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Recently, a new mechanism leading to purely quantum directed transport in the asymmetric multibaker map
has been presented. Here, we show a comprehensive characterization of the finite asymptotic current behavior
with respect to the 4 value, the shape of the initial conditions, and the features of the spectrum. We have
considered different degrees of asymmetry in these studies and we have also analyzed the classical and
quantum phase-space distributions for short times in order to understand the mechanisms behind the generation

of the directed current.
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I. INTRODUCTION

There is much interest in the study of directed transport in
unbiased periodic systems. This phenomenon, also referred
to as the ratchet effect, was initially considered by Feynman
[1]. It can be classically ascribed to breaking all spatiotem-
poral symmetries leading to momentum inversion [2]. This
allows a net current generation. For example, in non-
Hamiltonian systems chaotic attractors need to be asymmet-
ric [3] whereas in Hamiltonian ones (with mixed phase
spaces) a chaotic layer should have this property [4]. Many
times the same principle translates almost directly into the
quantum domain, but in other cases more complex behaviors
arise [5].

Since the first studies the relevance of this subject has
been steadily growing and several fundamental questions
about the origin and properties of the net current have been
answered [6]. However, the considerable amount of possible
applications has opened a very broad field of research. In
fact, a great and increasing number of experiments imple-
ment different kinds of ratchets. In biology, molecular motor
principles can be understood on these grounds [7]. Also, they
can be useful in the development of nanodevices such as
rectifiers, pumps, particle separators, molecular switches, and
transistors [8]. Cold atoms and Bose-Einstein condensates
have emerged as a very active area of application of these
ideas, and the first experiments have initiated an activity that
continues until present [9]. These efforts have led to the very
recent success in transporting Bose-Einstein condensates for
particular initial conditions by relying on purely quantum
ratchet accelerator mechanisms [10]. Such experiments es-
sentially involve the atom optics kicked rotor [11] at quan-
tum resonance. In this system, the current has no classical
analog and can be generated by just breaking the spatial
symmetry [12]. Although the experimental realization of
some proposed models is still needed and the theoretical ex-
planations are still not complete, ongoing studies show sev-
eral new proposals [13]. These include ways of coherently
controlling the ballistic energy growth of the atoms [14].

In order to investigate the mechanisms leading to net
transport generation in quantum systems we have recently
introduced an asymmetric version of the quantum multibaker
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map that shows a finite asymptotic current with no classical
counterpart [15]. This is a paradigmatic model in classical
and quantum chaos, but also in statistical mechanics [16,17].
In this work we study the properties of the directed current in
depth. We provide a characterization of its behavior as a
function of the & value, the initial conditions, and the spec-
trum features. All these have been considered for different
values of the main parameter which determines the degree of
spatial asymmetry. With these results at hand we proceeded
to study the classical and quantum versions of the phase-
space distributions for short times. This will contribute to the
knowledge of the mechanism by which the current appears in
the quantum version. We finally make a comparison to the
behavior of the system for longer evolutions of the order of
the Heisenberg time.

The organization of the paper is as follows. In Sec. II we
present our model in detail and the methods we have used to
study it. We have chosen to divide this section in four parts.
First, we formulate the classical and quantum propagators,
then we explain some properties of the quantum version that
are useful for the time evolution. Also, we present an
asymptotic expression for the coarse-grained current, which
is the main quantity under investigation. Finally the symme-
try properties are explained. In Sec. III we analyze the cur-
rent behavior as a function of A, the initial conditions, and
the spectrum shape. In Sec. IV we show the connection be-
tween the symmetries and the current generation by focusing
on the classical and quantum phase-space distributions for
short times. We determine how the degree of asymmetry in-
fluences the features of the system studied in the previous
section. Finally, Sec. V is dedicated to the conclusions.

II. MODEL AND METHODS
A. Classical and quantum propagators

The classical multibaker map [16] is defined in a phase
space consisting of a lattice of unit square cells in position
direction and confined in momentum (p €[0,1)). A phase-
space point can be completely defined by the number x(x
e 7) of the cell to which it belongs and the position and
momentum inside of it (¢,p €[0,1)). The action of the map
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FIG. 1. Geometric action of the asymmetric multibaker map.
One iteration of the map corresponds to a composition of an inter-
nal evolution (given by the asymmetric baker map) and a translation
among adjacent cells (which depends on the position inside of
them).

is a composition of an internal evolution inside of each cell
(the baker map), followed by a translation along the lattice
given by

M,=T-°B;. (1)

In this expression, B, is the asymmetric baker’s map in the
unit square phase-space cell x. This is the area preserving

map
(107
—q.5p
s
[(1-97g=-5),(1=s)p+s] s=qg<1.
(2)
It can be clearly seen that the degree of asymmetry is con-
trolled by the parameter s and that there are two different
Lyapunov exponents A;=-In(s), \,=—In(1-s). On the other

hand T corresponds to an unbiased translation along the lat-
tice, defined by

(x+1,q.,p) 0=g<172
|

0= qg<s
By(q.p) =

(x=1,q,p) 12=¢g<1.

This translation can only occur among adjacent cells and
depends on the position inside of them. The geometric action
of the asymmetric multibaker map (AMBM) can be seen in
Fig. 1.

The asymmetric quantum multibaker map (AQMBM) is
defined in a Hilbert space H which is the direct product of
the lattice space (H;) and the individual cell space (Hp),
H=H;®Hg [17,18]. In this work we will consider even
D-dimensional internal subspaces Hjy on a torus (where h
=1/D) and infinite-dimensional lattice subspaces. The trans-
lation over the lattice will be similar to the classical one. The
dependence on the position inside of each cell is now given

by the unbiased projectors I3R and 13L. These operators per-
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form the projection on the right and left halves of the posi-
tion basis inside of each cell, satisfying 13R+I3L=f and

Tr(f’R)=Tr(I3L)=D/ 2. Therefore, the AQMBM can be writ-
ten as

M,=T°B,=(U®Pr+U'®P,)(1®B,), (4)

where U is a unitary translation operator acting on the lattice
subspace Ulx)=|x+1) (with {|x),x=...,-2,-1,0,1,2,...}
taken as the position basis set of the lattice). B is

. [Go O
B,=G), ) ’ )
0 GD2
(éD)kl — 122l 12)(+112)D ©)

This is the asymmetric quantum baker’s map with antiperi-
odic boundary conditions, i.e., the corresponding generaliza-
tion of the quantum symmetric one [19,20]. In this case only
the values of s such that D;=sD and D,=D- D, are positive
integer numbers are allowed.

B. Time evolution

The time evolution of an initial state can be computed
straightforwardly in both classical and quantum cases in
terms of the propagators given in Egs. (1) and (4), respec-
tively. The behavior of an initially localized distribution of
particles is a common interest in directed transport studies.
For that reason, we will focus on initial states which are
located in a single site of the lattice. In the classical case the
initial state will be a uniform probability distribution with the
shape of a momentum band of width dp and extending com-
pletely along the g coordinate of the initial cell.

Correspondingly, in the quantum case we will always start
with separable initial states of the form pO:p6® pg . In this
case, pé is the initial state in the lattice space, given by a
single position basis element. On the other hand, pg is a
mixed superposition of Ap momentum eigenstates of the in-
dividual cell subspace. This kind of initial state is the quan-
tum analog of the previously described classical one, there-
fore we will take Ap=Ddp to be able to compare them.

The quantum state at time ¢, p(1), is the result of the dis-
crete time propagation of the initial state given by

p() = (M) po(M)". (7)

This expression can be simplified noting that in Ms the trans-

lation operator U becomes diagonal in the momentum basis
of the lattice subspace {|k)},

Ulky = k), (8)
where by the previous definition
=2 e ©)

With this property the action of the AQMBM of Eq. (4) can
be written more easily on a given state of our system. If we
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define lA?S,k as an operator acting on individual cell states |¥')
and being parametrized by the lattice momentum value %, M s

can be rewritten as

M (k) ® W) = [k) @ By [ W), (10)

where by definition

A e 0.
Bs,k: 0 ek B,. (11)

Then, the quantum asymptotic time evolution turns into the
study of the eigenvalues and eigenvectors of this last opera-
tor, as we will see in the following.

C. Coarse-grained current

For a given ensemble of classical initial conditions, we
define p,,,(x,1) as the probability of the particle to be in the
x lattice cell at time ¢. In this way we can compute the mean
value of the coarse-grained position as (x)=2 xp (X, 1)
(which is the average value of the cell position x). Then, the
coarse-grained current is calculated as the difference be-
tween this mean value at time 7 and the same value taken at
an earlier time t—1. The current J,,={x(¢))—{(x(t=1)) can
be derived from the first moment of the classical distribution,
but higher moments can be also calculated in this way, i.e.,
disregarding the fluctuations that take place inside each cell.

For the quantum evaluation we first consider the probabil-
ity distribution of the particle to be in the x lattice cell after
t iterations of the map. This is given by

px0) = T p() ()| @ D). (12)

In particular, for an initial state localized in one site (i.e., for
which we take pj=|0)(0|) and in the lattice momentum rep-
resentation, the previous expression becomes

dkdk’ . / A~ .
p(x,t):ff—ze_‘x(k_k )Tr[(Bs’k/)’pg(B;’k)’]. (13)
(2m)

The coarse-grained position is obtained by tracing out each
cell’s internal degrees of freedom (g). The moments of this
quantity can now be easily calculated using the probability
distribution p(x,1),

™y, = 2 x"p(x,1). (14)

Finally, in complete analogy to the classical definition we
will take the quantum coarse-grained current to be

‘I(t):<x>t_<x>t—l' (15)

Following closely Brun er al. [21], we insert the identity

Z_EX o ix(k= -k') _ imsm (k=K' (16)

X

into Eq. (14) and integrating by parts we obtain

" d"
"), = ;Tf dk Tr{pg vk) dk’"(BY W' ] (17)

Therefore the first moment can be written as
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(X), = f dk Tr[ (BTk) <_(Ba %) )] (18)

dB, A p VB /B
dk’k = (—ie™*Py+ie"P)B;=—iZBy; and

where

Z=Pp-Py. (19)

Substituting this into Eq. (18), the coarse-grained position
mean value becomes

(&), = E —Tr[po BT VZ(B, )] (20)

A similar procedure could be followed to obtain higher mo-
ments.
The time dependence in Eq. (20) can be made explicit by

considering the spectral properties of the map és,k,

By i (k) = expli 6(k)]| /(K)). (1)
In this basis the initial cell distribution is
po = 2 an (k)| k)X ¢y (k)] (22)

i

Substituting this into Eq. (20) for the first moment we obtain

()= Ea”r(k)<¢l(k)|z|¢l,(k >2 o 0-60)1)

T
(23)

No approximations have been made in this derivation. If
the spectrum has no degeneracies, as will be the case for
chaotic maps, most of the terms in Eq. (23) will be highly
oscillatory; hence, over time, they will average to zero. Only
the diagonal terms in the above sum are nonoscillatory, al-
lowing us to write

(x),=J.t +oscillatory terms, (24)
where
o= J j—kE ay(k)Zy(k), (25)
T
Zy(k) = (k)| Z] s (K)). (26)

In these expressions, J.,, is the asymptotic value of the
coarse-grained current defined in Eq. (15). The quantity
ay(k) corresponds to the projection of the initial state in the
basis of eigenstates as previously stated and Z;(k) is a kind
of right-left balance of each eigenstate.

This completes the description of the methods used to
study our system. In the following section we will explain
some symmetry considerations that are relevant for the di-
rected transport mechanism.
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TABLE I. Presence (y) or absence (n) of symmetries (S; and Sy;)
and net classical (/) and quantum (J) currents for different val-
ues of s.

SI SII Jrlass J
s=0.5 y y
s#0.5 n y

D. Symmetry properties

By looking at Fig. 1 the first thing that can be seen is that
though the baker map we consider is asymmetric, the trans-
port term is unbiased. The transport is only due to this trans-
lation, which maps the same volume of phase space to the
right and left. In the quantum version this also means that
there is no tunneling effect from cell to cell. It has been
shown that the presence of the net classical transport is origi-
nated from breaking all spatiotemporal symmetries that leave
the system unchanged but change the sign of the (coarse-
grained) current [2]. There are two transformations that ful-
fill these conditions. Let us consider first

Spg—1-q; p—1-p

acting on each cell and leaving the transport term 7 un-
changed. Under the action of S, the ¢ and p coordinates are
reflected at their midpoints of each cell and the map B trans-
forms to B;_, (we highlight that this is valid in the classical
and in the quantum cases). This also changes the sign of the
coarse-grained current, since a given trajectory that is trans-
ported to the left (right) at each iteration is now transported
to the right (left). For s=1/2, i.e., the symmetrical Baker
map, this transformation is a symmetry of the system and
therefore there is no classical current. Moreover, there is no
quantum current either, indicating that from the directed
transport point of view, the S; transformation has the same
properties in the quantum and in the classical case. For other
values of s this symmetry is broken, but this is not enough to
allow the presence of a net current.
In fact, the other transformation is

T—T",

t——1,

Siq — p;

where the g and p parts act on each cell. This is the time-
reversal symmetry, present for any value of s. This transfor-
mation leaves the system unchanged, but reverses all trajec-
tories and consequently changes the sign of the coarse-
grained current. This forbids any classical current for
unbiased initial conditions. In previous studies we have
found transient effects for biased conditions but they disap-
pear very rapidly due to the exponential mixing property of
the Baker map. The §}; transformation is also a symmetry of
the quantum system. However, it turns out from our investi-
gations that it does not forbid the presence of a net quantum
current. Details of the quantum behavior will be analyzed in
the following sections. We have summarized all these prop-
erties in Table L.

Finally we will refer to the symmetries of the quantum
coarse-grained current. J is an odd function of s around s
=0.5, i.e., (Jpy=—(J;_y). In fact, if we apply the symmetry

pP—q;
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FIG. 2. (Color online) Asymptotic coarse-grained current J,, for
the AQMBM as a function of s=D/D for all possible values of
D{=D/2. The asymptotic current is represented by a solid line for
D=300 and with dots for lower values. The initial state is an equal
probability mixture of Ap=D/10 central momentum eigenstates of
the cell.

transformation S; to Eq. (7) and then trace out the internal
degrees of freedom inside of each cell we obtain that
pi(x,t)=p;_s(=x,1) for all 7. This result is valid for any initial
pOB symmetrical under S;.

III. QUANTUM CURRENT BEHAVIOR

In this section we analyze the most important aspects of
the quantum directed current, providing a comprehensive un-
derstanding of its behavior. In the first place, we study the
transition toward the classical limit that allows us to under-
stand how the net transport vanishes. For that purpose we
have numerically computed the asymptotic value of the
coarse-grained quantum current J,, by means of Eq. (25).
This has been done for all possible values of the quantum
asymmetry parameter s=D;/D, taking only s =0.5 due to the
symmetry property explained in Sec. IL. In order to have the
same classical limit for all A=1/D values, we have taken
equal probability mixtures of an (integer) number Ap
=D/ 10 of central momentum eigenstates (i.e., a mixed state)
as initial conditions. The results can be seen in Fig. 2, where
the solid line corresponds to a dimension D=300 for the
Hilbert space of the cell and the dots correspond to all pos-
sible values of D which are divisible by 10 between D=20
and D=290.

We can see that the currents corresponding to D;=D—-1
and D;=D-2 are clearly different from the general behavior.
We will come back to this particular feature later on when
we analyze the spectrum. However, we note that there is a
global convergence to the solid line, although the depen-
dence on s is rather nontrivial. In fact, the current behavior
(with the exception of the last points for D;=D-1 and D,
=D-2) can be divided into two parts. The first one corre-
sponds to s <0.7, where J,, is already small for the maximum
D we have taken in our calculations. In this respect, the
current seems to vanish much faster than in the s=0.7 do-
main, in which higher values can be observed. It seems that
the quantum effects are enhanced if one of the two parts in
which the phase space is divided is clearly smaller than the
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FIG. 3. (Color online) Asymptotic coarse-grained current J,, for
the AQMBM as a function of s=D,/D and for a fixed D=100. The
initial states and values of s are taken as in Fig. 2, but for Ap equal
to 2, 10, 30, 60, 90, and 100.

other. We have found a similar effect in our studies of the
current dependence on the initial conditions, therefore we
pay special attention to these cases in the last part of this
section.

We have also focused on the behavior of the asymptotic
coarse-grained current as a function of the width in p of the
initial mixed superposition of momentum eigenstates. The
values of J,, for a fixed dimension D=100, different Ap and
as a function of s, can be seen in Fig. 3. The current de-
creases with the width of the momentum band in the region
of $§=0.7. Nevertheless, for s=0.7 we can see that by en-
larging the width of the initial distribution up to approxi-
mately a 60% of the maximum phase-space size in momen-
tum, the fluctuations become smoother. However, it is
remarkable that the current nearly vanishes in the same re-
gion where the convergence to the classical behavior is
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faster. For greater Ap values the current decreases strongly,
and for the uniform distribution there is no current.

Finally, in view of the relevance that the operator Bgs!k has
in the properties of J.,, we have studied some features of its
spectrum for different values of s. We display the eigen-
phases @ (in units of 7r) as a function of k in Fig. 4 for D
=30. The spectrum for the case D;=15, for which the sym-
metry §; is present, is invariant under reflections at k=.

This is due to the fact that és,k is invariant under k—2m—k
up to an even number of row permutations. The periodicity
in k also makes the spectrum symmetric from k=0. This
symmetry is absent for all the other values of s. We have
considered the less asymmetric case D;=16 and an interme-
diate one with D;=26, where this already becomes evident.
Finally, for D;=29 we can see a very regular spectrum, simi-
lar to those of integrable systems, that nevertheless shows
level repulsion. In all cases, there is a symmetry given by the

transformation k— k+1, 60— 0+ since Bj,,=-B,;, and
therefore any eigenstate of éx,k+w(|¢1(k+ 7))) will be also an

eigenstates of Bgs’k with eigenvalue 6,=0;, .+ 7.
We have analyzed the cumulative level spacing distribu-
tion of the AQMBM averaged in k,

0
I(6)=fdk/(27r)f do'p(e'), (27)
0

where P(6) corresponds to the level spacing distribution. The
results are shown in Fig. 5. The phase 6 has been normalized
by the mean level spacing 27/ D. It becomes clear that the
behavior of the case of the last panel in Fig. 4 (D;=29) is
completely different from the rest. In fact, it is very close to
the Poisson distribution, which corresponds to integrable or
regular systems. Level repulsion is also evident since for
small € values, the curve corresponding to the AQMBM lev-

lwf\/ T

W
—
OSF— Y = "

e
/\/’—\
m m FIG. 4. (Color online) Eigen-
0.5 . w phases 6 (in units of ) of the
: W AQMBM as a function of k for
@ W D=30. On the top panels we can
-1 1 —— g ——— find them for D;=15 (left) and

D;=16 (right) and on the bottom

ones for D;=26 (left) and D;=29
(right). For D;=15=D/2, the
spectrum has a reflection symme-
try at k=7 and k=0 (both indi-
cated with red dashed lines).
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FIG. 5. (Color online) Cumulative level spacing I(6) of the
AQMBM averaged in k (6 is in units of the mean level spacing
27/ D). This is shown for the Poisson and Wigner-Dyson distribu-
tions and for the AQMBMs displayed on Fig. 4 (D=30; D,;=15,
D,=16, D;=26, and D;=29). See inset for references.

els shows its main difference compared to the Poisson distri-
bution. The other cases are very close to the Wigner—Dyson
shape (CUE), corresponding to the typical behavior of cha-
otic systems. We can conclude that the quasiregular behavior
of the most asymmetric cases, i.e., the one we show for D,
=29 and similarly the one for D;=28 is highly anomalous.
This is in close relation to the exceptional current values
found for D;=D-1 and D;=D-2 in Fig. 2.

IV. CURRENT GENERATION

In order to understand the origin of the directed current,
we have analyzed the classical and quantum phase-space dis-
tributions for given initial conditions as a function of time.
We have studied them for short times and a Hilbert-space
dimension D = 80, which is of the order of the Hilbert-space
dimensions of the cells that we have used in the calculations
of Sec. III. The choice of these evolution times and dimen-
sions makes the phase-space representations clearer and il-
lustrates how the differences between the quantum-classical
distributions arise. Then, although the asymptotic limit J,, is
still far from being reached, the mechanisms that give rise to
the current can already be seen.

An initial distribution corresponding to a momentum cen-
tered strip of width dp=0.1 and its quantum analogs have
been evolved up to 3 time steps of the map. Results for s
=0.5 are displayed in Fig. 6, while the ones for s=0.75 are
shown in Fig. 7. In the top panels of both figures we can see
the classical distribution corresponding to the cells at lattice
positions x=-3,-1,1,3, given that for x=-2,0,2 they are
empty (this is a result of the translation operator and the
initial conditions choice). In the middle top (D=80) and bot-
tom (D=20) panels we show the corresponding Husimi dis-
tributions, taking quantum initial conditions in the same way
as in Sec. III. Finally, in the bottom panels we can find the
probability  distribution  difference given by p(x,?)
_pclass(x > t)-

By comparing both figures we can immediately notice
that the classical distribution p,(x,7) for s=0.5 keeps its
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FIG. 6. (Color online) In the top panel we show the phase space
of the classical multibaker map with s=0.5 for a momentum cen-
tered strip of width dp=0.1 evolved 3 times. Only the sites with
x=-3,-1,1,3 are shown. In the middle top and bottom panels the
Husimi function is shown for the quantum version of the map
(D=80 and D=20, respectively). Finally, in the bottom panel we
show the difference p(x,7) —pejuss(X,1) (see main text for details).

initial symmetry. In both quantum cases the distributions pre-
serve also this symmetry, but for s=0.75 the situation
changes. Here the classical probability is not symmetrical,
but it is still balanced at the origin (a given distribution is
balanced if (x)=0). This asymmetry is also present in the
quantum case, but the balance of the distribution is broken
due to interference effects. In fact, if we look at the lower
panel of Fig. 6 we can see that the quantum and classical
distributions have almost equal weights in each cell (apart
from quantum fluctuations). But the lower panel of Fig. 7
clearly shows that for the D=20 case, the imbalance in the
p(x,t) distribution is already present. For D=80 we still have
a close quantum-classical correspondence for this short evo-
lution time. This shows the fundamental role that quantum
effects play in the net current appearance. It is clear that at
times of the order of the Ehrenfest time (s ~1log, D) the im-
balance starts to build up. This imbalance evolves in time
shaping the p(x,) distribution. At the order of the Heisen-
berg time (which in this case corresponds to t~D) the
asymptotic current is reached. We show the shape of
Deiass(X,1) and p(x,1) for the cases D=20 and D=80 in Fig.
8, where we have taken s=0.75 and r=80. This illustrates the
behavior of the probability distribution at longer times.

In order to clarify this mechanism we will make some
additional considerations. In the first place, we would like to
underline that for s=0.5 our system has both a spatial and a
temporal symmetry (see Sec. II D and Table I). The spatial
symmetry S; enforces a symmetrical behavior of the classical
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FIG. 7. (Color online) In the top panel we show the phase space
of the classical multibaker map with s=0.75 for a momentum cen-
tered strip of width dp=0.1 evolved 3 times. Only the sites with
x=-3,-1,1,3 are shown. In the middle top and bottom panels the
Husimi function is shown for the quantum version of the map (D
=80 and D=20, respectively). Finally, in the bottom panel we show
the difference p(x,t)—p.iass(x,1) (see main text for details).

and quantum probability distributions. This is due to the fact
that a distribution inside of a given cell located at a positive
x has a symmetrical partner located at the corresponding
negative value —x. In the quantum case, interference and dif-
fraction effects inside of each cell do not affect the symmetry
of p(x,r). On the other hand, for any other value of s, S, is
not a symmetry of the system anymore. This determines dif-
ferences among distributions inside pairs of cells related by
x— —x, still, the S;; symmetry enforces the vanishing of the
classical current (for details see [2]) and equivalently the
balance of p,.(x,f) (as mentioned, transient details could
depend on the type of initial conditions). However quantum-
mechanical effects become relevant in this generic situation.
In fact there is no spatial symmetry condition imposing a
relation among quantum distributions at different values of x
and imbalances arise as a natural consequence.

In summary, the quantum-mechanical effects, such as dif-
fraction and interference, are responsible for the nascent cur-
rent in the asymmetrical case (s #0.5). The interference of
the different paths of the lattice affects the quantum distribu-
tion in the same way as in the quantum walks [22]. On the
other hand, the diffraction can also be seen in the impossi-
bility of the quantum evolution to follow the exponential
squeezing of the classical distributions (see Figs. 6 and 7).
We should note that the asymptotic behavior (magnitude and
direction of the current for example) is difficult to predict
from this short-time analysis. Since there are no specific
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FIG. 8. (Color online) Classical p,,(x,) (solid black line) and
quantum p(x,7) (dot-dashed green line for D=80 and dashed red
line for D=20) distributions, taking s=0.75 and #=80.

features of our system involved in this explanation, we ex-
pect these phenomena to be found in other kinds of systems.

V. CONCLUSIONS

In this work we have studied a recently introduced model
for purely quantum directed transport, which shows a finite
asymptotic current. We have analyzed the way in which the
net transport appears by studying the classical and quantum
phase-space distributions for short times, showing the results
for r=3. In the symmetric case s=0.5, the classical and quan-
tum distributions retain the symmetry around x=0 and there-
fore both currents are forbidden. For the other s choices both
distributions are asymmetric. The classical one is always bal-
anced ({(x)=0), while the quantum one develops imbalances.
In fact, in this generic situation there is no spatial symmetry
of the system enforcing symmetrical phase-space distribu-
tions. The time-reversal symmetry S;; holds in both the clas-
sical and the quantum systems. However, this symmetry does
not enforce a balanced phase-space distribution in the quan-
tum case like it does in the classical one. In the quantum
system, interference and diffraction effects within cells de-
stroy the balance and induce a net directed current.

We have also studied several features of this phenomenon,
in particular the dependence on the asymmetry parameter
and the value of 4. We noticed a clear marked dependence of
the J,, behavior on the values of s. In fact we observe a faster
vanishing of the transport for s <0.7 both as #— 0 and as the
width of the initial conditions dp — 1. We have found that for
higher values of s the spectrum behavior approaches that of
an integrable system (nevertheless with notable discrepan-
cies, especially for small level spacings since no degenera-
cies are present).

We would like to mention that the mechanisms behind the
current generation in our system are different from those
previously studied in quantum ratchet accelerators [10]. In
fact, kicked rotor based ratchets require a quantum resonance
condition to be present. But differences are not limited to
this. There is also a ballistic energy growth that is absent in
our case. In order to control its magnitude it has been pro-
posed to engineer the amplitude and relative phase of an
initial coherent superposition of momentum states [14].
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