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Rayleigh-Taylor instability of crystallization waves at the superfluid-solid “He interface
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At the superfluid-solid *He interface there exist crystallization waves having much in common with
gravitational-capillary waves at the interface between two normal fluids. The Rayleigh-Taylor instability is an
instability of the interface which can be realized when the lighter fluid is propelling the heavier one. We
investigate here the analogs of the Rayleigh-Taylor instability for the superfluid-solid “He interface. In the case
of a uniformly accelerated interface the instability occurs only for a growing solid phase when the magnitude
of the acceleration exceeds some critical value independent of the surface stiffness. For the Richtmyer-
Meshkov limiting case of an impulsively accelerated interface, the onset of instability does not depend on the
sign of the interface acceleration. In both cases the effect of crystallization wave damping is the reduction in
the perturbation growth rate of the Taylor unstable interface.
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I. INTRODUCTION

The Rayleigh-Taylor instability is a fingering instability of
an interface between two fluids of different densities. It takes
place when the heavier fluid is decelerated by the lighter
fluid or, in other words, density and pressure gradients have
opposite directions [1,2]. The Rayleigh-Taylor instability [3]
occurs in numerous physical and technological situations,
e.g., gravity-driven instability of a heavier fluid atop a lighter
one and inertial confinement fusion. In essence, the
Rayleigh-Taylor instability is the first step in a fluid-mixing
mechanism, the step eventually leading via formation of
bubbles, spikes, and curtains to the turbulent regime of fluid
mixing. Along with the Kelvin-Helmholtz criterion for tan-
gential discontinuities at the interface between two normal
fluids, the Rayleigh-Taylor criterion is among the most ge-
neric principles in the complicated subject of interface insta-
bility.

For the interfaces of superfluid “He, some of the hydro-
dynamic instabilities have been found as well. First, we men-
tion the Faraday instability which denotes the phenomenon
of the parametric excitation of standing waves on the free
surface of a fluid. The flat shape of the surface becomes
unstable with a periodic modulation of the acceleration of
gravity. Recently [4], generation of Faraday standing waves
on the free surface of *He has been realized in the experi-
mental cell subjected to sinusoidal vibration in the vertical
direction. According to [5,6], it is also possible to generate a
dense fog of helium droplets by driving the capillary waves
on a superfluid “He surface unstable with an intense ultra-
sonic beam from a piezoelectric transducer under the surface.
There have been observed electrohydrodynamic interface in-
stabilities due to charges trapped at the surfaces and inter-
faces of various condensed helium phases [7]. The shear flow
between the superfluid A and B phases of *He can result in
the Kelvin-Helmholtz interface instability [8].

Dynamics of the superfluid-solid “He interface due to suf-
ficiently fast processes of crystallization and melting re-
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sembles much that of the free surface of a fluid. In particular,
as was predicted by Andreev and Parshin, the crystal in con-
tact with its liquid phase can support wavelike processes of
crystallization and melting (see review [9]). From the dy-
namical point of view such weakly damping crystallization
waves are an immediate counterpart of the well-known
gravitational-capillary waves at the vapor-liquid interfaces.

A series of mechanical and hydrodynamical instabilities
has been predicted and observed for the superfluid-solid *He
interface. We mention the Grinfeld instability under uniaxial
stress of a solid. Warping of the flat interface occurs at some
threshold stress when the release of elastic energy exceeds
the loss of the surface energy [9,10]. Like normal fluids, the
steady flow of a superfluid in the direction tangential to the
interface can result in the Kelvin-Helmholtz instability. As
the flow exceeds a threshold magnitude, crystallization
waves appear at the superfluid-solid *He interface [11,12].
The phenomenon has qualitatively been observed as a distor-
tion of the crystal surface in the fluid jet [13]. An analogy
with generating sea waves by wind is fully appropriate here.

To date, the Rayleigh-Taylor phenomena have extensively
been studied in normal fluids, but not much study has been
made in superfluids or quantum solids. The classical
Rayleigh-Taylor instability of the superfluid-solid *He inter-
face in the field of gravity is observed by Demaria et al. [14].
In these experiments a cell in which the solid and liquid
phases occupy initially the lower and upper halves, respec-
tively, is inverted mechanically by 180°. After inversion a
single finger of the liquid phase ascends at the center of a
cell, and the solid phase descends along the walls. On the
other hand, in experiment [15] the flat shape of the interface
remained stable for a “He crystal grown at the needle point
with its lower facet under favorable condition for developing
the gravity-driven instability. A difference in the observations
can be associated with the following reasons. The require-
ment for the interface instability, as well as the initial stage
of fingering process, as is shown in [16], is sensitive to the
state of a crystal facet, rough or smooth, and to the size of a
facet.

Recently [17], it has been demonstrated that the Faraday
instability is also inherent in the superfluid-solid *He inter-
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FIG. 1. The growth of a “He crystal at 0.47 K and initial over-
pressure of 5.2 mbar. The left frame corresponds to 0.19 ms after
nucleation. The right frame is taken 80 ms later when the net pres-
sure is already close to the melting pressure. The vertical size of the
frames is 2.4 mm.

face. Crystallization waves at the horizontal interface be-
tween superfluid and solid “He are generated by a periodic
vibration in an experimental cell in the vertical direction. In
accordance with expectation [18] the amplitude of the waves
excited at one-half of the driving frequency decreases for
higher temperatures due to reduction in the interface growth
coefficient describing dissipative properties of the interface.
From general arguments the Faraday instability can be
viewed as a particular case of the Taylor instability for the
periodically driven interface.

On the other side, the spectrum of crystallization waves
remains invariable for the steady flow of a superfluid in the
direction normal to the interface [12]. At first sight this im-
plies that the growth of a solid should not bring the
superfluid-solid interface to instability. However, in the ex-
periments on free growth of a *He crystal initiated at the
needle point immersed into the overpressurized liquid bulk
[19,20] one can observe a destruction in the regular shape of
the crystal triggered under sufficiently large overpressure ex-
ceeding about 6 mbar. Immediately after nucleation the crys-
tal seed has a clear hexagonal prismlike shape with slight
ripples. Soon afterward by 0.1-0.2 ms the shape of the crys-
tal becomes round with a highly irregular outline. Far later
by 100-150 ms, as the net overpressure vanishes and the
pressure in the cell becomes phase equilibrium, the shape of
the grown crystal relaxes to a regular hexagonal prism. We
put two images of a crystal in Fig. 1.

For overpressures higher than 6 mbar (see Fig. 2), we
discover more exotic patterns by the same time interval of
0.1-0.2 ms after the voltage pulse which triggers nucleation.
The interfacial irregularities become more pronounced and
acquire a mushroomlike shape. Apparently, the fluid moves
into the crystal between the neighboring spikes, resulting
eventually in generation of liquid bubbles inside the crystal.

In addition, in Fig. 2 we show the behavior of the pressure
in the course of the crystal growth. After nucleation of a
crystal seed the overpressure in the cell drops and then
gradually vanishes, oscillating around zero value correspond-
ing to the equilibrium pressure. The pressure oscillations are
due, in the first turn, to the finiteness of the experimental
volume and the finiteness of sound velocity. The point is that
the appearance of a solid seed and its next growth are ac-
companied by variations in the density and the volume in
which the density changes. This process results in exciting
and emitting sound waves which propagate in the direction
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FIG. 2. The deviation of the pressure from equilibrium vs time
during crystal growth at 0.48 K and initial overpressure of 7 mbar.
The left insert shows a crystal at 0.64 ms after nucleation. The time
at the right insert is 16 ms. The vertical size of the frames is 2.4
mm.

to the container walls with the next backward reflection from
the walls to the solid seed. The excitation and emission of
sound become more and more effective as the interface rate
and acceleration increase. Eventually, we obtain acoustic
damping oscillations of the liquid inside the cell [21]. In
some sense the damping of the pressure oscillations repre-
sents a quality factor of a liquid/solid or melting/freezing
resonator.

The pressure in the cell becomes equilibrium pressure in 2
ms and the driving force vanishes. Finally at 16 ms, the
crystal relaxed and acquired the regular hexagonal shape.
However, we still observe the liquid bubbles embedded into
the crystal bulk.

If we roughly estimate the velocity which the interface
should acquire by the time of the overpressure release and
formation of the irregular outline, we will find a rather high
magnitude of several meters per second. The corresponding
acceleration which provides such increment of velocity
should be about 10°g, g being acceleration of gravity. On the
whole, large acceleration for a short time shows evidence in
favor of a shock-driven character of the crystal growth. It is
interesting to note that the irregular patterns observed are
similar in appearance to those obtained in studies [22] of a
shock-accelerated boundary between two gases of different
densities. The typical time of the pattern formation was of
the same order of several tenths of milliseconds.

In the present work we develop a linear theory on the
Taylor instability of an arbitrarily accelerated boundary be-
tween the superfluid and solid *He phases. In essence, we
derive an equation which the small interfacial perturbations
obey. We consider three typical cases of the interface accel-
eration: constant, shock, and periodic. The plane and spheri-
cal interface geometries are analyzed.

II. PLANE GEOMETRY AND INTERFACE GROWTH
KINETICS

Let us assume the interface is parallel to the x-y plane,
with vertical position z=L(r) which moves at the rate V
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=L(1). The upper half-space z>L(r) is occupied with the
liquid phase and the solid phase occupies the lower one
z<L(t). Below we will consider the stability of the moving
interface with respect to its small perturbations {(x,y,r) from
the flat shape. Thus, the coordinate Z(x,y,7)=L(#)+{(x,y,t)
gives the vertical position of the perturbed interface evolving
in time.

To discover the effect of nonuniform motion on the sta-
bility of the interfacial shape, we make a number of simpli-
fying assumptions which do not affect the main point of the
phenomenon. The validity and criteria of applicability for the
assumptions to be made below can be found in the papers on
the kinetic interface coefficients and crystallization waves
[23-26].

So, in the superfluid we employ the usual two-fluid equa-
tions without dissipation. In addition, we assume that the
growth rate of a solid V() is always small compared with the
velocity of the first or second sound. This is an ordinary
experimental situation. Thus we treat the hydrodynamics of
the superfluid in the approximation of incompressible liquid
and the constancy of the entropy density. In this case [27] the
velocities v, and v of the normal and superfluid motions can
be described in terms of gradient of velocity potentials ¢,
and ¢, which satisfy V?¢,=0 and V?¢,=0, respectively.
Since finally we will discuss only the linearized equations in
the perturbation ¢, it is convenient to consider a single Fou-
rier mode of the perturbation {={,(t)exp(ig-r) with wave
vector ¢=(q,,q,) parallel to the boundary. The solutions of
qub,Ls:O can be represented as

¢s = Ms(t)Z +As(t)exp(iq r— ‘ZZ) 5

b, =u,()z+A,(t)exp(iq - r — qz), (1)

where r=(x,y) and the velocities u,(r) and u,(r) describe the
undisturbed motion in the superfluid. The perturbation am-
plitudes A(r) and A,(¢) are assumed to be linear in {,(#) and
will be determined later from the corresponding boundary
conditions at the interface. The pressure in the superfluid is a
sum of pressures P=P,+ P, and

Ps = Psoo - ps[¢a + (V¢A)2/2] ~ P83

Pn=in—pn[(l.5n+ (V¢n)2/2]_pngz' (2)

The index “oc” refers to the values taken away at infinity.

Unlike previous considerations [23-26] which are also
linear in the interfacial perturbations, we have to retain the
quadratic terms in the superfluid and normal velocities v,
=V, , on account of nonzero value u,,(r) and product like
MSAS or unAn'

The mass continuity across the boundary z=Z(x,y,?)
gives

jv=pnvnv+psvsv=(p_p,)z’ (3)

where Z is the velocity of the boundary, » is the unit vector
normal to the boundary, and j, is the mass current normal to
the boundary. The densities p, and p, are the normal and
superfluid densities, p=p,+p,, and p’ is the density of the
solid phase. The normal components of velocities can be
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approximated by v,,=~v,, and vy,~v,,. We also believe that
there is no motion in the solid phase, i.e., v’'=0.

To further simplifications, we suppose the normal compo-
nent sticks to the interface like a viscid fluid. Also, this im-
plies the Kapitza resistance to be infinite [24]. In addition,
we disregard any excitations, e.g., phonons, in the solid. So,
we put at the boundary

UnV:Z' (4)

Using Egs. (1), (3), and (4), we can determine the unknown
amplitudes in Eq. (1) and then the velocity fields v, and v,, in
the liquid. For the unperturbed motion, it is obvious that

u=— 2Py and u,=v. (5)

Ps
The amplitudes A, (¢) and A(¢) are given approximately by

Af) = ué@eqw)
Ps

S B

A0 =- éfl(_t)eqL(t).
q

As a result, we can also calculate pressure field (2) in the
liquid. Boundary conditions (3) and (4) in combination with
the obvious relations [Eq. (5)] determine unambiguously the
inertial properties of the interface described in terms of the
effective density [24]

Per=pn+ (p' = py)/p;

in the sense that
psuf/Z + pnui/Z = pefV2.

To proceed further, we adopt the most simplifying as-
sumptions [24] to describe the solid and its boundary. The
solid is assumed to be always unstressed and all possible
shearing components o;.; of the stress tensor o are ne-
glected. In other words, the stress tensor is isotropic, i.e.,
gy =—P' 5, and we can define “pressure” according to P’
=—0;;/3 [26]. Then, from the formal point of view, the solid
can be described as a liquid under pressure equal to P’.

The next boundary condition stems from the continuity of
the momentum flux density across the interface. The momen-
tum flux density in the superfluid [27] reads P Sy + p,v,U
+p,U,Ug- Then, we take o, v,=—P'v; into account, assume
the small curvature of the interface z=Z(x,y,1)=L(r)
+{(x,y,1), and use a frame that refers to the boundary

P+ p,(v,—Zv)* + p(v,— Zv)* = (P + p'Z?)
=y 0Z29r; dry= vy d 19r; O 1. (6)

Neglecting the quadratic terms in velocities gives the usual
Laplace condition of mechanical equilibrium across the in-
terface [24]. Here (0, )= ady+da*/ d@;d @ is the surface
stiffness tensor [9,10,24] expressed in terms of surface ten-
sion a=a(6, ¢) depending on the angles between the crys-
talline orientation and the normal to the surface.
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Let us turn now to the last boundary condition. It is a
reasonable assumption that any motion of the interface ac-
companied also by the melting and growth of a solid will
dissipate a certain amount of energy. Thus a finite velocity of
the interface should produce some imbalance in the chemical
potential difference u—u' between the liquid and solid. The
routine in various theories of the interfacial dynamics is an
introduction of the so-called growth coefficient K which re-
lates the interface growth rate with the difference in chemical
potentials across the interface [23,24]. Because of u,(t) #0
and u,(r) # 0 we again have to take into account the squares
of velocities which are always omitted in the linear pertur-
bation theory of the interface being initially at rest. So, at the
boundary we employ an effective relation

. —Zv)? 2
Lo 0% |

where u and u' are the chemical potentials of the liquid and
solid per unit mass. In a wide sense the growth coefficient
here is a certain combination of all Onsager coefficients and
the kinetic coefficients describing the near-surface dissipa-
tive processes. In general, the growth coefficient K can de-
pend on the temperature as well as on the wave vector q.
Usually, in the ballistic regime, when the mean free path [ of
excitations is large, the growth coefficient is independent of
wave vector. In the opposite hydrodynamic limit g/<<1 the
growth coefficient may depend on the wave vector approxi-
mately as 1/K~ gl [24].

Lastly, we need an expression for the chemical potential
difference. As usual, the reference point is the melting pres-
sure P, at which the chemical potentials x and u' coincide
and the liquid-solid transition takes place. We take the nec-
essary formulas for the superfluid from Ref. [27]. After ex-
panding chemical potentials in the vicinity of the melting
pressure, we obtain

P-P. p,(,-v)* P -P,
pp 2 p'

pu—p' =0(T-T,)+

T-T =&<Pn_Pnoo—Ps—Psgc_(Un—vs)2>
Py

op " Py 2

where o is the entropy and the quantities with index o stand
for the magnitudes taken far from the interface.

Now we are in position to find the equations which the
interface dynamics obeys. Knowing velocity potentials ¢,
and ¢, expressed via u, (f) and perturbation {,(¢), we can
calculate the normal and superfluid velocities, pressure, and
chemical potential difference. Next, we insert the quantities
calculated at the interface into boundary conditions (6) and
(7) and eliminate the pressure P’. As a result of some alge-
braic formula manipulation linear in {,, we obtain an equa-
tion consisting of the { -independent component and the
other one linear in {,. The first component gives an equation
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' r_ . V2
vE B 2P AP—ng)]+pef<VL+—>,
K p 2

which describes the undisturbed motion of the flat interface
and relates overpressure AP(1)=P..(t)— P, to V(t)=L(1) in a
complicated manner in order to support the necessary behav-
ior of the growth rate. This equation does not have much
interest for us.

The other equation obtained is the most significant one. It
represents the equation for the linear dynamics of the inter-
face perturbation {={,(t)exp(ig-r) when the interface is sub-

jected to an arbitrary driving acceleration V(z),

pef% ’ pEfq +[yadiar+ (p' = p)g = perV(1)]L,= 0. (8)

The new aspect of the equation derived is an additional term

with the interface acceleration V(7). As is expected, the uni-
form motion of the interface at V(¢)=const does not influence

the character of small interfacial oscillations. For V(t)=0,
Eq. (8) amounts to the known relation determining the spec-
trum of crystallization waves when the melting-
crystallization processes are balanced and the interface posi-
tion in average is invariable, i.e., L(r)=const [9,24,25].

Undoubtedly, more realistic and complicated models of
the superfluid-crystal *He interface will improve the magni-
tudes of the effective interface density, effective growth co-
efficient, and surface stiffness. However, we believe that the
structure of Eq. (8) is generic and holds.

II1. INTERFACE INSTABILITIES

Equation (8) can have unstable solutions depending
strongly on the acceleration history of the interface. First, let
us consider the stability of the plane interface with respect to
small perturbations {,~exp[\(¢)t] for the uniformly accel-
erated growth of a crystal. The root with Re \(¢) >0 means
the interface instability, i.e., initially small-amplitude pertur-
bations of wavelength 27/ g will grow exponentially in time.

For the acceleration exceeding the threshold Vc=g(p’
—p)/ pe» the interfacial perturbation will increase for the

wave vectors satisfying yg> < p.;V—(p’ —p)g. For brevity, we
put yuq:qx=yq> where y=y,nn, and n=q/q is unit vector
in the direction of perturbation. Note that the threshold ac-
celeration VC does not depend on the growth coefficient, i.e.,
on the dissipative properties of the interface, and is positive.
The latter corresponds to the case when the interfacial accel-

eration V is directed to the superfluid. Thus, the Taylor insta-
bility due to nonuniform growth of the plane interface ap-
pears only for the accelerated growth of a solid.

The surface stiffness stabilizes the region of long wave
perturbations and establishes the most unstable wavelength
having the fastest exponential growth. The value ¢, corre-
sponding to the maximum magnitude Re \(g) gives the
shortest time scale for the development of the instability
which will be characterized by the wavelength 27/¢,. The
value ¢, can be found from the equation
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3 Nyper K
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where ¢, is the value related to the upper bounds of instabil-
ity according to 'yqu per— g(p’—p). For large magnitudes
of the growth coefficient or large acceleration in the case
K*Vsp'*/ypl, the values g, and \(g,) are approximately
equal to

. _&(1 P—)
0= 75 - —~ s
V3\ (6V3ypeKg)"?

o (ﬂq_f)”z 4.
0= - .
3 \6 Pert ZVE pefK

The values ¢, and A depend on v, thus implying anisotropic
and complicated possible surface patterns.

In the opposite limit K*V<p’*/ yp; one has roughly

113
YPet
qo= ( p’; Kz‘]?) ,

K K. .
No= 177613 = ;[per— (p' - pisl.

It is interesting that, though the spatial scale qal is sensitive
to the surface stiffness and its anisotropy, the time of devel-
oping the instability becomes independent of the surface
stiffness and its anisotropy.

On the whole, the values g, and N\ decrease as the kinetic
growth coefficient reduces or dissipation with the interface
enhances. From the experimental point of view this may re-
quire a crystal surface of sufficiently large sizes d>2m/q,
and a large time to support the accelerated growth 1> 1/ in
order to realize an interfacial instability with a uniformly
accelerated growth.

In Ref. [18] it has been shown that periodic modulation of
the gravitational constant as g(f)=g(1+2€ cos 2wt) can re-
sult in parametric excitation of crystallization waves at the
stationary flat interface corresponding to V(¢)=0 in our case.
Admitting some analogy between gravity and noninertial
frame, one can expect a possibility of exciting crystallization
waves with a periodic driving, e.g., V(1)=G cos 2wt, even
with the lack of gravity. To demonstrate this, let us rewrite
Eq. (8) in the form

Ly + Tydy+ wi(@)[1 - V(0/8)¢, =0, 9)
where we have introduced the damping coefficient I'j, the

frequency w(q) of crystallization waves in the lack of damp-
ing, and the scaled accelerating amplitude g,

P q
wy(q) =[vagiar + (0" = p)gla/per. Ty= K
ef
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_ (p'-p Yied 9k
g=g 1 p .
Pet (p' - plg

Then, if a periodic process of melting and crystallization is
realized in experiment so that the interface could oscillate
around some average position at frequency 2w and amplitude
G/(2w)*, Eq. (9) with label 2e=—G/g transforms to a
Mathieu-type equation,

Lo+ T, + wi(g)(1 +2€ cos 201){, =0,

which is identical to that analyzed in [18]. The predictions
which follow are well known and we refer the readers to
papers [17,18] for details. Note only that in the free crystal
growth experiments [15,20] the pressure in the cell drops
drastically down after nucleating a solid seed with the sub-
sequent transition to the damped oscillations around the
melting pressure.

Crystallization waves at the superfluid-solid “He interface
can also be generated with the Richtmyer-Meshkov mecha-
nism when the interface is subjected to an impulsive accel-

eration, i.e., V(1) ~ V(0)&(). In ordinary fluids and gases, for
this purpose, the passage of a shock wave across the inter-
face is commonly used. Unlike the Taylor case of constant
acceleration when the perturbation amplitude in the linear
regime grows exponentially in time, the initial stage of inter-
face instability in the Richtmyer-Meshkov case of shock ac-
celeration [28] is characterized by a linear growth of the
perturbation amplitude in time. The Richtmyer-Meshkov in-
stability is independent of the direction of acceleration in
contrast to the Taylor one. The late time stages of both insta-
bilities may demonstrate a formal resemblance, showing
bubble and spike morphology.

According to Eq. (8), the growth rate of the Richtmyer-
Meskov unstable interface in the linear regime can approxi-
mately be described by

0
£,e0) = "? L1 - T, (.0)
q
: ’;—iva<o><1 — e E,(x,0), (10)

where {,(x,0)={,(0)cos gx is the initial perturbation ampli-
tude at the interface immediately after the impulsive accel-
eration and V(0) is an increment in the interface velocity due
to acceleration of the boundary. At the linear stage the am-
plitude of crests and troughs is approximately the same. The
shape of the crests and troughs is similar and the interface
remains approximately sinusoidal. Staying in the linear re-
gime, we see from Eq. (10) that the finite damping of crys-
tallization waves is a stabilizing factor and can limit the
growth of the perturbation amplitude. It is worthwhile to
note that the total amplification factor is proportional to the
interface growth coefficient K and proves to be independent
of the wavelength 27/g of an initially sinusoidal perturba-
tion. On the contrary, the time for ceasing the growth of
perturbation amplitude is scale dependent. The larger the
wavelength is, the longer the decay time is. A special feature
of crystallization waves in *He is that the growth coefficient
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K, and thus I'j, is strongly temperature dependent. In *He the
Richtmyer-Meshkov instability can be studied with a sound
wave pulse hitting the interface in the normal direction. Re-
cently [29], it has experimentally been demonstrated that the
superfluid-solid *He interface can be set in motion with a
sound wave which transmits through the interface, giving
rise to the processes of crystallization and melting.

IV. SPHERICAL GEOMETRY

In experiment [20] a solid nucleates at the needle point
and then grows free. A ratio of the crystal sizes in the differ-
ent directions for the crystals grown is not drastic. The ratio
of the maximum to minimum size does not exceed 2-3 (see
also Figs. 1 and 2). Here we consider the stability of the
spherical shape of a growing solid. For simplicity, we as-
sume the surface tension « is isotropic. In addition, we ne-
glect the acceleration of gravity and, as above, treat the equa-
tions linearized in the interface perturbation.

The equation specifying the interface motion is taken as
r=R(t,Q)=R(t)+{(z,Q), where R() is the radius of the un-
perturbed spherical interface and £(z,2)=2,{,(r)Y,()) is an
interface perturbation expanded in the spherical harmonics of
degree /=0,1,2,... We look for velocity potentials of the
normal v,=V¢, and superfluid v,=V¢@, motions of the
forms

b =—u(ORYr+ A ()Y /r*,

&, =—u,(OR*r+B,(t)Y,/r'*!.
Using the same boundary conditions as above, we find the

velocities of the unperturbed flow of the liquid phase,

usz_R(p/ _ps)/ps’ un=R7

and coefficients A,(¢) and B,(r) describing the perturbed mo-
tion of the interface,

’ [+2 5

p —p, R . 2R
(§z+' §1>,

ps [+1 R

R’+2(. 2R )
By=- + =g
=T g Ré’z

Employing the same boundary relation for the pressures in
the phases and the same dependence between growth rate
and chemical potential difference, we obtain for the undis-
turbed growth of the solid phase after some algebra,

p 2_6!)
p'-p R/

Al=

. 3. . " -
pef<RR + —R2> +ER= u(AP -

2 K p
The growth equation looks exactly like the motion of a par-
ticle with the effective mass M(R)=4mp,R>, drag force
4mR%p’K'R, and potential energy  U(R)=4maR?
—[(p"=p)/ p]AP(47R3/3), AP=P.,— P, being overpressure.
The small-amplitude perturbations for the spherical sur-

face of the solid phase are described by the relation
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(o

Pt T 1% 1
o . [ (=DU+2) -
+_§1+<u %2 = Pet

11‘?’)@:0. (11)

For large radius R and [— o so that g=1/R is fixed, Eq. (11)
goes over to the result for the plane geometry. Under steady
conditions R(¢) =R the spectrum of crystallization waves on
the spherical interface is determined from

, .oop I+l a
petK R peR

(-DU+1)(I+2)=0.

Equation (11) can have unstable solutions giving rise to the
generation of crystallization waves at the interface. The an-
swer whether the spherical interface will be stable or un-
stable depends strongly on the history of the time behavior
R(z). To illustrate, we consider the Richtmyer-Meshkov situ-

ation when a solid with radius R and interface rate R is

subjected to a spherical shock acceleration R=V(0)&(r). In
the linear regime the perturbation amplitude can be estimated
according to

V(0)(I-1)
3R+ (1+ 1)p'/(peK)

[1- e—(3R/R+p'([+l)/RpCfK)t] £/0).

Here £,(0) is the initial perturbation amplitude of Ith har-
monic at the interface immediately after the shock accelera-
tion and V(0) is an additional velocity acquired by the inter-
face. The mode with /=1 is obviously not involved because
this harmonic describes the displacement of a sphere as a
whole. Like the case of the planar geometry, the initial
growth of the interface perturbation is a linear function of
time,

§(0) =tv(0)(I = 1D /(0)/R.
The long-time behavior of the interface perturbation is
strongly governed by the magnitude and the sign of the

growth rate R. In fact, provided that a solid *He globe either
grows at any rate or melts not so fast at the moment of shock
acceleration, i.e.,

1p'(I+1)
3 pefK

R>

the growth of the perturbation amplitude saturates. For larger
harmonics, the stabilizing role of the finite damping of crys-
tallization waves increases. In the opposite regime when a
“He solid melts sufficiently fast, the linear growth of the
interface amplitude in time will cross over into an exponen-
tial increment of the perturbation amplitude.

The effects in the spherical geometry can be studied by
focusing a high-intensity sound wave in the middle of an
experimental cell. The experiments [30] on nucleation of
solid *He with two hemispherical piezoelectric transducers
glued together to make a spherical geometry have shown that
it is possible to achieve very high pressure amplitudes, more
than 100 bar in the bulk liquid “He.
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V. SUMMARY

We have investigated here the analog of the Rayleigh-
Taylor and Richtmyer-Meshkov instabilities of crystalliza-
tion waves at the accelerated superfluid-solid “He interface.
Our analysis, made within the linear theory in perturbation,
shows that the Rayleigh-Taylor and Richtmyer-Meshkov in-
stabilities can occur, as well as the parametric Faraday insta-
bility [18], which we have treated as a periodically driven
version of the Taylor instability. The plane and spherical in-
terfaces are considered, and the first-order linearized equa-
tions are found for the perturbation amplitudes.

Unfortunately, it is difficult to make a well-founded con-
clusion in favor of destructing the crystal faceting as a result
of the impulsively accelerated interface. For a quantitative
analysis, it is necessary to have the images of crystal evolu-
tion taken successively in time. However, such aspects as the
Taylor-type instability cannot be rejected for the highly ac-
celerated superfluid-solid “He boundaries.

Regarding the well-faceted and atomically smooth crystal
surfaces which may have an infinitely large surface stiffness,
we can make the following remarks. The large value of sur-
face stiffness vy is a factor, first, for nonzero wave vectors ¢,
which prevents the development of the Taylor instability. The
most distinctive feature of the smooth crystal surface from
the rough one is the existence of a nonanalytic cusplike be-
havior in the angle dependence for the surface tension, e.g.,
[9] and [10]. The presence of a singularity leads to qualita-
tive distinctions in the development of instabilities [16]. First
and foremost, the threshold magnitude and the conditions
determining the development of the Taylor instability prove
to be dependent on the initial amplitude of the interfacial
perturbation. The smaller the initial perturbation amplitude,
the larger the necessary threshold magnitude of acceleration,
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approximately as 1/£,(0). We note here that the onset of the
Taylor instability is favored at the vicinal surfaces whose
orientations are tilted by a small angle with respect to the
high-symmetry faceted ones. The larger the slope of the vici-
nal plane, the smaller the initial amplitude of interfacial per-
turbations is required for the development of the instability at
the same magnitudes of acceleration.

The constant acceleration of an interface works like an
effective gravity. Hence, the physical picture for the Taylor
case of constant acceleration is analogous to the gravity-
driven fingering of a crystal atop a fluid and can qualitatively
be interpreted in terms of an effective amplitude-dependent
stiffness y~1/qZ, [16]. For sufficiently large perturbation
amplitudes Ly the difference between the cases of smooth
and rough crystal surfaces disappears.

In the case of impulsively accelerated smooth interface,
the very initial stage of instability will be similar to that of a
rough surface with the perturbation amplitude increasing lin-
early in time. Insensitivity to the surface state results from
the fact that the inertial properties of the interface, associated
with its effective density, are mainly responsible for a linear
response on instant loading. However, the specific time when
the linear time growth of perturbations breaks down becomes
amplitude dependent for the smooth surfaces and shorter as
compared to the rough surfaces.

Experimental and theoretical study of these effects can be
useful for clarifying physical aspects of the crystal “He
growth under high drives and fast dynamics.
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