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In this work, we propose a method to stabilize a nucleus in the framework of lattice density-functional
theory �LDFT� by imposing a suitable constraint. Using this method, the shape of critical nucleus and height
of the nucleation barrier can be determined without using a predefined nucleus as input. As an application of
this method, we study the nucleation behavior of vapor-liquid transition in nanosquare pores with infinite
length and relate the observed hysteresis loop on an adsorption isotherm to the nucleation mechanism. Ac-
cording to the dependence of hysteresis and the nucleation mechanism on the fluid-wall interaction, w, in this
work, we have classified w into three regions �w�0.9, 0.1�w�0.9, and w�0.1�, which are denoted as
strongly, moderately, and weakly attractive fluid-wall interaction, respectively. The dependence of hysteresis on
the fluid-wall interaction is interpreted by the different nucleation mechanisms. Our constrained LDFT calcu-
lations also show that the different transition paths may induce different nucleation behaviors. The transition
path dependence should be considered if morphological transition of nuclei exists during a nucleation process.
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I. INTRODUCTION

On the classical nucleation theory �CNT�, embryos
�bubble, droplet, or crystallite� of a new phase are always
generated first before a first-order phase transition occurs �1�.
To make a transition from an initial metastable state to a
lower-energy one, the embryos have to overcome a free en-
ergy barrier. Taking the liquid-to-vapor phase transition as an
example, a small bubble can appear in the metastable liquid
because of the spontaneous fluctuations. If the bubble is
small enough, it will collapse back into the liquid state.
However, when the bubble exceeds a critical size and over-
comes the nucleation free energy barrier, it will grow to a
macroscopic size and lead to the liquid-to-vapor phase tran-
sition. In this intuitive picture, the embryo can be regarded as
the pioneer of a new phase, i.e., nucleus. The nucleus with
the critical size is called the critical nucleus. For the occur-
rence of a first-order phase transition, a critical nucleus of the
new phase must be generated. In the framework of CNT, the
nucleation barrier, which depends only on the size of the
nucleus, is determined by a balance between the surface and
volume free energies. As the simplest thermodynamics ap-
proach, CNT has been used for decades to answer nucleation
problems in many areas.

For lack of knowledge on the microscopic structure of
the critical nucleus, the CNT assumes that the material at
the center of the nucleus behaves like a new phase in the
bulk solution, and the surface of a small cluster is the same
as that of an infinite planar surface. Both the assumptions
become questionable when the nuclei are small enough to
deviate from those in the bulk phase, and when their inter-
faces are sharply curved. In recent years, a number of com-
puter simulation techniques, such as grand canonical Monte
Carlo �MC� simulation, molecular dynamics �MD� simula-
tion, nonequilibrium lattice fluids, density-functional theory

�DFT� and lattice density-functional theory �LDFT� have
been developed to study phase transition processes and
nucleation behaviors �1–17�. The nucleation theory based on
the computer simulation techniques improves the unrealistic
approximations in the CNT. For instance, Oxtoby and Evans
�2� developed a nonclassical theory for the homogenous
nucleation of the gas-liquid phase transition, by taking the
free energy as a function of the actual density profile rather
than a single parameter of the droplet radius.

Recently, nucleation behaviors in confined spaces have
also drawn a lot of attention from both experimental and
theoretical researchers �18,19�. One important reason is that
nucleation plays an important role in the processes of adsorp-
tion and desorption of fluids in nanopores. In addition, nucle-
ation behavior can also help us to understand adsorption hys-
teresis profoundly. In the adsorption science, hysteresis is a
general feature that has been observed on the adsorption iso-
therms in mesoporous materials �20–25�. In the original
works of using mean-field theory to study adsorption in open
pores, Marconi and Swol �20,21� investigated the effects of
pore ends on hysteresis. Very recently, Monson �25� applied
mean-field kinetic theory to study the dynamics associated
with capillary condensation and accompanying hysteresis.
Bah et al. �26� proposed that hysteresis is related to nucle-
ation difficulties, but the detailed relationship remains un-
solved. Everett and Haynes �18� suggested that the liquid
nucleation in a prewetted pore starts from a bumplike undu-
lation, which grows into a bridge bounded by two hemi-
spherical menisci. The bridge grows continuously until the
pore is filled completely by the condensed fluid. Especially,
they concluded that the critical nucleus of capillary conden-
sation is the bumplike undulation rather than the liquid
bridge.

The above-mentioned computer simulation techniques de-
veloped for bulk solutions are also applicable to investigate
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the nucleation mechanism for the condensation and evapora-
tion transitions of confined fluids and have achieved signifi-
cant advances. For example, by using the MC method, Page
and Sear �27� studied heterogeneous nucleation in and out
pores. Vishnyakoy and Neimark �28–30� explored nucleation
of liquid bridges and bubbles during condensation and
evaporation of the Lennard-Jones fluid in cylindrical and
spherical pores with MC simulations. Talanquer and his co-
workers applied the DFT for the nucleation in slit pores �31�
and cylindrical capillary �32�. Woo et al. �33� studied the
nucleation mechanism of fluids desorption from disordered
pore with MC simulations. Ustinov and Do �34� studied the
nucleation in infinite cylindrical pore by two-dimensional
DFT. Bolhuis and Chandler �35� combined the transition
path sampling method �36,37� with molecular dynamics and
Monte Carlo simulations to study the drying transition path
in narrow pores. Although above works, as the best knowl-
edge of us, no systematic work has been performed to inves-
tigate the effects of fluid-wall interactions on the nucleation
behaviors.

DFT method is an effective tool to study nucleation be-
haviors of confined fluids. However, the application of DFT
in an open system, it need predefined nuclei as input, which
may introduce an uncontrollable source of uncertainty. When
DFT is applied in a closed system, such as canonical en-
semble, it is often difficult to judge whether the obtained
nucleus is critical one or not, and the calculated results may
suffer from finite-size effects �38�. Therefore, the aim of this
work is to develop a method in the framework of DFT to
study the nucleation behaviors in an open system while with-
out using predefined nuclei as input. The proposed method is
then used to study the dependence of nucleation behavior of
porous systems on the fluid-wall interaction. In Sec. II, we
give a simple description of the model and the method. Es-
pecially, we proposed a constrained method to stabilize a
nucleus in the frame work of LDFT, and then to determine
the shape of critical nucleus and its nucleation barrier. In
Sec. III, we first use the mean-field LDFT to study the char-
acteristics of hysteresis for simple fluids confined in infi-
nitely long square-shaped nanopores. According to the de-
pendence of hysteresis on the fluid-wall interaction, the
fluid-wall interactions are classified into three regions, which
are denoted by strongly, weakly, and moderately attractive
fluid-wall interaction, respectively. Then, using the con-
strained DFT we discuss the different nucleation mechanisms
for the condensation transition on adsorption branch and
evaporation transition on desorption branch in the three dif-
ferent cases. In the final section, a brief summary of our
work is addressed.

II. MODEL AND METHODS

In our work, we discretize the space by employing a
simple cubic lattice model �39�. Each lattice site can be
empty or be occupied by a single fluid molecule or by the
wall. The fluid and wall occupancy variables are denoted by
�i=0,1 and �1−�i�=0,1 respectively. The fluid molecule on

site i only interacts with its neighbors on the six nearest sites.
The interactions of fluid-fluid and fluid-wall are expressed by
wff and wmf, respectively. The ratio of the fluid-wall over the
fluid-fluid interaction �w=wmf /wff�, describes the “wettabil-
ity.” w�1 indicates that the interaction between the pore
wall and fluid is stronger than that between the fluid mol-
ecules, and 0�w�1 represents the fluid-wall interaction is
weaker. In our calculations, all the quantities used are dimen-
sionless. The reduced temperature T� and the chemical po-
tential �� are defined as T�=kBT /wff and ��=� /wff, respec-
tively. For all our calculations, the temperature of T� was set
to 0.8, and the volume of the simulation box was selected as
V=40�40�60. To represent the infinitely long pore with a
square shape, the periodic boundary condition was applied in
z direction. With no specification, the width of the square
pore, RB, was fixed at 20.

In classical DFT, Helmholtz energy functional, designated
as F��i�, is often referred to as the intrinsic Hemholtz energy,
meaning that it is an inherent property of the system and is
independent of the external potential. Our model is defined
by the Helmholtz energy proposed by Kierlik et al. �39� to
describe a confined inhomogeneous fluid with fixed overall
density in the system,

F���i�� =
1

	
�

i

��i ln �i + ��i − �i�ln��i − �i�� − wff�
�ij	

�i� j

− wmf�
�ij	

��i�1 − � j� + � j�1 − �i�� . �1�

Note that Kierlik et al. �40� pointed out that there is sym-
metry w↔1−w for Eq. �1�. The symmetry allows one to
restrict the study to w�0.5 or w�0.5, as is illustrated for
instance by Porcheron and Monson �41� in their study of
mercury porosimetry. In this work, to model the some porous
media with strong adsorptive abilities, we consider the range
of 2.5�w�0.0. Our work does confirm that the nucleation
behavior satisfies the symmetry requirement of property for
w↔1−w within the calculation uncertainty.

For a confined inhomogeneous fluid in contact with an
external reservoir, the formulation of grand potential can be
expressed though the Legendre transform


���i�� = F���i�� − ��i
�i. �2�

The local density at site i is determined by the partial deriva-
tive of the grand potential with respect to the intrinsic chemi-
cal potential:

�i = − 
 �


��� − �i�
�

T,V
, �3�

where �i=−wmf� j��1−� j� is the external field on site i. At
equilibrium, the grand potential 
 of the adsorbed fluid is
minimized to give the equation for the equilibrium density
profile �i,

�
���
��

= 0. �4�
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The corresponding equation for the fluid density on each
site is

�i =
�i

1 + exp�− 	�� + �
j�i

�wff� j + wmf�1 − � j��

 . �5�

The above set of nonlinear coupled equations can be solved
by the classical successive substitution scheme �39,42�.

According to the classical nucleation theory, first-order
phase transitions are initiated by spontaneous appearance of
nuclei from a metastable state. If the size of a nucleus ex-
ceeds a critical one and has overcome a free energy barrier, it
will grow and lead to phase transition spontaneously. In this
work, we attempted to find out the critical nucleus and cal-
culate the nucleation barrier in grand canonical ensemble at a
given chemical potential and temperature.

In studying an activated process, such as nucleation, we
need to know not only the free energy of the stable or meta-
stable state, but also the properties of the transition states,
which correspond to saddle points of free energy functionals.
Although finding a saddle point of a functional poses a seri-
ous numerical problem, in some cases one can identify the
unstable directions of the functional and stabilize it by ap-
plying a suitable constraint. For example, Auer and Frenkel
�8,9� used a bias potential to control the size of the nucleus in
their Monte Carlo method to study crystal nucleation. In-

spired by their works, in this work we stabilize a nucleus
with a suitable constraint. As a result, the morphology and
energy barrier for critical nuclei can be determined subse-
quently. Here we use liquid-to-vapor phase transition as an
example to describe our scheme for searching the shape and
energy barrier for critical nuclei.

To impose the constraint, we employ a Lagrange multi-
plier 1

2��
−
0�2 in the corresponding grand potential ex-
pression. In the term, 
 is an order parameter defined as the
number of vapor sites in the system �with density less than
0.5�, while 
0 is the target number of vapor sites and � is the
Lagrange multiplier. Note that 
��i�i�i, where �i is equal
to 1 when site i is not occupied by the matrix and its local
density is less than 0.5. Otherwise, �i is equal to 0. The
constrained grand potential functional can then be given as


0���i�� =
1

	
�

i

��i ln �i + ��i − �i�ln��i − �i�� − wff�
�ij	

�i� j

− wmf�
�ij	

��i�1 − � j� + � j�1 − �i�� − ��
i

�i

+
1

2
�
�

i

�i�i − 
0�2
. �6�

The local density at site i, �i, is determined by minimizing
the constrained grand potential, namely

�
0���
�� =0. The corre-

sponding equations for the fluid density on each site are

�i =
�i

1 + exp�− 	�� + �
j�i

�wff� j + wmf�1 − � j��
 + ��i
�
i

�i�i − 
0����i − 0.5�
 �7a�

in which � represents Dirac delta function. In principle,
based on Eq. �7a� the density profile for the system contain-
ing a nucleus of 
=
0 can be solved in an iteration process
using an initial density profile with random distribution of
vapor sites. Therefore, the shape of the nucleus and its en-
ergy barrier can be determined by the constrained LDFT.
Initially, several runs using this scheme were performed
starting from random initial conditions, but this scheme
could not consistently generate the lowest-free energy con-
figuration for a given value of 
0. Normally, the calculations
generate configurations with several small nuclei instead of a
large nucleus with the lowest global free energy. This is not
surprising since the constrained LDFT simulations started
from random initial conditions are frequently trapped in
metastable states, and as a result the constrained LDFT with
this scheme fail to generate the lowest-free energy configu-
ration.

Based on above difficulty, we modified Eq. �7a� into
two folds. On the one hand, to avoid the unstable numerical
evolution caused by the Dirac delta function while remaining

the constraint, we replaced ��i��i�i�i−
0����i−0.5� with
sgn��i�i�i−
0�, where

sgn
�
i

�i�i − 
0� =�+ 1, 
�
i

�i�i� − 
0 � 0

0, 
�
i

�i�i� − 
0 = 0

− 1, 
�
i

�i�i� − 
0 � 0� .

On the other hand, to speed up the evolution of the nuclei
from the metastable states �with several small nuclei in the
constrained system� to the global lowest free energy states �a
full developed nucleus�, the sign function in Eq. �7a� is mul-
tiplied by �1−� j�i� j −� j�i�1−� j��, where � j�i means the
product over all nearest neighbors of the site i. Obviously,
for the site i on the liquid-vapor interface, �1−� j�i� j
−� j�i�1−� j�� is equal to 1, otherwise it is equal to 0. It is
equivalent to a potential energy forcing the number of sites
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on the vapor-liquid interface to decrease. Hence, after the
introduction of the �1−� j�i� j −� j�i�1−� j��, the efficiency
tofind the global lowest free energy states in the constrained
LDFT can be significantly speeded up. Note that both the

stable and metastable states in the constrained system may be
unstable in an unconstrained system.

Therefore, the local density at site i is in fact determined
from the following equation:

�i =
�i

1 + exp�− 	�� + wff�
j�i

� j + wmf�
j�i

�1 − � j� + � sgn
�
i

�i�i − 
0��1 − �
j�i

� j − �
j�i

�1 − � j��


. �7b�

In the above expression, � sgn��i�i�i−
0��1−� j�i� j
−� j�i�1−� j�� is equivalent to a potential exerted on the
vapor-liquid interface to reduce the interface area while forc-
ing the system to evolve with sgn��i�i�i−
0�=0. The
Lagrange multiplier � represents the strength of the force,
which was set to be 1.0. At a given chemical potential, Eq.
�7b� is solved in an iteration process. This method allows us
to compute the energy barrier and the shape of nuclei as a
function of the cluster size 
0. Thus, the critical nucleus can
be identified as the nucleus with the highest energy barrier.

The constrained method can be understood as follows.
The constrained grand potential in our method is in fact the
deviation potential named by Neimark and Vishnyakov �30�

W�N,V,T,�� = F�N,V,T� − N� , �8�

where N �namely, 
��i�i�i in Eq. �7b�� represents the
number of particles in the constrained system. According to
Neimark and Vishnyakov �30�, it is the deviation potential
that determines the probability to sample �N ,V ,T� state in
grand canonical ensemble at a given chemical potential �
and the unconstrained grand potential in an unconstrained
grand canonical ensemble is given by


��,V,T� = − kT ln�
N

exp�− W�N,V,T,��/kT� . �9�

Obviously, the minima and maxima of the deviation potential
with regard to N at a given chemical potential correspond
respectively to the most and least probable states obtained
from the unconstrained grand canonical ensemble. Thus, two
minima of deviation potential W�N ,V ,T ,��, respectively,
corresponds to the state and metastable states, while the
maximum corresponds to the transient state and determines
the nucleation barrier �30�. This is why we determine the
critical nucleus as the nucleus with the highest energy barrier
in our constrained method �see below�.

The nucleation behavior is investigated in our constrained
method by analyzing the constrained states �N ,V ,T ,��, very
similar to the method in the framework of canonical en-
semble. However, in comparison with canonical ensemble
this method not only avoids the difficulty to calculate the
chemical potential �30,32�, but also significantly alleviates
the finite-size effects encountered by canonical ensemble
�38�, because the chemical potential is given in advance.

III. RESULTS AND DISCUSSION

A. Adsorption isotherms

As an application of this method, in the work we studied
the effects of fluid-wall interaction on the nucleation behav-
ior. First, we calculated adsorption isotherms of simple fluids
in square-shaped nanopores with infinite length. A typical
adsorption isotherm for RB=20, w=2.5, and T�=0.8 is pre-
sented in Fig. 1�a�. The isotherm exhibits two hysteresis
loops at different chemical potentials, which correspond to
two different phase transitions, namely, layering transition
and capillary condensation, respectively. The small loop rep-
resents the layering transition, while the main loop shows the
vapor-liquid transition in the confined space. Here, we focus
on the nucleation mechanism of the main loop.

To distinguish the stable and metastable states, the corre-
sponding grand potential variation for the adsorption iso-
therm �43,44� �see Fig. 1�a�� is given in Fig. 1�b�. As is
shown in the picture, the chemical potential for the capillary
coexistence is determined by the intersection point of the two
grand potential curves, namely, where the branches of ad-
sorption and desorption have the same grand potential value
���=−3.09�. In the low chemical potential region of the loop
�see Fig. 1�a��, the vaporlike phase on the adsorption branch
is stable, and the liquidlike phase on the desorption branch is
metastable, because the grand potential of vaporlike phase is
lower. However, when the chemical potential is higher than
that for capillary coexistence, the liquidlike state becomes
globally stable, while the vaporlike states become metastable
�43�. The metastable adsorption branch of the main loop ter-
minates at a vaporlike spinodal, while the metastable desorp-
tion branch terminates at a liquidlike spinodal.

Figure 2 presents several adsorption isotherms obtained
for different pore widths and fluid-wall interactions. For
comparison, the isotherms for vapor-to-liquid and liquid-to-
vapor phase transition in the bulk solution are also given. It
is found from Fig. 2 that the position of the small loop de-
pends only on w, rather than the pore width. For the strongly
attractive fluid-wall interaction, the small loop occurs before
the large loop, which means that the prewetting film near the
pore wall forms before the capillary condensation. As w de-
creases, the small loop shifts to the higher chemical potential
and merges into the main one especially when w�1. This
observation is in good agreement with our previous works
�43–46�.
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For the phase transitions in the main loop, it is found in
Fig. 2�a� that if w�0.9 the chemical potentials for liquidlike
spinodals are nearly identical for different pore widths and
w. Moreover, they take the same position as the liquid spin-
odal of the bulk solution. However, if w is small enough
�w�0.1�, the vaporlike spinodals for the confined system
occur at the same chemical potential for the bulk vapor spin-
odal, regardless of the value of the pore widths and the fluid-
wall interactions �see Fig. 2�b��. According to the character-
istics of their adsorption isotherms, the liquid-wall
interaction parameter, w, is classified into three regions,
which are denoted as strongly �w�0.9�, weakly �w�0.1�
and moderately attractive fluid-wall interaction �0.1�w
�0.9�, respectively.

Since a first-order phase transition proceeds with nucle-
ation and growth, in this work we try to relate the adsorption
characteristics, especially the position and width of hyster-
esis loops, to the nucleation mechanism. For example, to
interpret the agreement between the liquidlike spinodals for
the confined systems of w�0.9 and that for the bulk solution
as well as the independence of spinodals on pore width and
w, it is proposed here that the confined liquid-to-vapor
�evaporation� transition on the desorption branch is initiated
by the homogeneous nucleation of bubbles in the center of
the pore, in a similar way as the homogeneous nucleation in

the bulk solution. As a result, the effects of the existence of
the pore wall on evaporation are negligible. Similarly, for the
systems with weak fluid-wall interactions, the confined
vapor-to-liquid transition �condensation� on the adsorption
branch is initiated from the nucleation of spherical droplets
in the center of the pore. To verify our assumptions, we
investigate the behaviors of nucleation, which is the precur-
sor of a first-order phase transition.

B. Determination of critical nucleus and nucleation barrier

To investigate the nucleation behaviors of the systems
with strong fluid-wall interactions, we set w=2.5 and search
the critical nuclei for evaporation and condensation, respec-
tively. We first take the nucleation of capillary evaporation at
�=−3.2 as an example to demonstrate the proposed scheme
for searching the critical nucleus. With a given number of
vapor sites, 
0, the initial vapor sites �hence the initial den-
sity profile� were randomly inserted into a metastable liquid
state �see Fig. 3�a��. Then, using the iteration scheme of Eq.
�7b�, the unstable nucleus was stabilized due to the constraint
�see Fig. 4�. The distribution and the number of vapor sites
were adjusted continually in the iteration process �see Figs.
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FIG. 1. �Color online� �a� Adsorption isotherm for the system
with w=2.5 and RB=20 at the temperature T�=0.8. �b� Correspond-
ing grand potentials for the adsorption isotherm in �a�. The inter-
section point of the grand potential curves for the adsorption and
desorption branches corresponds to the chemical potential for the
capillary coexistence.
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FIG. 2. �Color online� Dependence of the adsorption isotherms
on pore width and fluid-wall interaction. �a� Adsorption isotherms
for pore with RB=20, 12, and w�0.9. �b� Adsorption isotherms for
w�1.The isotherms for the bulk solution, which were similarly
calculated by LDFT in the absence of pore walls, are also shown in
the figure for comparison.
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3�b� and 3�c��. After several iteration steps, a bubble with
irregular geometry formed and distinguishable vapor-liquid
interface appeared �see Fig. 3�d��, while the constrained
grand potential is still at a higher value. Further iteration step
changes the position and the geometry of the bubble continu-
ously �see Figs. 3�e� and 3�g��, and as a result, the corre-
sponding grand potential decreases until it reaches its mini-
mum. After sufficient number of iteration steps, the solution
of nucleus reached the minimum of the constrained grand
potential and a stable nucleus is formed, as is shown in Fig.
3�h�. For different target sizes of nuclei formed from the
initial metastable liquidlike state, the computed energy bar-
riers are shown in Fig. 5�a�. The energy barrier for a nucleus
is estimated through the work of formation of the nucleus
from its corresponding metastable state, which is equal to the
difference between the constrained grand potential of the
state and the grand potential of its corresponding uncon-
strained metastable state at the given chemical potential. The
state on the top of the energy barrier corresponds to the criti-
cal nucleus.

Above iteration method initiated from a random density
profile is sufficient if there is not morphological transition of
nuclei during a nucleation process. If the morphological tran-

sition of nuclei exists, our calculations indicate that the dif-
ferent transition paths may induce different nucleation be-
haviors. In other words the nucleation behavior shows
transition path dependence. To take into account the effect, in
this work we consider two different transition paths. One
nucleation transition path is obtained in a series of consecu-
tive simulations with a monotonically increasing nucleus size
in which the last configuration generated at each nucleus size
serves as the initial configuration for the next run at increas-
ing nucleus size. The other transition path, which first starts
with a large nucleus, is contrarily obtained from a series of
consecutive simulations with a monotonically decreasing
nucleus size. Figure 5�b� shows an example of corresponding
nucleation behaviors for the different transition paths. For
the first path a small bump first forms and then grows as the
nucleus size increases. When the bump structure reaches its
stability limit �Sa in Fig. 5�b�� it becomes unstable and sud-
denly transforms into a bridge structure. In contrast, for the
second transition path, the morphology of nucleus begins
with a bridge structure and gradually decreases until a sud-
denly morphological transition from bridge to bump occurs
at turnover point Sb. Thus, if the nucleus size is in the range
between Sa and Sb, the corresponding nucleus shape depends
on the transition path and a hysteresis loop is formed. The
intersection of the two transition paths, which corresponds to
the same energy barrier for both bridge and bump structures,
separate the stable bridge �and corresponding metastable
bump� at large nucleus size and stable bump �metastable
bridge� at small size. This pathway dependence of nucleus
reminds us the adsorption hysteresis for adsorption in open
system �for example, see Fig. 1�. But it is worth noting that
we are considering a constrained system and any nucleus
from this system is unstable in an open system. The states Sa
and Sb seemingly resemble the superspinodals named by Ne-
imark and Vishnyakov �17,29�, which represent the limit of
stability of states sampled by means of the gauge cell Monte
Carlo method �29�.

As critical nuclei correspond to the local maxima of the
grand thermodynamic potential with respect to density pro-
file along the path of nucleus growth, thus for the case of
Fig. 5�b� we set the turnover point from bump to bridge
transition, Sa, as the critical nucleus. However, because the
calculated nucleus is unstable in an open system and the
bridge structure can be created with lower energy barrier �see
Fig. 5�b��, it is also possible that the bump grows and spon-
taneously transforms into a bridge structure after its size is
greater than that for the intersection. If this is correct, the
critical nucleus would correspond to the intersection of the
two pathways. The two methods to determine the nucleation
behavior result in the same nucleus morphologies, but lead to
different nucleation barriers. In this work we use the first
method to determine the critical nucleus.

In Fig. 5�b�, the critical nucleus locates at the boundary of
the hysteresis loop of nucleus evolution due to the different
transition paths. However, there are other cases where the
critical nuclei formed before or after the hysteresis loop. Fig-
ures 5�c� and 5�d� show the two different cases, respectively.
For these cases, the critical nuclei are undoubtedly deter-
mined according to the highest energy barrier.

(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 3. �Color online� Typical snapshots generated in the itera-
tion process with the different number of iteration steps. �a� Initial
density profile with randomly distributed vapor sites. �b-d� The ag-
gregation of vapor sites. �e-g� The evolution of the formed bubble.
�h� The finally formed nucleus.
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FIG. 4. Evaluation of the constrained grand potential in the pro-
cess of iteration to form and stabilize a nucleus with a given size.
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C. Nucleation mechanism for strong fluid-wall
interaction (w�0.9)

The nucleation behaviors for the system with strongly at-
tractive fluid-wall interaction have been discussed in this
section. We used w=2.5 as an example. The obtained critical
nuclei at four chemical potentials along desorption branch,
namely, �=−3.10, −3.12, −3.16 and −3.20, are shown in the
first row of Fig. 6. It is found that a bubble in the center of
the pore nucleates a new phase from the liquidlike meta-
stable state. The critical nucleus exhibits a spherical shape,
and the bubble size decreases with chemical potential. The
obtained nucleation barriers at different supersaturation
states also decreases monotonically with the decrease of the
chemical potential, as is shown in Fig. 7�a�. The nucleation
barriers of capillary evaporation for the pore with RB=12 are
also calculated, and they are identical with those for RB
=20. It is also found the nucleation barriers for evaporation
in different pore sizes well agree with that for the bulk solu-
tion. The reason of the agreement is that a critical nucleus in
the center of the pore would not be affected by the wall, as
long as the nucleus is far from the wall. This is also the
reason why evaporation on desorption branches for different
value of w �w�0.9� and different pore widths take place at
the same position as that of the bulk solution. We must note
that an observable disagreement of nucleation barriers be-
tween confined fluid and bulk solution appears when the

chemical potential is close to the chemical potential of cap-
illary coexistence. This is because at these states the critical
nucleus in a confined space is no longer spherical due to the
space confinement �see the snapshot for �=−3.10 in Fig. 6�,
which results in the displacement from bulk solution.

To further prove the validity of our constrained LDFT, we
also compare the results of nucleation in bulk solution with
those by the method of Oxtoby and Evans �2�. The calculated
nucleation barriers from the two different methods are com-
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FIG. 5. The energy barrier associated with the formation of a cluster of size 
0. The nucleus with highest energy barrier corresponds to
the critical nucleus. �a� Nuclei of evaporation for w=2.5 and �=−3.20. �b� Nuclei of condensation for w=2.5 and �=−3.08. Here we set Sa

as the critical nucleus. �c� Nuclei of condensation for w=2.5 and �=−3.05. �d� Nuclei of condensation for w=2.5 and �=−3.10. Note that
in this case the energy barrier is calculated from the stable vaporlike state.

FIG. 6. �Color online� Calculated critical nuclei for w=2.5. The
first row shows, from left to right, the morphologies of critical
nuclei in desorption branch for �=−3.10, −3.12, −3.16, and −3.20,
respectively. While the second row shows the morphologies of criti-
cal nuclei in adsorption branch for �=−3.08, −3.07, −3.06, and
−3.05, respectively.

NUCLEATION AND HYSTERESIS OF VAPOR-LIQUID… PHYSICAL REVIEW E 79, 051602 �2009�

051602-7



pared in Fig. 7�b�. The figure indicates that they are in good
agreement.

Note that in this case of w�0.9 desorption for finite long
pores with pore ends may show different nucleation mecha-
nism, as comparison with infinitely long pores we studied
here. The nucleation sites for desorption of finite pores still
remains unclear. The pore ends or external surface of porous
layer �23� may serve as the nucleation sites for desorption.

For the condensation transition on the adsorption branch,
Fig. 2�a� shows that its position on the hysteresis loop sig-
nificantly deviates from that for the bulk vapor-to-liquid tran-
sition, and differs for the different pore sizes. The difference
indicates that there may exist a different nucleation mecha-
nism of the condensation transition for w�0.9 in compari-
son with the bulk solution. To examine the difference of
nucleation mechanisms, we also performed the constrained
LDFT calculations for the nucleation of capillary condensa-
tion.

Typical density profiles of the critical nuclei at different
chemical potentials, including �=−3.08, −3.07, −3.06, and
−3.05, are shown in the second row of Fig. 6. Note that in
this case, transition path dependence should be considered,
as shown in Fig. 5�b�. As one can see, the morphologies of

critical nuclei take the shape of annular bump at both high
and low supersaturation states. The bump morphologies oc-
curring near the pore wall are quite different from spherical
nucleus occurs in the center of the pore. The difference is
ascribed to the strong fluid-wall interaction, which results in
the formation a fluid layer �prewetting film� on the wall be-
fore capillary condensation. The fluid layer plays an impor-
tant role in adsorption in the pore. Different from the homo-
geneous nucleation in the bulk solution, the critical nuclei for
condensation transitions are formed on the prewetting film.
Hence the nucleation barrier for the nucleation via annular
bump, as is shown in Fig. 7�a�, can be substantially reduced
in comparison with that for the vapor-to-liquid transition via
spherical droplet in the bulk solution.

Above calculations show that the nucleation barrier for
condensation decreases substantially in comparison with that
for bulk solution, while the nucleation barrier for evaporation
is nearly kept unchanged. As a result, the capillary coexist-
ence, at which the two curves of nucleation barriers corre-
sponding to adsorption and desorption branches intersect,
shifts to a much lower chemical potential �see Fig. 7�a��.
Note that the point of intersection of the two curves of nucle-
ation barriers �see Fig. 7�a�� corresponds to the chemical
potential of capillary coexistence in the pore, which is in
good agreement with that obtained from the adsorption iso-
therms �see Fig. 1�b��. This proves the Maxwell rule that the
point of intersection of the grand thermodynamic potentials
determines the vapor-liquid equilibrium in the pore �28�.

It is well known that the values of the chemical potentials
for condensation and evaporation of confined fluids can dif-
fer significantly from their bulk ones. Our results indicate
that the major reason for the difference is the change of the
nucleation mechanism due to the existence of pore walls. In
general, our calculations confirm the scenario of Everett and
Haynes �18� for vapor condensation in a confined space that
the critical nucleus of condensation is an annular bump, and
the critical nucleus of evaporation is a bubble in the pore
center. Our results also confirm that the hysteresis phenom-
enon of confined fluids originates from the difficulty of
nucleation of a new phase. Moreover, in comparison with the
phase transition in the bulk solution, our results demonstrate
that the strong attraction due to the pore wall �w�0.9�
causes the nucleation mechanism for capillary condensation
changing from homogeneous to heterogeneous. The hetero-
geneous nucleation near the wall reduces the nucleation bar-
rier substantially and makes the condensation take place at
the lower chemical potentials. Hence, it is the fluid-wall in-
teraction that induces the change of the nucleation mecha-
nism, which then shifts the equilibrium phase transition and
modifies the position and width of the hysteresis loop against
its bulk counterpart.

D. Nucleation behavior for moderate (0.1�w�0.9)
and weak fluid-wall interaction (w�0.1)

In this section, we considered the systems with moder-
ately attractive fluid-wall interactions �0.1�w�0.9�. To in-
vestigate the dependence of the nucleation mechanism on the
fluid-wall interactions, we considered several different val-
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FIG. 7. �a� Comparison of the nucleation barriers of vapor-liquid
transitions for a pore of RB=20 and those for bulk solution. The
intersection point of two nucleation barrier curves for the confined
system corresponds to the chemical potential for the capillary co-
existence, which is in good agreement with that obtained from the
adsorption isotherms �see Fig. 1�b��. �b� Comparison of the nucle-
ation barriers for vapor-liquid transitions in bulk solution calculated
by this method and those by the method of Oxtoby and Evans �2�.
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ues of the fluid-wall interaction �w=0.9, 0.7, 0.5, 0.3, and
0.1�, and explored their corresponding nucleation behaviors.
The typical shapes of critical nuclei at different chemical
potentials are shown in Figs. 8 and 9, respectively, for cap-
illary condensations and capillary evaporations.

For w=0.9, the morphologies of critical nuclei for evapo-
ration and condensation are basically similar with those for
w=2.5. However, there exist subtle differences between
them. For the desorption process, when the chemical poten-
tial is near the liquidlike spinodal, the nucleus is apart from
the wall and is of spherical shape. However as the chemical
potential is close to capillary coexistence, the nucleus is also
approximately spherical but come into contact with the pore
walls partly �see the critical nuclei for �=−3.08 and −3.10 in
Fig. 8 as examples�. This observation is obviously different
from the case of w=2.5, in which the critical nucleus at a
high supersaturation states take the shape of ellipsoid and
their long axis lies along the pore axis �see Fig. 6�. We at-
tribute the difference to the fact that the prewetting film only
exists for strongly attractive fluid-wall w�0.9, but not for
w=0.9 or smaller �see Fig. 8�.

For the capillary condensation, the morphologies of criti-
cal nuclei for w=0.9 are in a shape of bridge at lower super-
saturations and take a shape of annular bumps at higher su-
persaturations �see Fig. 9�, also being different from in the
case of w=2.5 where the nucleation of capillary condensa-
tion always proceeds via the formation of annular bump. In

the work of Kornev et al. �47�, they suggested that the an-
nular bump structures can be found for the critical nuclei at
all supersaturations. While Husowitz and Talanquer �32�
showed that the critical nuclei show a bridge structure at
lower supersaturations and a bump structure at higher super-
saturations. In this work, our calculations indicate that the
difference can be interpreted by the strength of fluid-wall
interaction. For the case of strong fluid-wall interaction, cal-
culated results confirmed that the suggestion by Kornev et al.
�47� holds. But when the fluid-wall interaction is moderate,
the suggestion by Husowitz and Talanquer �32� holds. We
contribute the difference to absence of the prewetting film
which appears for w=2.5.

In general, the disappearance of the prewetting film has
more significant effects on the nucleation of condensation
than that of evaporation, as is shown in the nucleation barri-
ers �see Fig. 10�. By comparison of the nucleation barriers
for w=2.5 and w=0.9, it is found that as w decreases, the
nucleation barrier for condensation increases substantially,
while the nucleation barrier for evaporation is nearly kept
fixed. As a result, the capillary coexistence moves to higher
chemical potential, although in comparison with the bulk so-
lution, the location of phase equilibrium for w=0.9 shifts to
lower chemical potential.

We then consider the case of w=0.7. Snapshots of critical
nuclei in Figs. 8 and 9 show that the nucleation mechanisms
for evaporation and condensation are both heterogeneous and

FIG. 8. �Color online� Morphologies of critical nuclei in desorp-
tion branches for different w. The first row: w=0.9, in which nuclei
morphologies from left to right correspond to �=−3.08, −3.10,
−3.12, and −3.14, respectively. The second row: w=0.7, in which
nuclei morphologies from left to right correspond to �=−3.05,
−3.08, −3.10, and −3.18, respectively. The third row: w=0.5,
in which nuclei morphologies from left to right correspond to
�=−3.04, −3.10, −3.15, and, −3.19, respectively. The last row: w
=0.1, in which nuclei morphologies from left to right correspond to
�=−2.94, −2.95, −2.96, and −2.97, respectively.

FIG. 9. �Color online� Morphologies of critical nuclei in adsorp-
tion branches for different w. The first row: w=0.9, in which nuclei
morphologies from left to right correspond to �=−3.06, −3.05,
−3.04, and −3.03, respectively. The second row: w=0.7, in which
nuclei morphologies from left to right correspond to �=−3.02,
−3.00, −2.98, and −2.96, respectively. The third row: w=0.5,
in which nuclei morphologies from left to right correspond to
�=−2.95, −2.90 −2.86 and −2.81, respectively. The last row:
w=0.1, in which nuclei morphologies from left to right correspond
to �=−2.90, −2.85, −2.80, and −2.75, respectively.
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all the critical nuclei come into contact with pore walls. The
contact angle of liquid droplet is found to be smaller than
90° while the contact angle of gas bubble is greater than 90°.
This indicates the interaction between fluid-wall is still more
favorable than fluid-fluid interaction. Note that the critical
nucleus does not exhibit the geometrical symmetry of the
pore. In comparison with w=0.9, the nucleation barrier for
evaporation �see Fig. 10� in this case decreases and the
nucleation barrier for condensation increases. Consequently,
capillary coexistence moves to a higher chemical potential.

For w=0.5, both the shape of the critical nucleus and its
nucleation barrier show a perfect symmetry between desorp-
tion and adsorption branches, as is shown in Figs. 8–10. For
example, the curve of the nucleation barriers for condensa-
tion and that for evaporation are symmetrical about the cap-
illary coexistence, very similar to the case of the bulk solu-
tion �see Fig. 10�. Whereas the nucleation mechanism is
heterogeneous in the pore with w=0.5, in contrast to homo-
geneous nucleation in the bulk solution. For the fluid-wall
interaction of w=0.5, the critical nuclei, including bubbles
for evaporation and droplets for condensation are both occur
in a corner of the pore and appear in a quarter-sphere shape.
In other words, the contact angle is 90°. Thus, the location of
capillary coexistence is identical to that for the phase transi-
tion in bulk solution, although the nucleation barrier is much
lower than that for the bulk solution.

When the fluid-wall interaction decreases to w=0.3, w
=0.1, and then w�0.1, the critical nuclei for desorption and
those for adsorption was also studied. The results for w
=0.1 are shown in Figs. 8 and 9, respectively. For w�0.5,
such as w=0.3, the critical droplet formed in a corner of the
pore tends to detach from the wall �with contact angle less
than 90°� due to the poorly wetted surface. As w decrease to
w=0.1 or smaller, the critical droplet is of spherical shape
and locates in the center of the pore, as shown in Fig. 9. For
the nucleation of capillary evaporation, the critical bubble for
w�0.5 is prone to attach the wall �with contact angle greater

than 90°�, and finally for w=0.1 or smaller, evaporation is
induced by nucleation of bubbles in a bridge shape at high
supersaturation states, and in the shape of annular bump at
low supersaturation states �see Fig. 8�. In comparison with
the phase transition in the bulk solution, our results demon-
strate that the weak attraction due to the pore wall causes the
nucleation mechanism for capillary evaporation changing
from homogeneous to heterogeneous nucleation �see Fig. 8�.
The heterogeneous nucleation near the wall reduces the
nucleation barrier substantially �see Fig. 10� and makes the
evaporation take place at the lower chemical potentials �48�.
At the same time, the nucleation behavior for capillary con-
densation is nearly identical to that for bulk solution. Hence,
the equilibrium phase transition shifts to higher chemical po-
tential.

By examining the calculation results for different fluid-
wall interactions, it can be concluded that w=0.5 is a par-
ticular value. For the case w=0.5, the nucleation behaviors
for condensation and evaporation are symmetrical. This
agrees with the suggestion by Kierlik et al. �40� that there is
symmetry w↔1−w for the model we used. Since the fluid-
wall interaction w denotes the “wettability” of the wall. It
influences on the contact angle, and thus the geometry of the
nuclei. If the fluid-wall interaction w is greater than 0.5, the
droplet preferably spreads on the wall and the bubble tend to
detach from the wall. On the contrary, if the fluid-wall inter-
action w is less than 0.5, the droplet tends to detach from the
wall and the bubble is preferable to form near the wall.

IV. CONCLUSIONS

In this work, we modified the classical density functional
theory method to stabilize a nucleus by imposing a suitable
constraint, hence the shape and structure of nuclei can be
directly calculated without using a predefined nucleus as in-
put. With this technique, we investigated the effects of fluid-
wall interaction on the nucleation mechanisms for vapor-
liquid phase transitions in the confined systems and related
the nature of hysteresis to the nucleation mechanisms.

First, we studied adsorption isotherms of simple fluids in
square-shaped nanopores with the width of RB=20 and infi-
nite length. It is found from adsorption isotherms that the
chemical potentials for the liquidlike spinodals are nearly
identical for the different pore sizes and different liquid-wall
interaction parameters, w, as long as w�0.9. Moreover, the
chemical potentials agree with that for the bulk liquid spin-
odal. While for w is small enough �w�0.1�, the positions of
the vaporlike spinodals take place at the same chemical po-
tential as that for the bulk liquid spinodal, regardless of the
pore width and the fluid-wall interaction. According to the
characteristics of the adsorption isotherms, in this work we
have classified w into three regions, which are denoted as
strongly �w�0.9�, weakly �0�w�0.1�, and moderately
�0.1�w�0.9� attractive fluid-wall interaction regions, re-
spectively.

Then we attempted to interpret the adsorption character-
istics in terms of the nucleation mechanism. For the nucle-
ation of evaporation in the confined system with strongly
attractive fluid-wall interactions, our calculations indicate
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FIG. 10. Comparison of the nucleation barriers for pores with
different w. The pore size is fixed at RB=20. The dashed vertical
lines correspond to the chemical potentials for the capillary coex-
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that it is easier for the nucleated spherical bubble to generate
in the center of the pore rather than in the other places. Since
small nuclei in the center of the pore are not affected signifi-
cantly by the wall, the homogeneous nucleation of evapora-
tion for the case of w�0.9 behaves as that in the bulk. This
observation can be used to explain why the liquidlike spin-
odals, which are identical for the systems with different w
values in the range of w�0.9 and different pore sizes, take
the same positions as that for the bulk liquid-to-vapor tran-
sition.

For the systems of w�0.9, the strong attraction from the
pore wall changes the nucleation mechanism of the capillary
condensation. Our calculations demonstrate that the conden-
sation originates from nucleation of annular bumps near the
pore wall, rather than homogenous nucleation in the pore
center. The nucleation barrier is found to be substantially
lower than that for the homogeneous nucleation, which thus
shifts the liquidlike spinodal and also capillary coexistence
to a lower chemical potential. In general, our results confirm
that hysteresis of confined fluids originates from the diffi-
culty of nucleation of the new phase. The deviation of the
nucleation mechanism from that of bulk solution would sub-
stantially decrease the nucleation barrier, which shifts the
equilibrium phase transition and shrinks the width of the
hysteresis loop against its bulk counterpart.

For the situation with the weakly attractive fluid-wall in-
teraction �w�0.1�, our calculations show that the nucleation
of condensation is nearly the same as that in the bulk solu-
tion, i.e., homogeneous nucleation. In contrast, the evapora-
tion transition originates from the nucleation of bubbles in
the shape of annular bump or bridge near the wall, which
reduces the nucleation barriers. It is the unfavorable fluid-
wall interaction that alters the nucleation mechanism of cap-
illary evaporation, which shifts the liquidlike spinodal and
capillary coexistence to a higher chemical potential.

When the pore is of the moderately attractive fluid-wall
interaction �0.1�w�0.9�, the nucleation mechanism can be
heterogeneous for both the condensation and evaporation
transitions. Again, the heterogeneous nucleation reduces the
nucleation barrier for the nucleation of the new phase, and
changes the position and width of hysteresis against its bulk
counterpart. In general w=0.5 is a particular value, at which
the nucleation behaviors for condensation and evaporation
are symmetrical. If the fluid-wall interaction w is greater than
0.5, the nucleation of capillary condensation are more sig-
nificantly affected than that of capillary evaporation, and the
droplet preferably spreads on the wall and the bubble tend to
detach from the wall. On the contrary, if the fluid-wall inter-
action w is less than 0.5, the nucleation of capillary evapo-
ration are more significantly affected than that of capillary
condensation, and the droplet tends to detach from the wall
and the bubble is preferable to form near the wall.

In this work, we also reveal that the calculated critical
nucleus may show a transition path dependence, especially
for nucleation of condensation for w�0.5 and nucleation of
evaporation for w�0.5. By taking into account of the tran-
sition path dependence, it is found that for strong fluid-wall
interaction �w�0.9�, the critical nuclei of capillary conden-
sations always take the shape of bump. While for moderate
fluid-wall interaction both bump and bridge structures are
possible, depending on the supersaturation.
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