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We analyze a stochastic model for tumor cell growth with both multiplicative and additive colored noises as
well as nonzero cross correlations in between. Whereas the death rate within the logistic model is altered by a
deterministic term characterizing immunization, the birth rate is assumed to be stochastically changed due to
biological motivated growth processes leading to a multiplicative internal noise. Moreover, the system is
subjected to an external additive noise which mimics the influence of the environment of the tumor. The
stationary probability distribution Ps is derived depending on the finite correlation time, the immunization rate,
and the strength of the cross correlation. Ps offers a maximum which becomes more pronounced for increasing
immunization rate. The mean-first-passage time is also calculated in order to find out under which conditions
the tumor can suffer extinction. Its characteristics are again controlled by the degree of immunization and the
strength of the cross correlation. The behavior observed can be interpreted in terms of a biological model of
tumor evolution.
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I. INTRODUCTION

A fundamental aspect of all biological systems is the un-
derstanding of emergence of cooperative behavior. The com-
petitive interaction among different growth and death pro-
cesses and the inclusion of external mechanism are widely
believed to influence the global properties of such systems
�1�. The analysis of tumor growth is one of the examples
where those features had been attracted attention over several
decades. Mathematical modeling of the growth of a certain
tumor cell population is based on a heuristic approach where
the logistic growth and the Gompertz law are the most popu-
lar deterministic models �2�. Otherwise, a population of pro-
liferating cells is a stochastic dynamical system far from
equilibrium �3�. Proteins and other molecules are produced
and degraded permanently. Cells grow, divide, and inherit
their properties simultaneously to the next generation. To
gain some more insight into the generic behavior of phenom-
ena such as tumor cell growth, it is desirable to take into
account both internal and external stochastic noises as well
as spatial correlations. Therefore, a more refined model was
presented in �4�; however, we argue that the solutions for the
stationary probability distribution �SPD� and the mean-first-
passage time �MFPT� are not calculated correctly. The de-
tails and the corrections are given in our paper in Secs. IV
and V. A similar model had been considered likewise in �5�.
However, the stationary distribution function presented in
that paper is also not correct as pointed out in �6� and replied
in �7� �see also our results discussed below�. The role of pure
multiplicative noise may induce stochastic resonance, which
appears in an antitumor system �8�. In that work the deter-
ministic forces are modified as it will be also discussed in the
present paper. The mean-first-passage time of a tumor cell
growth is altered by cross correlations of the noise �compare
�9�, too�. Essential for tumor modeling is the inclusion of

therapy elements as proposed in �10�. In our model we ana-
lyze a special immunization term which enhances the death
rate of the tumor cells. The influence of spatiotemporal trig-
gering infiltrating tumor growth is studied in �11�.

Much effort had been devoted to model the dynamics of
competing population through a nonlinear set of stochastic
rate equations �12–14�. Prey-predator systems are likewise
related to that kind of models, where recently also fluctua-
tions and correlations have been discussed �15,16� as well as
instabilities with respect to spatial distributions �17�.

Generally, our approach can be grouped into the perma-
nent interest in statistical modeling of growth models, where
evolution equations of Langevin- or Fokker-Planck-type play
an important role �18�. In particular, the focus is concentrated
on correlated colored noises �19� as multiplicative �20� and
additive noises �21�. A similar approach is also applied for
the Bernoulli-Malthus-Verhulst model �22�. In the context of
population dynamics different aspects have been studied
such as time delay effects �23�, a general classification
scheme for phenomenological universality in growth prob-
lems �24�, extinction in birth-death systems �25�, the com-
plex population dynamics as competition between multiple-
time-scale phenomena �26� and the dissipative branching in
population dynamics �27�.

The goal of our paper is inspired with regard to a modi-
fication of models in such a manner that both immunization
and correlated noise will be included. Especially, we want to
demonstrate that a finite correlation time and a nonzero im-
munization rate have a significant impact on the different
steady states realized within the model. Additionally we ana-
lyze the interplay between an internal noise leading to a sto-
chastic birth rate and an external noise. Furthermore, the
mean-first-passage time is calculated which enables us to
analyze under which conditions, depending on the correla-
tion time and the immunization rate, the tumor population
can suffer extinction.

Our paper is organized as follows. In Sec. II we offer a
more biological motivation for our model by presenting ex-
perimental data concerning tumor growth. Especially, we
discuss the relation of some experimental observations in
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terms of the deterministic logistic growth equation. Further-
more, we present some brief information about the interac-
tion between tumor cells and the immune system from the
perspective of immunology. Then we introduce an immuni-
zation term, the influence of which will be analyzed in the
paper. The form of such an additional term is motivated. It
leads to a significantly modified death rate. Section III is
dedicated to the mathematical formulation of the tumor
model in terms of a Langevin equation with different multi-
plicative and additive noises and their cross-correlation func-
tions. The meaning of those quantities is considered in detail.
Based on the corresponding Fokker-Planck equation �FPE�
the SPD of the tumor cell population is studied in Sec. IV.
The MFPT and its relevance are analyzed in Sec. V. In ad-
dition, we discuss a possible relation of our results to real
tumor growth. The paper is finished by the conclusion in Sec.
VI.

II. BIOLOGICAL MOTIVATION

Before developing a stochastic model for tumor growth
let us start with some remarks on tumor biology. In the ab-
sence of an immune reaction, tumor evolution is thought to
follow a limited growth law that can be approximated by a
logistic function �28–30�. In �28� experimental data had been
presented which support the validity of this hypothesis. In
that system based on mouse models the immune system of
the mice were deactivated. Our experimental observation ob-
tained from tumor cell cultivation in vitro �31� leads to the
same conclusions. To this aim four different cell lines �SH-
SY5Y �neuroblastoma�, HEK 293 �derived by human embry-
onic kidney transformed by sheared adenovirus type 5�, Hela
�cervical carcinoma�, and Jurkat �T-cell leukemia�� were cul-
tivated in a nutrient solution and the growth curves were
measured utilizing a method of automated cell counting
based on fluorescence. Acting for the whole experiment, data
referring to the tumor cell line Hela are depicted in Fig. 1. In
addition the logistic function of the form

N�t� =
N0eâ�

1 + N0
b̂
â �eâ� − 1�

�1�

is supplemented to this plot as solid line. This function obeys
the differential equation

d

d�
N��� = âN��� − b̂N2��� = f̂�N� , �2�

where N��� denotes the cell number per volume. The param-

eters â and b̂ are the growth and the death rates, respectively.
As one can see from this figure Eq. �1� approximates the
experimental data in a reasonable manner where, in particu-

lar, the data points in the vicinity of the saturation â / b̂ are

fitted quite well by this function. The quantity â / b̂ is termed
carrying capacity which is a measure for the greatest possible
number to which the tumor cells can be extended. The car-
rying capacity is determined by the resources of the system
in which the tumor will be embedded. Based on these find-
ings, a logistic function seems to be appropriate for modeling

tumor growth without taking into account the interplay with
the immune system.

Since we are interested in tumor-immune interactions let
us proceed with the concept of “immunoediting” which has
been established in the last years �32,33�. This dynamic pro-
cess consists of three phases: elimination, equilibration, and
escape. The elimination phase is identical to immunosurveil-
lance in the classical sense where both the innate and the
adaptive immune systems collaborate to eradicate the tumor
cells. This phase includes the recognition of the nascent
transformed cells by components of the innate immune sys-
tem, such as natural killer �NK� cells, natural killer T �NKT�
cells, and �� T cells. These cell types are able to produce
interferon � �IFN-�� which is an important immunologic
regulator �34� and plays a significant role in cancer elimina-
tion �35� as well as in the concept of immunoediting as a
whole �36�. The released IFN-� promotes both the innate
�activation of macrophages and presentation of antigens by
dendritic cells �DCs�� and the adaptive immune responses
�generation of antigen-specific B and T lymphocytes�. Fi-
nally, the lymphocytes �CD8-positive T cells� migrate to the
tumor site, recognize the tumor cells, and initiate a powerful
immune reaction that ends up in the destruction of the tumor
tissue. Whenever not all of the tumor cells are destroyed
during the elimination phase, a transition into the equilibrium
phase will occur. The effector cells of the immune system
further attack the tumor and exert a selective pressure on the
cancer cells. In this manner only the susceptible cancer cell
variants will be eliminated by the immune system, whereas
tumor cell clones that are nonimmunogenic will survive
leading to a sculpting of the immunogenic phenotype of the
tumor. This immunoediting may contains genetic alterations
due to defective intracellular control mechanisms as well as
selective or complete loss of Human Leukocyte Antigen
�HLA� class I molecules �that present antigens to CD8-

FIG. 1. Growth curve of a tumor cell population �Hela� culti-

vated in vitro, cell number in units of the carrying capacity â / b̂. The
experimental data represent the mean of two experiments. The error
bars show a deviation of 5% for every data point. The volume of the
nutrient solution is 100 �l. The parameter values are N0=2.5

�105 cells /ml, â=0.57 day−1, and b̂=4.2�10−6 ml /cells day.

THOMAS BOSE AND STEFFEN TRIMPER PHYSICAL REVIEW E 79, 051903 �2009�

051903-2



positve T cells� or the activation of the nonclassical HLA-G
molecule �which is thought to weaken the immune response
through several pathways� on the surface of the tumor cells
�37�. One can attribute a random nature to these processes,
which justifies the inclusion of stochastic forces as it will be
discussed in Sec. III. The evolution of resistant tumor cell
variants that are able to evade the control of the immune
system will eventually lead to tumor progression. In that case
the tumor can pass into the escape phase. Let us remark that
the equilibrium phase is not stable in a strict mathematical
sense. Sooner or later the equilibrium phase can cross over to
one of the other phases. Once the system is entered into the
escape phase the tumor cells can evade the immune system
by avoiding, suppressing, or resisting an immune reaction.

In general the tumor-immune interaction consists of deter-
ministic parts �the classical immune response, a program that
is executed when cells are recognized as nonself ones�
supplemented by stochastic elements such as genetic muta-
tions, alterations of the surface of tumor cells, e.g., including
classical HLA class I and nonclassical HLA G. Thus a math-
ematical model should contain a deterministic function as
well as random forces that complementarily describe the in-
fluence of the immune system on tumor growth. Here, we
introduce the deterministic part while the stochastic compo-
nents are considered in the following section. Since we are
interested in the generic behavior of the immunization, let us
assume that the deterministic operation of the immune sys-
tem can be described by means of an additional term in the
evolution equation, which has been already discussed in re-
lation to an insect outbreak model �1,38�. Below we adopt
this term in the deterministic part of the evolution equation.
A similar approach has already been applied to a tumor
model �8�. The modified logistic growth now reads

dN

d�
= f̂�N� − ��N�, ��N� =

cN2

d2 + N2 �3�

with the two model parameters c and d. The function ��N� in
Eq. �3� provides a finite value for large N. This saturation
implies that the immune response is limited and, moreover,
depends explicitly on the tumor cell number. Both hallmarks
are sensible with regard to real tumor growth. We are thor-
oughly aware of the strong simplification delineated in the
text above. Although the tumor-immune interaction is cer-
tainly much more complicated in detail, we think that Eq.
�3�, combined with the stochastic elements introduced in
Sec. III, is able to describe some generic properties of real
processes.

III. TUMOR MODEL

In this section we proceed in completing the model by
introducing the stochastic noise terms. For simplicity let us
also introduce a dimensionless formulation. To that aim we
consider the general type of Langevin equation that reads

dx

dt
= f�x� + g1�x��1�t� + g2�x��2�t� , �4�

where x�t� denotes the number of tumor cells at time t; f�x�,
g1�x�, and g2�x� are deterministic functions; and �1�t� and

�2�t� are colored noises with zero mean and colored cross
correlations. These statistical properties are given by ��1�t��
=0, ��2�t��=0, and the corresponding correlation functions

C�t − t�� = ���1�t��1�t��� ��1�t��2�t���
��2�t��1�t��� ��2�t��2�t���

�
=� M

�1
exp�−

	t−t�	
�1

� 	
M

�3

exp�−
	t−t�	

�3
�

	
M

�3

exp�−
	t−t�	

�3
� 


�2
exp�−

	t−t�	
�2

� � . �5�

Here, the elements of the correlation matrix Cij�t− t�� are
assumed to be symmetric Cij =Cji. The quantities M and 

are the noise intensities and �1 and �2 are the correlation
times of the autocorrelation functions C11 and C22. The pa-
rameters 	 and �3 characterize the strength of the cross-
correlation function between �1�t� and �2�t� and the cross-
correlation time, respectively. Notice that the parameters M
and 
 occur in the corresponding autocorrelation function as
well as in the cross-correlation function. The deterministic
part f�x� is given by a modified logistic growth model ac-
cording to Sec. II as follows:

f�x� = ax − b�x�x2, b�x� = b0 + ��x� � b0 +
�

1 + x2 , �6�

where the quantities in Eq. �3� are rescaled according to

x =
N

d
, a = â�, b0 = bd�, � =

c

d
�, t =

�

�
.

In Eq. �6� the parameter a is the deterministic growth rate
and b0 denotes the decay rate proportional to the inverse
carrying capacities, respectively. The parameter � is an arbi-
trary time constant. The death rate is altered by including the
tumor-immunization interaction represented by the function
��x� according to Eq. �3�, where the parameter � designates
the strength of the immunization. Due to the immunization
the effective death rate b�x� is enhanced and depends on the
immunization strength �. The behavior of the effective death
rate is depicted in Fig. 2. The decay rate b tends to a fixed
value for an increasing population as discussed before.

The tumor cell evolution is further coupled to internal and
external noises denoted by �1�t� and �2�t�, respectively.
Whereas the death rate is systematically enhanced by immu-
nization due to the deterministic function ��x� in Eq. �6�, the
effective birth rate should be influenced by the multiplicative
noise �1�t�. This leads to the assumption

g1�x� = − x . �7�

Furthermore, the system is subjected to an additive noise
represented by �2�t�. As the consequence we choose

g2�x� = 1. �8�

Notice that all parameters are dimensionless, so that the pref-
actors in the last equations could be set as unity. Now let us
impute to the noise terms a meaning within the biological or
physical context, respectively. External noise is thought to be
originated from the extracellular matrix embedding the tu-
mor, e.g., comprising the production of cytokines such as
IFN-� in the microenvironment of the tumor cells. From a
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more physical point of view, external noise should also be
caused by thermal fluctuations. In contrast the internal noise
is supposed to be generated directly within the tumor system
as a kind of self-organization, for instance, by gene muta-
tions resulting in a multitude of genetically different tumor
cells within the same system. These processes are based on
internal mechanisms inside the tumor without contact to its
environment. In our model we identify the multiplicative
noise as internal noise, whereas the additive noise is equated
with the external noise. Although the origins of both stochas-
tic processes are different, one should argue that there exists
an interrelation among both ones. For example the assumed
coupling between internal and external noises can be imag-
ined as follows with regard to �39�. The normal tissue adja-
cent to the malignant one produces antigrowth signals in
order to avoid an uncontrolled growth. The tumor may re-
spond by insensitivity with respect to these signals by alter-
ation or down regulation of the corresponding receptors. Fur-
thermore, some tumor cells are able to develop self-
sufficiency in generating growth signals. Another correlation
concerns the nutrient supply. With a growing tumor tissue the
competition is intensified regarding the nutrients between
normal tissue and the nascent transformed cells. The tumor
can sustain and induce angiogenesis via an “angiogenic
switch” from vascular quiescence in order to progress to a
larger size. Another characteristic of tumor growth is the
acquisition of a diversity of strategies to evade apoptotic
signals that are emitted on one hand by the tumor environ-
ment and on the other hand generated within the tumor cells.
We attribute a random nature to the mechanisms of the tumor
evolution because the details of the growth and decay pro-
cesses differ from patient to patient. Therefore, tumor growth
and the interplay with the environment can be regarded as
stochastic processes as discussed above.

In view of the discussions in Sec. IV let us introduce an
effective potential V�x� related to the deterministic force f�x�
in Eq. �6� that reads

V�x� = −� f�x�d�x� .

The evaluation of the last equation yields the following ex-
pression for the potential V�x�:

V�x� =
1

3
b0x3 −

1

2
ax2 + ��x − arctan x� . �9�

The potential V�x� is presented in Fig. 3. The stationary
points can be determined by setting f�x�=− d

dxV�x�=0. From
here we discriminate between four extrema, from which only
two ones are real in the parameter range considered. The
remaining stationary points take complex values and will not
be discussed furthermore. Thus we get a potential with a
minimum at x1=xs
0 and a maximum at x2=0.

IV. FOKKER-PLANCK EQUATION

A. Derivation of the SPD

As a next step the Langevin equation �4� is transformed
into an equivalent FPE �4,18,21,40�. To that aim let us con-
sider x�t� as a random variable whose probability density
function ��w , t� is given by

��w,t� = ��x�t� − w� .

From here one can find the stochastic Liouville equation �40�
for the probability distribution function

P�w,t� = ���w,t�� , �10�

where P�w , t� is the density of the probability distribution
function that the process x�t� takes the value w at time t.

x

0 2 4 6 8 1 0

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

1 . 8

2 . 0

FIG. 2. Death rate b as a function of the cell number x when
b0=1 is fixed: � takes 0 �solid line�, 0.2 �dotted line�, 0.5 �dashed-
dotted line�, and 1 �dashed line�.

0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0

K 0 . 0 4

K 0 . 0 2

0 . 0 0

0 . 0 2

0 . 0 4

FIG. 3. The effective potential V as a function of the cell num-
ber x where a=1, b0=1, and �=1.
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From this relation combined with Eqs. �4�–�8�, one obtains
the FPE in the form

�P�w,t�
�t

= −
�

�w
�A�w�P�w,t�� +

�2

�w2 �B�w�P�w,t�� .

�11�

The explicit expressions for A�w� and B�w� are

A�w� = �a +
M

1 − f��ws��1
�w − �b0 + �

1

1 + w2�w2

−
	
M


1 − f��ws��3
,

B�w� =
M

1 − f��ws��1
w2 − 2

	
M


1 − f��ws��3
w +




1 − f��ws��2
,

�12�

where f��ws� denotes the derivation of f�w� defined in Eq.
�6� at the stationary point ws
0 of the potential V�w�, intro-
duced in Eq. �9�. To be precise the value is

f��ws� = a − 2�b0 +
�

�1 + ws
2�2�ws. �13�

Notice that the values of the process x�t� are substituted by w
now. Since ws is a minimum and due to the definition in Eq.
�9� the expression 1− f��ws��k
0 �k=1,2 ,3� is always ful-
filled. The functions A�w� ,B�w� are related to f�w� by

A�w� = f�w� +
1

2

d

dw
B�w� . �14�

The SPD of the system can be obtained from Eqs. �11�–�14�.
According to �18� we write

Ps�w� =
N


B�w�
exp
�w f�w��

B�w��
dw�� , �15�

where N is the normalization constant determined by

�
0

�

Ps�w�dw = 1. �16�

Depending on the cross-correlation strength 	 one has to
distinguish between different cases. The solution of the SPD

for 0�	�
1−f��ws��3


�1−f��ws��1��1−f��ws��2�
reads

Ps�w� =
N


B�w�
exp
−

Ũ�w�
M

� , �17�

where we have introduced a generalized potential according
to

Ũ�w� = h̃�w� − Ẽ ln�B�w�� −
F̃1 − F̃2


M̃
̃ − 	̃2
arctan
 M̃w − 	̃


M̃
̃ − 	̃2
� .

�18�

Here, the following abbreviations are utilized:

M̃ =
M

1 − f��ws��1
, 
̃ =




1 − f��ws��2
, 	̃ =

	
M


1 − f��ws��3
.

�19�

The nonuniversal exponent Ẽ reads

Ẽ = �a

2
− b0

	̃

M̃
��1 − f��ws��1� −

�M	̃

K
�20�

with

K = �M̃ − 
̃�2 + 4	̃2. �21�

Further we use

F̃1 = 
a	̃ + b0�
̃ − 2
	̃2

M̃
���1 − f��ws��1� ,

F̃2 =
�M

K
�
̃2 + 2	̃2 − M̃
̃� ,

h̃�w� = ỹ�w� +
�M

K
��M̃ − 
̃�arctan�w� − 	̃ ln�1 + w2�� ,

ỹ�w� = b0�1 − f��ws��1�w . �22�

Let us remark that by setting �1=�2=0 and �=0 one obtains
the correct solution for the SPD in �4� �Eqs. �19�–�22��. For
simplicity we assume that all correlation times take the same
values, that is, �1=�2=�3=� resulting in new expressions for
the generalized potential denoted now as U�w�. In case of the
condition 0�	�1 we get

Ps�w� =
N


B�w�
exp
−

U�w�
M

� , �23�

where the function B�w� changes according to Eq. �12� to

B�w� =
M

1 − f��ws��
w2 −

2	
M


1 − f��ws��
w +




1 − f��ws��
.

�24�

The potential takes the form

U�w� = h�w� − E ln�B�w��

−
F�1 − f��ws���

M
�1 − 	2�

arctan
Mw − 	
M



M
�1 − 	2�
� �25�

with

E =
a�1 − f��ws���

2
− �b0 +

�M2

Q
�	
 


M
�1 − f��ws��� ,

Q = M2 + 
2 + 2M
�2	2 − 1� ,

F = a	
M
 − b0
�2	2 − 1� −
�M
�
 + M�2	2 − 1��

Q
,
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h�w� =
�M�1 − f��ws���

Q
��M − 
�arctan�w�

− 	
M
 ln�1 + w2�� + y�w� ,

y�w� = b0�1 − f��ws���w . �26�

Setting �=0 and �=0 one gets the correct result for the SPD
instead of the erroneous one presented in �5�. Our results are
in agreement with those obtained in �6�. The case of 	=1 has
to be considered separately. The corresponding solution is

Ps�w� =
N


B�w�
exp
−

U��w�
M

� �27�

and the generalized potential reads

U��w� = h��w� − E� ln�B�w�� −
F��1 − f��ws���


M
 − Mw
. �28�

The nonuniversal exponent is written in the form

E� =
a�1 − f��ws���

2
− �b0 +

�M2

Q
�
 


M
�1 − f��ws���

�29�

with

Q� = �M + 
�2,

F� = a
M
 − b0
 −
�M
�
 + M�

Q�
,

h��w� =
�M�1 − f��ws���

Q�
��M − 
�arctan�w�

− 
M
 ln�1 + w2�� + y�w� . �30�

The function y�w� remains unchanged and is given by Eq.
�26�. In the following sections we only analyze the results for
0�	�1 given by Eqs. �23�–�26�.

B. Properties of the SPD

In this section we discuss the behavior of the SPD calcu-
lated analytically in the previous section. In Fig. 4 the SPD is
represented as function of the tumor cell population w under
different immunization rates �. The SPD reveals a maximum
indicating the most probable cell population. The maximum
becomes more pronounced the higher the immunization rate
� is. The maximum is shifted to smaller tumor population
with increasing rate �. The SPD is influenced significantly
by the cross correlation characterized by the parameter 	.
The maximum is strongly enhanced by an increasing cross-
correlation strength as shown in Fig. 5. The correlation time
� of the noises affects the SPD, too. The result is shown in
Fig. 6. There appears already a maximum which is more
articulated when the correlation time is enhanced.

C. Biological interpretation

In this section let us discuss the results from a more bio-
logical point of view. The importance of an efficient immu-

nization against tumor evolution is illustrated in Fig. 4. This
efficacy depends on the competence of the immune system to
detect the malignant cancer cells and thus to initiate a pow-
erful immune response. The tumor elimination is the more
probable and consequently the escape of the tumor from the
control of the immune system is the more improbable, the
higher the immune coefficient � is. A further discussion of
this point is shifted to Sec. V C.

w

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

P
s

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

1 . 2

1 . 4

FIG. 4. The SPD Ps as a function of the cell population w for
fixed a=0.5, b0=1.0, 
=0.3, M =0.7, �=0.5, and 	=0.5. The im-
munization � varies from 0.0 �solid line�, 0.5 �dotted line�, and 1.0
�dashed line�.

w

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 0

P
s

0 . 0 0

0 . 2 5

0 . 5 0

0 . 7 5

1 . 0 0

1 . 2 5

1 . 5 0

1 . 7 5

FIG. 5. The SPD Ps as a function of the cell population w for
fixed a=0.5, b0=1.0, 
=0.3, M =0.7, �=0.5, and �=0.5. The
strength of the cross correlation 	 takes 0.1 �solid line�, 0.5 �dotted
line�, and 0.9 �dashed line�.

THOMAS BOSE AND STEFFEN TRIMPER PHYSICAL REVIEW E 79, 051903 �2009�

051903-6



Instead of that let us analyze here the influence of the
internal noise �1 and the external noise �2, introduced in Eq.
�4�. Especially, we are interested in the interplay among each
other. A measure for such a correlation is the strength of the
cross correlation denoted by 	, compare Eq. �5�, as well as
the correlation time �. The behavior of the SPD depending
on the strength of the cross correlation is shown in Fig. 5. An
increasing 	 is equated with an increasing ability of the tu-
mor to compensate the external interferences via internal re-
actions, e.g., by alteration of the surface structure of the tu-
mor cells. Thus, in case of strong correlations the tumor has
an improved ability to evade the attacks of the immune sys-
tem. In order to explain the dependence of our results on the
correlation time, let us remind that � is the correlation time
of the cross correlation as well as the correlation time of the
autocorrelation functions of the additive �external� and the
multiplicative �internal� noises, respectively. Here we have
assumed that the correlation time for both kinds of noises is
relevant on the same time scale �. Taking this into account
the appearance of a finite correlation time leads to a higher
probability of a certain tumor size but does not change the
most likely tumor size as presented in Fig. 6. This behavior
implies that longer correlations among the stochastic pro-
cesses will not lead to a tumor extinction. Instead of that the
tumor persists in the body.

V. MFPT

A. Derivation of the MFPT

In cancer biology it is of interest whether a tumor that
reached a certain size can suffer extinction by external or
internal interference, i.e., is it possible that the influences of
the noises and the immune system, introduced before, cause
extinction of the tumor. A further concern is the transition

time between these two states: the injurious tumor size and
the tumor-free state, respectively, not knowing whether the
possible transition is lasting. This problem is not far from
reality because a prediction whether the tumor-free state is
long living is not possible generally. In order to describe
these transient properties of the system, we study the mean-
first-passage time that is given by the following expression
�41,42�:

Tw1w2
= �

w1

w2 dw

B�w�Ps�w��w

�

Ps�v�dv . �31�

The MFPT describes the transition time from an initial point
w1 to an end point w2 which are chosen as the stationary
points of the effective potential �9�. More specifically, we set
w1=xs and w2=0, i.e., the MFPT is calculated in such a way
the system will reach the tumor-free state. There is a finite
probability that the system evolves back to the tumor state
w
0 or, alternatively, it remains with a finite probability in
the tumor-free state. A comparable problem had been dis-
cussed in �43�. In the following we use an approximation
scheme that is valid for small M and 
 in comparison with
the height �U�w2�−U�w1�� �18,44�. This concept has been
already applied for a similar situation in �9�. Notice that the
problem is comparable to the calculation of the inverse
Kramers escape rate �43�. In that case we can derive an ana-
lytical expression for Eq. �31�, namely,

Tw1w2
=

2�


	V��0�V��w1�	
exp
 1

M
�U�0� − U�w1��� , �32�

where the double prime denotes the second derivation with
respect to w. Inserting Eqs. �9�, �25�, and �26� into Eq. �32�
leads to the final expression

Tw1w2
=

2�

aR
exp� 1

M

E ln
B�w1�

B�0� � − h�w1�

+
F�1 + V��w1���

M
�1 − 	2�

�arctan
	
M



M
�1 − 	2�

− arctan
	
M
 − Mw1


M
�1 − 	2�
��� , �33�

with the abbreviations

R =
V��w1�
a

,

B�w1� =
M

1 + V��w1��
w1

2 −
2	
M


1 + V��w1��
w1 +




1 + V��w1��
,

B�0� =



1 + V��w1��
,

h�w1� =
�M�1 + V��w1���

Q
��M − 
�arctan�w1�

− 	
M
 ln�1 + w1
2�� + y�w1� ,

w
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FIG. 6. The SPD Ps as a function of the cell number w when
a=0.5, b0=1.0, 	=0.5, M =0.7, 
=0.3, and �=0.5 are fixed: �
takes 0.0 �solid line�, 0.5 �dotted line�, and 1.0 �dashed line�.
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y�w1� = b0w1�1 + V��w1��� ,

V��w1� = 2�b0 +
�

�1 + w1
2�2�w1 − a . �34�

Both constants, E and F, are still the same as those in Eq.
�26�. Notice that applying our solutions obtained by Eqs.
�18�–�22� into Eq. �32�; therefore substituting U�0� and

U�w1� by Ũ�0� and Ũ�w1�, respectively; and setting �1=�2
=0 and �=0 yield the correction of the expression in �4� �see
Eq. �27� there�.

B. Properties of the MFPT

In this section we discuss the behavior of MFPT within
our model. In Fig. 7 the MFPT is presented as a function of
the parameter M introduced in Eq. �5�. This parameter M is
a measure for both the autocorrelation function of the multi-
plicative �internal� noise and the cross-correlation function
between internal and external noises. As a feature there oc-
curs a maximum indicating a long-lived cell population. The
maximum is more pronounced the lower the immunization
rate is and, simultaneously, it is shifted toward smaller values
of M. Increasing the rate � the MFTP is smaller and an
extinction of the tumor population is more probable.

In Fig. 8 the MFPT is shown depending on the parameter

 according to Eq. �5�. Here 
 characterizes the strength of
the autocorrelation of the additive noise as well as the
strength of cross correlation. The increase in 
 leads to a
decrease in the MFPT. This decay is very strong in case of a
high immunization rate. The direct influence of the immuni-
zation strength � on the MFPT is offered in Fig. 9. There
appears already a maximum which is shifted to higher values

of � when the correlation time � is reduced. A similar behav-
ior of the MFPT as function of � is also observed in depen-
dence on the parameter 	. A very instructive behavior can be
observed in Fig. 10 where the MFPT is depicted as function
of the immunization coupling � with variation in the global
noise strength M. The maximum becomes more pronounced
if the noise strength increases. A nearly linear behavior of the
MFPT as function of the correlation time � is observed in
Fig. 11. The increase in the MFTP is weaker the stronger the
immunization rate � is.
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FIG. 7. MFPT as a function of M when for fixed values a
=1.0, b0=1.0, �=0.5, 
=0.1, and 	=0.8. The immunization
strength � varies from 0.3 �solid line�, 0.5 �dotted line�, and 0.7
�dashed line�.
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FIG. 8. The MFPT as a function of 
 when a=0.5, b0=1.0, �
=0.5, M =0.8, and 	=0.5 are fixed. The parameter � takes 0.1 �solid
line�, 0.5 �dotted line�, and 0.9 �dashed line�.
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FIG. 9. The MFPT as a function of � for fixed values for a
=0.5, b0=1.0, 
=0.6, M =0.8, and 	=0.5. The correlation time �
varies from 0.1 �solid line�, 0.5 �dotted line�, and 0.9 �dashed line�.
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C. Biological aspects

In this section the behavior of the MFPT is discussed with
regard to biological aspects. Let us stress that a decrease in
the MFPT is tantamount to an increase in the probability of
the transition to the tumor-free state. At first, we consider the
influence of the multiplicative noise on the MFPT and its
relation to the immune system. Figure 7 indicates the exis-
tence of an appropriate M leading to a maximal MFPT. The
increasing part of the curve reveals that the stronger the in-

ternal stochastic noises are correlated the more probable the
tumor states are long lived, possibly due to genetic alter-
ations. But after reaching the maximum the decay of the
curve suggests that this mechanism is limited. As soon as the
optimal value of the strength of the multiplicative noise is
exceeded, the MFPT decreases and consequently the ability
of the self-organized growth seems to be reduced. The im-
provement of the effectiveness of the immune system leads
to a reduction in the MFPT. Second, the influence of the
external �additive� noise offers the following behavior. All
supposed external interferences arising from this noise
source, for example, the release of antigrowth signals in the
microenvironment of the tumor, seem to impair the living
conditions of the tumor. Therefore, increasing the additive
noise strength 
 leads to a decline of the MFPT and en-
hances the probability of the extinction of the cancer.

In order to interpret the behavior of the MFPT as a func-
tion of the immunization strength � depicted in Figs. 9 and
10, let us refer to the concept of immunoediting discussed in
Sec. II. Although the three phases of immunoediting are not
directly visible in Figs. 9 and 10 the principle of this concept
becomes apparent. A certain nonzero immunization strength
� favors long-lived tumor states and eventually makes a tran-
sition to the tumor-free state less probable. This observation
can be related to the sculpting of the immunogenic pheno-
type of the tumor cells by the interaction with the immune
system in such a manner that less susceptible tumor cell vari-
ants will survive. A similar effect can be observed by chang-
ing the strength of the multiplicative noise M and the
strength of the cross correlation �. An increase in both pa-
rameters M and � leads to a retardation of the transition to
the tumor-free state. Likewise the correlation time � affects
the MFPT. An increase in � is related to a slowing down of
the transition between the different tumor states. The longer
the correlation time �, the more probable the long-living tu-
mor populations. Consequently, a rising value of � simplifies
the opportunity of the tumor to evade the immune system.

VI. CONCLUSIONS

In this work we have proposed and analyzed a more re-
fined model describing tumor cell growth. Starting from a
logistic model we have modified the model in several direc-
tions. The decay term is supplemented by a deterministic
nonlinear immunization term which enhances the death rate
of the tumor. Furthermore, the birth rate is assumed to be
stochastically distributed leading to a multiplicative noise.
The occurrence of such a noise term is motivated by the
underlying biological situation. Additionally, the system is
subjected to an additive external noise which is originated
from the external conditions as the environment of the tumor.
Both kinds of colored noises are correlated, i.e., there are
autocorrelation functions and a cross-correlation function
with different strengths. The resulting equation has the form
of a Langevin equation which can be transformed into a
Fokker-Planck equation. Using standard methods we find the
steady-state solutions which are discussed depending on the
strength of the cross correlation, the finite correlation time,
and the degree of immunization. The behavior of the station-
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FIG. 10. The MFPT as a function of � when a=0.5, b0=1.0,

=0.6, 	=0.5, and �=0.5 are fixed. The noise strength M is 0.1
�solid line�, 0.5 �dotted line�, and 0.9 �dashed line�.
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ary probability distribution is analyzed taking into account
biological aspects. In particular, the stationary probability
distribution offers a maximum indicating the appearance of
very probable states. This maximum becomes more pro-
nounced the higher the immunization rate is, for instance. As
a further quantity of interest we have studied the mean-first-
passage time which indicates when the tumor suffers extinc-
tion. The MFPT is likewise calculated analytically and ana-
lyzed under consideration of biological aspects. The MFPT is
influenced in a significant manner by the immunization

strength and the cross correlation as well as the finite corre-
lation time of the underlying colored noises. The observed
behavior is related to the principle of immunoediting.
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