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We examine the anisotropy of a four-point correlation function G4�k� ,r� ; t� and its associated structure factor
S4�k� ,q� ; t� calculated using Brownian dynamics computer simulations of a model glass forming system. These
correlation functions measure the spatial correlations of the relaxation of different particles. We examine the
time and temperature dependences of the anisotropy in both functions. We find that the anisotropy is strongest
at nearest-neighbor distances at time scales corresponding to the peak of the non-Gaussian parameter �2�t�
=3��r4�t�� / �5��r2�t��2�−1 but is still pronounced around the � relaxation time. We find that the structure factor
S4�k� ,q� ; t� is anisotropic even for the lowest wave vector accessible in our simulation, suggesting that our
system �and other systems commonly used in computer simulations� may be too small to extract the q� →0 limit
of the structure factor. We find that the determination of a dynamic correlation length from S4�k� ,q� ; t� is
influenced by the anisotropy. We extract an effective anisotropic dynamic correlation length from the small q
behavior of S4�k� ,q� ; t�.
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I. INTRODUCTION

It is now generally accepted that upon approaching the
glass transition, the liquid’s dynamics are becoming increas-
ingly heterogeneous �1–3�. However, the details of the spa-
tial and temporal characteristics of dynamic heterogeneities
are still being debated. In particular, the connection between
heterogeneous dynamics and a growing dynamic correlation
length has been the topic of many simulations �4–11� and a
few experimental studies �12–14�. Four-point correlation
functions have been introduced to facilitate the quantitative
description of heterogeneous dynamics. The analysis of the
spatial decay of these correlation functions was used to ex-
tract a dynamic correlation length. Recently, the mode-
coupling theory has been extended and a theoretical treat-
ment of four-point correlation functions is starting to emerge
�6,12,15–18�. However, in most simulation studies and in
some theoretical treatments, these four-point correlation
functions have been assumed to be isotropic or they are iso-
tropic by design.

Researchers have noticed anisotropy in the correlated mo-
tion of particles on the � relaxation time scale, and recently
this anisotropic motion has also been reported on the � re-
laxation time scale �19�. Doliwa and Heuer �20,21� reported
anisotropic-correlated motion in a hard-sphere system on the
� relaxation time scale. Anisotropic motion has also been
extensively studied by Donati et al. �8� and Gebremichael et
al. �22� who described the motion of “mobile” particles as
“stringlike,” with mobile particles following each other in
one dimensional “strings.” Weeks and Weitz �23� reported
anisotropic dynamics associated with the break down of the
“cage” surrounding a particle. They found that the correla-
tions of the particle’s displacements depend on the initial
separation of the particles. While particles that start at a
separation corresponding to the first peak of the pair-
correlation function are most likely to move in the same
direction, particles that start at a separation corresponding to
the first minimum are more likely to initially move in oppo-
site directions.

In view of the experimental and simulational evidence for
anisotropic correlations of particle’s displacements, it should
not be a surprise that four-point correlation functions de-
signed to study these dynamics can also be anisotropic.
However, this anisotropy is normally studied for times less
than the � relaxation time; thus it is uncertain if understand-
ing this anisotropy is important for the structural relaxation
of the liquid. Previously �19� we reported on a four-point
correlation function that is anisotropic on the � relaxation
time scale as well as the � relaxation time scale for a model
glass forming liquid. Since the spatial decay of this correla-
tion function can be used to determine a dynamic length
scale, the anisotropy introduces a complication in determin-
ing this length scale.

In this paper we expand on previous work �19�. In par-
ticular, here we examine the temperature dependence of the
anisotropy of a four-point correlation function in more detail
than in Ref. �19�, and we present an algorithm to determine
an anisotropic correlation length. After describing the simu-
lation in Sec. II, we explore the anisotropic-correlated dy-
namics by examining a four-point correlation function
G4�k� ,r� ; t� �Sec. III� and the associated structure factor
S4�k� ,q� ; t� �Sec. IV�. We examine the anisotropy at around
nearest-neighbor distances, which corresponds to the local
rearrangement of particles and its cage and at large distances.
Our conclusions from the analysis of the four-point correla-
tion function are similar to those of Weeks and Weitz �23�
about the breakup of the cage surrounding a particle. We
examine how the anisotropy influences the determination of
a growing length scale accompanying the glass transition and
evaluate an effective anisotropic correlation length. We find
that the dynamic correlation length is larger in the direction
of motion of a particle than in the direction perpendicular to
that motion. A similar result was obtained by Doliwa and
Heuer �20� using a different correlation function. We finish
with a discussion of the results in Sec. V.
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II. SIMULATION

We performed Brownian dynamics simulations of an
80:20 binary mixture of 1000 particles introduced by Kob
and Andersen �24,25�. The interaction potential is V���r�
=4�������� /r�12− ���� /r�6� where �, �� �A ,B�, �AA=1.0,
�AB=1.5, �BB=0.5, �AA=1.0, �AB=0.8, and �BB=0.88 and
the interaction potential is cut at 2.5 ���. Periodic boundary
conditions were used with a box length of 9.4 �AA. The
equation of motion for the position of particle i is

r�̇i =
1

�0
F� i�t� + �� i�t� , �1�

where �0=1.0 is the friction coefficient of an isolated particle
and the force acting on a particle i is

F� i = − �i	
n�i

V���
r�i − r�n
� , �2�

with �i being the gradient operator with respect to r�i. The
random force �� �t� satisfies the fluctuation dissipation relation

��� i�t��� j�t��� = 2D0�ij1 , �3�

where D0=kBT /�0, kB is the Boltzmann’s constant, and 1 is
the unit tensor. The results are presented in terms of reduced
units with �AA, �AA /kB, and �AA

2 �0 /�AA being the units of
length, energy, and time, respectively. Since the equation of
motion allows for diffusion of the center of mass, all results
are presented relative to the center of mass.

We present results for temperatures T=0.45, 0.47, 0.5,
0.55, 0.6, 0.8, 0.9, and 1.0. The onset of supercooling is
around T=1.0 and we use Tc=0.435 as the mode-coupling
temperature. As a means to expand the temperature scale, we
will plot some quantities versus �= �T−Tc� /Tc. The equation
of motion was integrated using a Heun algorithm with a
small time step of 5�10−5. We ran an equilibration run that
was at least half as long as a production run and four pro-
duction runs at each temperature. The results are an average
over the production runs. We present results only for the
larger and more abundant A particles. We define the � relax-
ation time 	� as Fs�k� ;	��=e−1 for a wave vector around the
first peak of the partial static structure factor for the A par-
ticles, which corresponds to 
k�
=7.25.

III. FOUR-POINT CORRELATION FUNCTION G4(k� ,r� ; t)

A. Definition and connection with overlap correlations

We study a four-point correlation function that measures
the spatial and temporal correlations between the relaxation
of different particles. Consider the function

F̂n�k� ;t� = e−ik�·�r�n�t�−r�n�0��, �4�

where r�n�t� is the position of particle n at a time t. The

ensemble average of F̂n�k� ; t� is the self-intermediate scatter-

ing function Fs�k ; t�, thus we will term F̂n�k� ; t� as the micro-
scopic self-intermediate scattering function. The four-point
correlation function

G4�k�,r�;t� =
V

N2 	
n�m

�F̂n�k� ;t�F̂m�− k� ;t���r� − r�nm�0��� �5�

measures the correlations between the microscopic self-
intermediate scattering function at time t, pertaining to par-
ticles that are separated by a vector r� at the initial time. In
Eq. �5� r�nm=r�n−r�m, V is the volume, and N is the number of
particles. Notice that G4�k� ,r� ;0�=g�r� where g�r� is the pair-
correlation function. In this work, we choose 
k�
 to have the
same value as the one that determines the � relaxation time,
i.e., 
k�
 is located around the first peak of the partial static
structure factor for the A particles, 
k�
=7.25.

It should be noted that G4�k� ,r� ; t� is, in general, complex.
Its real and imaginary parts can be written in the following
form:

Re�G4�k�,r�;t��

=
V

N2 	
n�m

�cos�k� · �r�nm�t� − r�nm�0�����r� − r�nm�0��� ,

�6�

Im�G4�k�,r�;t��

= −
V

N2 	
n�m

�sin�k� · �r�nm�t� − r�nm�0�����r� − r�nm�0��� .

�7�

Equations �7� and �8� show that particles which are getting
closer together or farther apart along the direction of vector k�
�i.e., are moving in the opposite direction or in the same
direction along k�� make the same contribution to the real part
of G4�k� ,r� ; t� but opposite contributions to its imaginary part.
In particular, particles moving farther apart along the direc-
tion of vector k� make a negative contribution to the imagi-
nary part of G4�k� ,r� ; t�.

In several other simulational and experimental studies
�9,10,26,27�, four-point correlation functions involving
single-particle overlaps rather than the microscopic self-
intermediate scattering functions were investigated. For ex-
ample, Lacevic et al. �9� used the following function �28�:

g4
ol�r;t� =

V

N2 	
n�m

�wn�a;t�wm�a;t���r� − r�nm�0��� , �8�

where wn�a ; t� is the overlap function pertaining to particle n,

wn�a;t� = 
„a − 
r�n�t� − r�n�0�
… . �9�

We would like to point out that g4�r ; t� can be expressed in
terms of functions which are generalizations of our
G4�k� ,r� ; t�,

g4
ol�r;t� =� dk�1dk�2

�2��6 f�k1;a�f�k2;a�G4�k�1,k�2,r�;t� , �10�

where G4�k�1 ,k�2 ,r� ; t� is defined as the correlation function of
the microscopic self-intermediate scattering functions at time
t and calculated for different wave vectors,
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G4�k�1,k�2,r�;t� =
V

N2 	
n�m

�F̂n�k�1;t�F̂m�k�2;t���r� − r�nm�0��� ,

�11�

and f�k ;a�=4�a2j1�ka� /k with j1 denoting a spherical
Bessel function of the first kind.

The present work is mostly concerned with the aniso-
tropic nature of dynamic heterogeneities, which can be moni-
tored using the four-point correlation function given by Eq.
�5�. In this context we would like to emphasize that, in prin-
ciple, the more general function �11� is also anisotropic.
However, any trace of this anisotropy is lost after the inte-
gration over wave vectors k�1 and k�2 and thus the overlap
correlation function �8� is—by construction—isotropic.

B. Anisotropy of G4(k� ,r� ; t)

Since the functions F̂n�k� ; t� are sensitive to displacements
of particles along the direction of k� then G4�k� ,r� ; t� measures
interparticle correlations weighted by the displacements
along the vector k�. Particles which move in the direction
perpendicular to k� make a contribution to G4�k� ,r� ; t� which is
the same as their contribution to the pair-correlation function
g�r�. We notice that for t�0 four-point function G4�k� ,r� ; t� is
not isotropic but depends on the angle 
 between r� and k�.
Shown in the upper figure in Fig. 1 is the real part G4�k� ,r� ; t�
for T=0.45 calculated at t=	�, and the lower figure shows
the imaginary part. The maximum value of the real part of
G4�k� ,r� ;	�� occurs for values of cos�
� corresponding to 

=0° and 
=180°, which shows that the correlations are most
pronounced for r� parallel and antiparallel to k�. Thus, the
correlations of the microscopic relaxation function is aniso-

tropic on the � relaxation time scale and the correlations are
the strongest when neighboring particles move in the same or
in opposite directions.

To examine these anisotropic correlations at length scales
around nearest-neighbor distances, we expand G4�k� ,r� ; t� into
the Legendre polynomials

G4�k�,r�;t� = 	
n

Ln�k,r;t�Pn�k�̂ · r�̂� , �12�

where Pn is the nth Legendre polynomial, k�̂ =k� /k ,r�̂=r� /r, and

Ln�k,r;t� =
2n + 1

4�
� G4�k�,r�;t�Pn�k�̂ · r�̂�dr�̂ . �13�

If G4�k� ,r� ; t� does not depend on the angle between k� and r�
then Ln�k ,r ; t� is zero for all n not equal to zero. Since there
are nonzero real and imaginary parts to G4�k� ,r� ; t� for t�0
then there are nonzero real and imaginary parts to Ln�k ,r ; t�.
By symmetry, the imaginary part is zero for even n, and the
real part is zero for odd n.

Shown in Fig. 2 is the real part Ln�k ,r ;	�� for n=0 and 2,
and the imaginary part for n=1 at the alpha relaxation time
	� for T=0.45. There is a peak in L2�k ,r ;	�� and L0�k ,r ;	��
around the first peak of the pair-correlation function g�r�.
The dashed lines in the figure are g�r�e−2. Note that due to
our definition of the � relaxation time e−2 is the asymptotic
limit of the isotropic component L0 at t=	�,
limr→L0�k ,r ;	��=Fs

2�k ,	��=e−2. The positive peak in
L2�k ,r ;	�� indicates that particles that are initially separated
by a distance corresponding to the first peak of g�r� have a
tendency to move in the same direction or in opposite direc-
tions, while the values close to zero around the first mini-

(b)

(a)

FIG. 1. �a� The real part of the correlation function G4�k� ,r� ;	��
and �b� the imaginary part of G4�k� ,r� ;	�� for T=0.45 calculated at
the � relaxation time.

FIG. 2. The real part of Ln�k ,r ;	�� for n=0 and 2 and the
imaginary for n=1 for T=0.45 calculated at the � relaxation time.
The dashed line in the figures is g�r�e−2 where g�r� is the pair-
correlation function.
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mum of the static structure factor can result from motion
which is perpendicular to the initial separation vector. The
spatial variation in the correlated motion on these length
scales has been reported previously in colloidal suspensions
�23� and is related to the breakup of the cage surrounding a
particle.

The variation in the imaginary part of L1�k ,r ;	�� indi-
cates that particles closer than the first peak of g�r� are more
likely to move apart, while particles at a distance greater than
this peak are more likely to move closer together. In general,
negative values of L1�k ,r ; t� indicate that particles move far-
ther apart, while positive values indicate that particles move
closer together. Similar conclusions were drawn by Weeks
and Weitz �23� in their study of particles’ rearrangements
during cage breakdown and in the investigation of the depen-
dence of the correlations between the motion of particles on
their relative position �29�.

To look at the time dependence of the anisotropy, we cal-
culated the height of the first peak of L2�k ,r ; t� as a function
of time, which is shown in Fig. 3 for T=1.0, 0.9, 0.8, 0.6,
0.55, 0.5, 0.47, and 0.45. The peak height starts at zero since
the liquid is isotropic, then increases, reaches a maximum,
and finally decreases to zero at long times. The height of the
peak 	L2 is around the � relaxation time for high tempera-
tures �Fig. 4�, but its position increases slower with decreas-
ing temperature than the � relaxation time and approxi-
mately follows the temperature dependence of the time
corresponding to the peak position of the standard non-
Gaussian parameter �2�t�=3��r4�t�� / �5��r2�t��2�−1, 	ng �tri-
angles in Fig. 4�. Furthermore, the maximum value does not
monotonically increase with a decrease in the temperature
but rather reaches a maximum around T=0.55 then begins to
decrease with decreasing temperature. Thus the anisotropy
around nearest-neighbor distances initially increases upon
supercooling the liquid but reaches a maximum and begins to
slowly decrease when the liquid is cooled further. It is not
known if the peak height continues to decrease or saturates at
low temperatures.

IV. FOUR-POINT STRUCTURE FACTOR S4(k� ,q� ; t)

A. Anisotropy of S4(k� ,q� ; t)

To investigate the correlations between microscopic self-
intermediate scattering functions at larger distances, we ex-

amined the structure factor corresponding to G4�k� ,r� ; t�,

S4�k�,q� ;t� = 1 +
N

V
H4�k�,q� ;t� , �14�

where H4�k� ,q� ; t� is the Fourier transform of G4�k� ,r� ; t�
−Fs

2�k ; t�. For q� �0,

S4�k�,q� ;t� =
1

N
	
n,m

�F̂n�k� ;t�F̂m�− k� ;t�e−iq� ·r�nm�0�� . �15�

Again, we fix 
k�
 to be around the position of the first peak of
the static structure factor for the A particles 
k�
=7.25.

Functions similar to Eq. �15� have been used to examine a
growing dynamic length scale in glass forming liquids
�4,9–11,16�. In Fig. 5 we show results similar to those pre-
sented in, e.g., Ref. �9�. Specifically, we show in S4�k� ,q� � ; t�
for T=0.45 at times t=0, 0.1	�, 	�, and 10	�. Note that for
t=0, S4�k� ,q� ;0�=S�q� where S�q� is the static structure factor
for the A particles. We would like to emphasize that results
shown in Fig. 5 are for one specific angle between k� and q�;
the angle between q� and k� is zero. It should be noted that for

FIG. 3. The time dependence of the first peak of L2�k ,r ;	�� for
T=1.0, 0.9, 0.8, 0.6, 0.55, 0.5, 0.47, and 0.45 shown from l�.
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FIG. 4. The time at which the first peak of L2�k ,r ; t� reaches its
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FIG. 5. The four-point correlation function S4�k� ,q� ; t� for 
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 is the angle between k� and q� calculated at t=0, 0.1 	�, 	�,
and 10	� for a temperature T=0.45.
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this angle between vectors q� and k�, S4 does not depend on
time for q=k. This follows from definition �15�; S4�k� ,k� ; t�
=S�k� at all times.

The usual interpretation of results shown in Fig. 5 is that
the increase of S4�k� ,q� ; t� at small q values suggests a grow-
ing dynamic length scale ��t�. To find the dynamic length
scale, it is common to fit the small q behavior to a functional
form and to examine the scaling of S4�k� ,q� ; t� for small q. In
such a procedure, it is implicitly assumed that S4�k� ,q� ; t� is
isotropic.

However, we find that S4�k� ,q� ; t� is not isotropic and de-
pends on the angle between k� and q� . Shown in Fig. 6 is
S4�k� ,q� ,	�� for T=0.45 and for 
=0°, 90°, and 180° where 

is the angle between k� and q� . The anisotropy of S4�k� ,q� ; t�
adds a complication in finding a unique ��t�. The larger val-
ues of S4�k� ,q� ; t� for the smaller q� values corresponding to

=90° suggest a longer length scale for atoms moving in the
same direction than atoms moving in different directions. As
we will see in Sec. IV C, this conclusion is consistent with
the observed anisotropy of the dynamic correlation length.

Since we do not expect any slowly decaying with increas-
ing distance spatial correlations between self-intermediate

scattering functions pertaining to different particles, we can
safely assume that the q� →0 limit of S4�k� ,q� ; t� is well de-
fined and it does not depend on the angle between vectors q�
and k�. However, the results shown in Fig. 6 suggest that the
correlation length may be anisotropic. We should recall here
that anisotropy in the correlated motion of particles on the �
relaxation time scale was concluded by Doliwa and Heuer
�20�. We would like to emphasize that our results are consis-
tent with an anisotropic dynamic correlation length but do
not prove it. To conclusively prove such an anisotropy, one
would need to simulate bigger systems in order to be able to
examine the structure factor at smaller wave vectors q� .

We examine the anisotropy of the four-point structure fac-
tor by calculating the projection of S4�k� ,q� ; t� onto the Leg-
endre polynomials,

In�k,q;t� =
2n + 1

4�
� S4�k�,q� ;t�Pn�k�̂ · q�̂�dq�̂ . �16�

Shown in Fig. 7�a� is I0�k ,q ;	�� �i.e., the angular average of
S4� for T=1.0, 0.8, 0.6, 0.55, and 0.45. In most simulational
studies of four-point correlation functions, the correlation
functions are shown as averages over different directions of
wave vector q�; thus the results are similar to what is shown
in Fig. 7�a�. Note, however, that an average over different
directions of q� may not correspond to an angular average if
the same number of wave vectors corresponding to each
angle between q� and k� are not used in the average. Therefore,
different routines to determine S4�k� ,q� ; t� can lead to different
conclusions, and our results demonstrate that the averaging
procedure needs to be performed with caution.

Shown in Fig. 7�b� is I2�k ,q ;	�� for T=1.0, 0.8, 0.6, 0.55,
and 0.45. The nonzero values of I2 is a consequence of S4�k��
being anisotropic on the � relaxation time scale. The aniso-
tropy is largest for the smallest q values. The temperature
dependence of I2�k ,q0 ;	�� is shown as an inset to Fig. 7�b�.
The anisotropy at the � relaxation time for q0 grows with
decreasing temperature until around T=0.5 then it remains
approximately constant.
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FIG. 6. The four-point correlation function S4�k� ,q� ;	�� for 


=0°, 90°, and 180°, where 
 is the angle between q� and k� calculated
for T=0.45.
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between k� and q� of S4�k� ,q� ; t�. If S4�k� ,q� ; t� does not depend on 
 then I2�k ,q ; t� would be zero. Shown in the inset is I2�k ,q0 ;	�� where q0

is the smallest wave vector allowed due to periodic boundary conditions as a function of temperature. The symbols in �a� and �b� correspond
to the same temperatures.
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B. Time dependence of the anisotropy of S4(k� ,q�0 ; t)

We now turn to the examination of the time dependence
of the anisotropy of S4�k� ,q� ; t�. To this end, we set 
q� 
 to be
equal to the smallest wave vector allowed for our finite-size
simulation box 
q� 
=q0=2� /L and calculate S4�k� ,q�0 ; t� as a
function of time for different angles between k� and q� . Results
for T=0.45 are shown in Fig. 8, and the vertical line marks
the � relaxation time. We see that S4�k� ,q� ; t� grows with in-
creasing time then reaches a maximum that depends on 
 for
a time around the � relaxation time and finally decays to one
at long times. Note that while the position of the maximum is
around the � relaxation time, the specific time at which the
peak is reached depends on the angle between k� and q� .

To determine the time dependence of the anisotropy, we
examined I2�k ,q0 ; t� where q0 is the smallest wave vector
allowed due to periodic boundary condition q0=2� /L. As
seen in Fig. 9, I2�k ,q0 ; t� is zero at short and long times but
develops a peak at intermediate times. Note that the shape of
I2�k ,q0 ; t� is somewhat similar to that of L2�k ,rpeak ; t� shown
in Fig. 3 except that I2�k ,q0 ; t� is negative �the last fact could
be expected from the relation between L2�k ,r ; t� and
I2�k ,q ; t��. The peak height increases with decreasing tem-

perature until T=0.47, where it starts to decrease. However,
as we show in the next subsection, the correlation lengths
obtained from the fits at T=0.45 are all close to or greater
than half the box length, and it is currently unknown if the
decrease in the peak height is a finite-size effect.

To determine when the anisotropy is a maximum at large
distances, we found the time when I2�k ,q0 ; t� reaches its
maximum value 	I2. Shown in Fig. 10 is the temperature
dependence of 	I2 �circles� compared to 	� �squares� and the
peak position of the standard non-Gaussian parameter 	ng
�diamonds�. We notice similar trends as with the time corre-
sponding to the maximum value of L2�k ,rmax ; t� in that the
	I2 occurs around 	ng and has a similar temperature depen-
dence.

C. Effective dynamic correlation length

There has been some effort to determine the dynamic cor-
relation length by fitting functions similar to S4�k� ,q� ; t� to
different functional forms �9,11�. Lacevic et al. �9� used an
Ornstein-Zernicke form A / �1+ ��q�2� to fit an overlap func-
tion S4

ol�q� that is isotropic by design, while Toninelli et al.
�11� used �A−C� / �1+ ��q���+C to fit a function similar to
the one studied in this work. Lacevic et al. found a correla-
tion length growing with time until the peak time in the
associated four-point susceptibility and then decreasing. In
contrast, Toninelli et al. found a correlation length growing
with time even after the peak in the associated susceptibility.
It is possible that the difference between these findings was
related to the presence of the new parameter � in the fit used
by Toninelli et al. More recently, Berthier et al. �6� used
A / �1+ ��q��� and found a value of �=2.4 provided good fits
to the same correlation function studied in the Ref. �6�. Here
we focus on a possible anisotropy of the correlation length at
the time equal to the � relaxation time and we leave its time
dependence for a future study.

We started with

S4�k�,q� ;	�� =
S4�k�,0;	�� − C

1 + ��
q�2 + �aq�4 + C , �17�

as a fitting function to extract the dynamic correlation length
�
. In Eq. �17� we added a constant C because of the growing
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baseline which can be seen in Fig. 5. We note that since we
do not expect any slowly decaying spatial correlations, in the
limit q→0, S4�k� ,q� ;	�� should be independent on the angle
between k� and q� . In contrast, in Eq. �17� we allowed for the
dependence of the dynamic correlation length �
 on the angle

 between k� and q� . While fits to Eq. �17� were very good for
q�3, the results were not satisfactory. The values of
S4�k� ,0 ; t� were not consistent for different angles 
 between
k� and q� and the length scales �
 obtained from the fits were
greater than 40 at the lowest temperatures. To solve these
problems, we performed the procedure described below. We
emphasize that simulations of larger systems need to be per-
formed to test this procedure and its results.

Initially, we attempted to set C and a to zero, thus fitting
functions to the Ornstein-Zernicke form. We set a to zero
since it was always very small in the previously attempted
fitting procedure. If this form is correct then one could ide-
ally find S4�k� ,0 ; t� by fitting S4�k� ,q� ; t� for different angles
between k� and q� under the condition that one obtains consis-
tent results. We did not obtain consistent results for S4�k� ,0 ; t�
with this procedure and also found that we needed to fix the
value of S4�k� ,0 ; t� to obtain values of �
 less than 50. To
obtain an estimate for S4�k� ,0 ; t�, we fit I0�k ,q ; t� for q�1.5
to an Ornstein-Zernicke form and then set the value of
S4�k� ,0 ; t�= I0�k ,0 ; t� where I0�k ,0 , t� is obtained from the
fits. Note that this is consistent with our assumption that the
limit limq�→0S4�k� ,q� ; t� does not depend on the angle between
k� and q� .

If the glass transition is governed by a growing dynamic
length scale then it is expected that for small enough q� that
S4�k� ,q� ;	�� /S4�k� ,0 ;	�� versus �q should be described by a
universal function F�q�� that is independent of temperature
�7�. To check if this scaling holds for I0�k ,q ;	��, we plotted
I0�k ,q ;	�� / I0�k ,0 ;	�� versus q�iso where �iso and I0�k ,0 ; t�
are obtained from the fits described above and the scaling
function 1 / �1+x2�, which is shown in Fig. 11. The subscript
iso in �iso emphasizes that this correlation length was ob-

tained from the orientational average I0�k ,q ;	�� of the four-
point structure factor S4�k� ,q� ;	��. It appears that this scaling
holds well for the small q values, but we will again caution
that simulations of larger systems need to be performed to
verify this observation. Shown as the inset to the figure is
I0�k ,q ;	�� / I0�k ,0 ;	�� versus q�iso for wave vectors with a
magnitude less than five, and the deviation from the scaling
behavior is obvious for the larger wave vectors. The correla-
tion length obtained from I0�k ,q ;	�� is on the order of a
particle diameter at the larger temperatures but grows to
about five particle diameters at T=0.45. This growth of the
correlation length is consistent with recent results of Berthier
et al. �5�. Note, however, that at the lowest temperature �iso is
comparable to the half the length of the simulation cell,
which is the largest length we expect to be able to extract
from the simulation without finite-size effects.

With the values of S4�k� ,0 ;	�� fixed using the fits from
I0�k� ,0 ;	��, we fit S4�k� ,q� ;	�� where the angle 
 between k�
and q� are 0°, 45°, and 90° to an Ornstein-Zernicke form
where only the correlation length is allowed to vary. We
show S4�k� ,q� ;	�� /S4�k� ,0 ;	�� versus q�
, where �
 depends
on the angle 
 between k� and q� , for T=0.8, 0.6, 0.55, 0.5,
0.47, and 0.45 in Fig. 12. Only wave vectors with a magni-
tude less than 1.5 are shown, which corresponds to the four
smallest wave vectors allowed due to periodic boundary con-
ditions at each temperature and angle. The overlap is very
good for the 18 functions shown and shown in the inset to
Fig. 12 are the correlation lengths. They depend on the angle
between k� and q� , and the correlation lengths are largest for

=90° and smallest for 
=0°. Again, we observe that for 

=90°, the correlation lengths are larger than half the simula-
tion cell for T=0.5 �where �904.5� and lower. This strongly
suggests that already at T=0.5, simulations of larger systems
are needed in order to verify the present results.

In previous studies it has been found that the correlation
length is related to the � relaxation time according to a
power law ��	�

� �6,9,30�. Recently, this behavior was ratio-
nalized by the inhomogeneous mode-coupling theory �7�. We
fitted the correlation lengths to a power law of the form a	�

�

and obtained values ranging from �=0.22�0.01 for 
=0°
and �=0.18�0.01 for 
=90° �Fig. 9�. Also shown in Fig. 9
is �iso obtained from I0�k ,q ; t�; in this case we found �0
=0.21�0.01, which is very close to the previously reported
value of 0.22 �30�. Using this analysis, we find that the dy-
namic correlation length is not only different for different
angles between k� and q� , but they also grow at a different rate
as the temperature is lowered and the � relaxation time in-
creases. The range of correlations for particles moving in the
same direction are longer than for particles moving in differ-
ent directions, but it increases slower with decreasing tem-
perature. The change in the correlation length is reminiscent
of the crossover from stringlike regions to more compact
regions discussed by Stevenson et al. �31�; but our simula-
tions are not close enough to the glass transition to verify or
refute this crossover.

Another scaling prediction is that S4�k� ,0 ;	���	�
�. To test

this prediction, we fit I0�k ,0 ;	�� to the form a	�
�. In this way

we obtain �0.37, which is again very close to the value of
0.4 reported in Ref. �30�. These values are slightly smaller
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than the recent inhomogeneous mode-coupling theory pre-
diction of �=0.5 �7�.

V. CONCLUSIONS

There have been many studies looking for a growing
length scale that accompanies the drastic slowing down of
the dynamics in supercooled and glass forming liquids. Re-
cently, one such possibility was examined by Biroli et al.
�32� where they associated a growing correlation length with
a point-to-set correlation function in a model supercooled
liquid. Ever since the observation of heterogeneous dynam-
ics in supercooled and glassy systems, it has been suggested
that a dynamic correlation length may be associated with the
size of the dynamically heterogeneous regions. Since two-
point correlation functions are inadequate to describe the cor-
related motion of atoms and correlated relaxation of the
fluid, four-point correlation functions have been developed to
examine this cooperative motion. Normally these correlation
functions are assumed to be isotropic or are isotropic by
design. However, it has been observed that correlated dis-
placements of particles are not isotropic; thus it is not sur-
prising that the four-point correlation functions might also
not be isotropic.

In this work, we examined the anisotropy of a four-point
correlation function. We found that for distances comparable
to the nearest-neighbor distance, the anisotropy initially in-
creases upon supercooling the liquid but then seems to satu-
rate or even decrease at the lowest temperatures. The pos-
sible decrease suggests the possibility that the anisotropy is a
transient feature only for mildly supercooled liquids. How-
ever, the decrease begins when we find that a dynamics cor-
relation length, for 
=90°, is around half the size of the
simulation cell and thus it is possible that it is a finite-size
effect. Furthermore, the time scale that this anisotropy is a
maximum for nearest-neighbor distances is around the � re-

laxation time at higher temperatures but then it increases
slower with decreasing temperature than the � relaxation
time and roughly follows the time corresponding to the peak
position of the non-Gaussian parameter �2�t�, 	ng.

For larger distances, we also found anisotropy of the four-
point correlation function. We studied the time dependence
of this longer ranged anisotropy and found that the time at
which it is the largest also approximately follows 	ng in the
supercooled liquid. The longer-range anisotropy introduces a
challenge in determining the growing dynamic length scale �
in glass forming systems. This difficulty is compounded by
the relatively small system sizes usually employed in simu-
lational studies of the glass transition. We developed a pro-
cedure to extract effective dynamic length scales, but larger
system sizes need to be simulated to verify our results. Our
procedure suggests that the dynamic correlation length is dif-
ferent depending on the relative direction of motion of two
particles within the fluid. Furthermore, this anisotropic
length scale also increases at a different rate with decreasing
temperature.

We hope that our present work will stimulate future re-
search in two different directions. First, we advocate the
need to study larger systems and to perform serious finite-
size analysis of the results �33–35�. In particular, we expect
that in the small q� limit, the four-point structure factor
S4�k� ,q� ; t� is isotropic and we thus we expect its anisotropic
component I2�k ,q ; t� to vanish in the small q� limit. These
expectations should be confirmed by simulations of larger
systems. Second, we hope that this work will stimulate a
development of a theoretical model that describes the aniso-
tropy of four-point dynamic correlations.
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