution is esti-
mated by a selected set of xk+1, which are obtained from
those xk, which are in some sense suitably related to xn. A
decision, what a “suitable relation” should be, is not imme-
diately given by Eq. �40� and has to be made additionally.
Another possible accuracy measure could be the mean abso-
lute error, which would lead to an optimal F given by the
median. In general the prediction error depends on the lead
time �time into the future�, the data set length N, the noise in
the dynamical modeling F, and possibly on the resolution �.

B. Locally constant prediction with generalized
delay vectors

A special point prediction used in the following, which is
locally constant �cmp. the zeroth order predictor in �16�� and
perforated, reads as

x̂n+1��� =
	k�n

��� − �PJxn − PJxk�� · xk+1

	k�n
��� − �PJxn − PJxk��

=
1

��PJxk�n � U��,PJxn��� 	
PJxk�n�U��,PJxn�

xk+1,

�41�

where PJ is the projection operator onto the perforation
structure given by the set J already encountered in Sec. V
and U�� , PJxn� is the �-neighborhood of the vector PJxn in-
troduced in Eq. �10�. Apart from the perforatedness the
method is also called the Lorenz method of analogs: the
predicted future value is the mean of the known futures of
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FIG. 5. Resolution-dependent optimal perforated Markov mod-
els for the Mackey-Glass dynamics with different effective delays
K.
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similar states from the past. We will study explicitly the res-
olution dependence of the corresponding prediction error:

ê��� = �
„xn+1 − x̂n+1���…2. �42�

C. Example: Prediction from optimal perforated Markov
model for generalized Hénon dynamics

After having found the optimal resolution-dependent per-
forated Markov models from criterion �29� with the suitable
balance b, the corresponding component structures given by
J���� can be used for the calculation of point predictions
according to Eq. �41� and rms prediction errors according to
Eq. �42�. In the following the prediction error corresponding
to the optimal perforated Markov model, i.e., conditioning in
the sense of the optimal GDV, is compared to the minimum
of the prediction error of usual standard embeddings �1-5
delay vector �DV� components in presence and past; delay of
1–5 time steps�. As an example we treat the generalized
Hénon map,

yn+1 = a − yn−K+2
2 − cyn−K+1, �43�

a simple chaotic system introduced by Baier and Klein in
�17�. In general it contains longer memory than the usual
Hénon map

xn+1 = 1 − �xn
2 + 
xn−1, �44�

which is obtained from the generalized Hénon map in
the case of K=2 from the transformation y=ax, a=�, and
c=−
. The nonlinearity still arises from one single quadratic
term. The coefficients are chosen to be a=1.76 and c=0.1.
From comparison of the coefficients 1 vs c of the noncon-
stant terms of Eq. �43� it is possible to see in this case that
the linear term is suppressed in importance. From the choice
of the delay K=4 the structure of dependence can be indi-
cated by the set J0= �−3,−2�.

In Fig. 6 results for prediction �lower panel� from optimal
perforated Markov models �upper panel� are shown for the
generalized Hénon map for a balance factor of b=4 in Eq.
�29� which favors models with fewer components. It is seen
that the prediction error from the optimal perforated Markov
model is smaller than the minimum of prediction errors from
standard embeddings. This serves as a justification for the
introduction of perforatedness into the framework of Markov
approximations and for practical applicability of criterion
�29� for prediction purposes.

IX. CONCLUSION

For dynamics with potentially infinite memory, e.g., from
projection of stochastic dynamics into one measurement
quantity, criteria for optimal Markov approximations were
introduced. It was realized that essentially two types of errors
are relevant: first, a modeling error, quantified by the ignored
memory, and second, a statistical error of uncertainty reduc-
tion, quantified by the statistical error of the redundancy.

Usually Markov approximations are accompanied by
losses of information, which become less the more memory

is taken into account. Exactly the opposite holds for the sta-
tistical error of the uncertainty reduction because a larger
Markov order causes stronger restrictions in neighbor search
algorithms responsible for larger statistical errors in the esti-
mation of entropies and hence also of the redundancy. The
rather simple idea behind the criterion for usual Markov ap-
proximations is that it makes no sense to further reduce ig-
nored memory if the statistical error of the uncertainty reduc-
tion is already larger. Here the monotony properties of the
involved quantities were used in the mathematical formula-
tion of the criterion.

Even though this criterion was successfully applicable on
simple dynamics, problems arise from the huge statistical
errors for high cardinality of conditioning sets for dynamics
with long-range and inhomogeneously distributed memory.
Hence, a generalization to a perforated case, where omis-
sions of time steps in the past have to be allowed, was
needed. A generalized notational framework of information
theory in time series analysis was developed, which in prin-
ciple allows for a unified description of variable future time
steps ahead, jointly conditioned joint uncertainties, regular
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FIG. 6. �Color online� Upper panel: optimal resolution-
dependent perforated Markov model J���� for a data set of
N=10000 data points of the generalized Hénon with delay K=4.
Lower panel: resolution-dependent prediction error êopt GDV���
from J����, minimal prediction error êopt std DV��� of standard delay
vectors and relative rank of the prediction error from J���� in the
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perforation �downsampling�, and arbitrary irregular perfora-
tion with the tools of information theory. On this basis a
criterion for optimal perforated Markov approximations was
introduced, in which the selection algorithm for relevant con-
ditioning components took into account the nonexistence of
monotony properties of the modeling error in the cardinality
of the conditioning set.

The perforated criterion was successfully tested for linear
stochastic �AR� and nonlinear deterministic �Mackey-Glass�
dynamics. It was found that the optimal perforated Markov
model is resolution dependent. For certain intervals of inter-
mediate resolution the memory structure of the dynamical
law was retrieved by the suggested criterion indicating the
functional capability to yield suitable Markov approxima-
tions. For small resolutions coarse graining effects are
clearly seen and for fine resolutions from statistical reasons
fewer conditioning components are selected. The importance
of the dependence on the length of the underlying data set
was pointed out.

Since the methods are based exclusively on quantities
from information theory and statistical errors in their estima-
tion, in particular the perforated variant is applicable to a
broad class of dynamics. This is especially useful for an
analysis of data sets, where it is not allowed to assume nice
properties such as, e.g., linearity. The explicit calculation of
the statistical error of entropies made accessible those criteria
based only on entropies and its derived quantities. In spite of
the success of the criterion on the example dynamics, it has
to be mentioned that nonstationarity and intermittency still
remain as problems.

For locally constant and perforated point prediction an
explicitly resolution-dependent root-mean-squared prediction
error was introduced. For certain resolutions an improvement
of the rms prediction error from the resolution-dependent
optimal perforated Markov model in comparison with the
rms prediction error from standard embeddings was seen in
the example of the generalized Hénon map.
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