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Glass formation and crystallization of a simple monatomic liquid
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A simple monatomic system in two dimensions with a double-well interaction potential is investigated in a
wide range of temperatures by molecular-dynamics simulation. The system is melted and equilibrated well
above the melting temperature, and then it is quenched to a temperature 88% below the melting temperature at
several cooling rates to produce an amorphous state. Various thermodynamic quantities are measured as
functions of temperature while the system is heated at a constant rate. The glass transition is observed with a
sudden increase in the energy and the glass transition temperature is shown to be an increasing function of the
cooling rate in the preparation process of the amorphous state. In a relatively high-temperature region, the
system gradually transforms into crystals, and the time-temperature-transformation curve shows a typical nose
shape. It is found that the transformation time to a crystalline state is the shortest at a temperature 14—15 %
below the melting temperature and that at sufficiently low temperatures the system does not transform into a
crystalline state within an observation time in our simulation. This indicates that a long-lived glassy state is

realized.
DOLI: 10.1103/PhysRevE.79.051501

I. INTRODUCTION

For a long time, a lot of studies have been made in un-
derstanding the glass transition by experimental, theoretical,
and computational methods [1-3]. One of the difficulties in
understanding the glass transition arises from the fact that
almost all glass-forming materials consist of many constitu-
ents. Even in a computer simulation, more than two compo-
nents are needed in order to avoid crystallization [4-6]. The
problem in a simple monatomic system is that crystallization
occurs in a relatively short time. Since a long-time simula-
tion is needed to investigate the slow dynamics around the
glass transition point, a binary mixture is usually investi-
gated.

In order to avoid the crystallization of simple liquids in
simulations, the Dzugutov potential was proposed [7]. The
Dzugutov potential has an additional maximum to the
Lennard-Jones (LJ) potential at a range typical of the next-
nearest-neighbor coordination distance in close-packed crys-
tals, which suppresses the crystallization. Indeed, the system
remains in a metastable supercooled state for a long time and
shows some characteristic behaviors of glass-forming liquids
[7,8]. However, it turned out to form a dodecagonal quasic-
rystal by freezing in a subsequent simulation [9].

In fact, features of a glass formation are incompletely
understood even for the simplest system, so it is attractive to
carry out the study using a sophisticated monatomic system.
In multicomponent systems, the relaxation involves both the
topological and the chemical orderings. A spherically inter-
acting one-component model system provides an opportunity
for separating these contributions and enables us to explore
the topological effect on the relaxation dynamics around the
glass transition point. It is useful for comparison with theo-
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ries, since most theoretical works [10-15] assume a simple
system.

For the purpose of studying the glass formation of a
simple liquid, we employ a monatomic model system in two
dimensions with a double-well interaction potential, the
Lennard-Jones-Gauss (LJG) potential [16,17]. In a previous
paper [18], we showed that the LJG system can be vitrified
in two dimensions and the glassy state at low temperatures is
stable for a fairly long time in spite of a simple monatomic
potential. In addition, for three-dimensional (3D) systems the
glass-forming ability of the LJG system has been tested and
discussed [19].

In this paper, we show the further study of the glassy
feature in this LJG system. In addition, we investigate the
aging-induced crystallization with molecular-dynamics (MD)
simulations. In general simulations, the model system is cho-
sen to realize a stable supercooled liquid state, while the
crystallization is highly suppressed. Therefore, correct de-
scriptions of the relaxation process of the glass-forming lig-
uids are still not really understood, and we focus attention on
this point.

This paper is organized as follows. In Sec. II, we explain
our model and methods of MD simulation in detail. We
present the evidence of vitrification of this system in Sec.
IIT A and we show the results of the crystallization process in
Sec. III B. We close with concluding remarks in Sec. I'V.

II. MODEL POTENTIAL

We consider a system of atoms which interact isotropi-
cally through the LJG potential

2 6 2
V(r)=60{(r_;))l _2(r—:> }—eexp(—%). (1)

The LJG potential consists of the LJ potential and a pocket
represented by the Gaussian function. It forms a double-well
potential for most values of the parameters with the second
well at position rg, of depth € and width o. This kind of
effective potential is known to exist in metals. The general
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FIG. 1. (Color online) The LIG potential for the parameters
rg=147r;, €=1.5¢, and 0>=0.02r3.

form of pair potentials in metals consists of a strongly repul-
sive core plus a decaying oscillatory term [20]. The LIG
potential can be understood as such an oscillatory potential,
cut off after the second minimum. This potential was pro-
posed for the self-assembly of two-dimensional monatomic
complex crystals and quasicrystals [ 16]. It has also been used
as a model of liquid water [21] and as a potential for stabi-
lization of a given structure [22,23]. We have found stable
glassy states at some parameter regions.

Here, we fix the parameters r;=1.47r,, €=1.5¢,, and o>
=0.02r3. Figure 1 shows the LJG potential with these param-
eters. This set of parameters produces the pentagon-triangle
phase in the ground state [17]. The unit of length, energy,
and time in the present simulation are ry, €, and 7
= (mrj/ €)', respectively.

We perform a constant-volume MD simulation for 2500
atoms on two-dimensional space with periodic boundary
conditions (PBCs). The size of the simulation box is chosen
so that the number density becomes p=1.0. We employ a
Verlet algorithm with time mesh of 0.017.

III. RESULTS AND DISCUSSIONS

A. Glass transition

In order to determine the glass transition point, we follow
the procedure employed in the thermodynamic measurement
[24]. Namely, we quench the system much below the melting
temperature T:n, and anneal it for some time. Then we heat
the system at a constant rate and measure the energy of the
system. The glass transition temperature T; is identified by a
change in the slope of E vs T graph.

We prepare an equilibrium liquid state as the initial con-
dition at T*=kgT/ €y=2.2, which is above T, =0.43, and then
cool the system down to a target temperature with the veloc-
ity scaling. When the target temperature is close to but below
T, the system transforms into a crystalline state after some
time. However, the target temperature is well below T’ ; the
system remains in the amorphous state even for a long-time
run. Figure 2 shows tiling structures in real space and dif-
fraction images of a glass and crystal after (3.5X 10°)7. We
determined tilings by drawing a line between the particles
within a cutoff radius, where the cutoff radius is chosen as
the first minimum of the radial-distribution function of the
system. Triangle and pentagon tiles are essential for stable
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crystal (T*=0.35)

basic tiles

FIG. 2. (Color online) Tiling structures in real space and diffrac-
tion images of a glass and crystal after a long run. Upper panels are
the structure of crystal at 7°=0.35 and lower ones are that of glass
at 7°=0.10. Left panels show the tiling structures in real space.
These are constructed by basic tiles. Right panels show the diffrac-
tion images.

structures of this system. In the glassy state, no periodic or-
der is observed.

Figure 3 shows the radial distribution function of a glassy
state. The position of the first peak is at 0.93 and the second
peak is at 1.50. The position of the second peak approxi-
mately coincides with the second minimum of LJG potential.
The position of the first peak is slightly inner than that of the
first minimum of the potential. Here, we consider a regular
pentagon, and if the distance between second nearest par-
ticles has the value of 1.47, the distance between nearest
particles becomes about 0.91. This means the potential used
in this study favors a pentagonal local order especially be-
cause of the position of the second minimum. This pentago-
nal local order is essential for the stability of the glass in this
system. The third and fourth peaks represent the existence of
the local structure consisting of one pentagon and one tri-
angle (see Fig. 3). These tiles share an edge and make an
ordered arrangement in a crystalline state, while it randomly
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FIG. 3. (Color online) The radial distribution function of a
glassy state at 7°=0.1 and local structures.
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FIG. 4. (Color online) The temperature dependence of the total
energy in a heating process from a glassy state. If the system can be
described only by the term of lattice vibration, plots are supposed to
lie on the line in above figure.

spreads out all over the system in a glassy state (see Fig. 2).

Figure 4 shows the change in the total energy in a heating
process from a glassy state at 7°=0.05 prepared with cooling
rate yq—lo 2€y/kpT. The heating rate from a glassy state is
¥,=1073€y/ k. The slope of the black line in Fig. 4 is about
2, which represents the energy change due to the vibration.
Simulation data lie on the black line at lower temperatures,
which indicates that the specific heat is determined by the
vibrational motion of atoms. However, plots start to deviate
from the line at 7%~ 0.38, which is below the melting tem-
perature, so that an additional effect appears in addition to
that of vibration. Crystallization does not occur in this heat-
ing process, which is confirmed by the static structure factor.
That means the system transforms from a glassy state into a
supercooled state as the temperature is increased. If we take
v,=107*€,/ kT as the heating rate, the sign of crystallization
appears in the heating process, so we cannot decide the glass
transition point with confidence. Thus, we conclude that the
glass transition temperature is 7~ 0.38 in this sample. We
perform the heating simulation starting from glassy samples
prepared by different cooling rates and determine YZ for each
sample. Figure 5 shows the cooling rate dependence of T“
We find that Tg is an increasing function of the cooling rate
which is consistent with experiments [25].

B. Time-temperature-transformation diagram

In this section, we investigate the structural transforma-
tion into a crystal in the real space. We first prepared an
equilibrium liquid state at 7°=0.4 above the melting tem-
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FIG. 5. (Color online) The cooling rate dependence of T;
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FIG. 6. (Color online) (a) Three characteristic tiling structures.
(b) The time dependence of the number of characteristic tiling
structures. The curve (all) represents the number of atoms sur-
rounded by any of the pentagon, triangle, or square tiles. The curves
PPPT, PPP, and PPTS correspond to the structures shown in (a).

perature T, = 0.34. Then, we quenched the system to several
target temperatures instantaneously. After the quenching, we
control the system temperature using a Nosé-Hoover thermo-
stat and allowed it to relax at this temperature. We employ
the instantaneous cooling in order to avoid any nucleation
during the cooling process which may hinder proper com-
parison of the crystallization process. The simulation cell is
made large enough so that the system feels zero pressure at
all times. Under the free boundary conditions (FBCs), par-
ticles on the surface can easily move, so rearrangement of
particles can frequently occur, compared with periodic
boundary conditions. Since crystallization proceeds more
drastically, we can determine easily the time when the sys-
tem crystallizes. The number of atoms in the system is N
=1024 and the leapfrog algorithm is employed.

We checked the time needed for crystallization at each
temperature  and  determined a  time-temperature-
transformation (TTT) diagram. In order to determine the
crystallization time, we focus on the formation of three char-
acteristic tiling structures, PPPT, PPP, and PPTS, which con-
sist of pentagons, squares, and triangles shown in Fig. 6(a).
Figure 6(b) shows the time dependence of the number of
atoms whose surroundings can be identified as the three
characteristic tiling structures. The curve (all) shows the
number of particles surrounded by any of the pentagons, tri-
angles or squares. This value is related to the potential en-
ergy and becomes constant when the system reaches a crys-
talline state. At relatively high temperatures, the transition
from the supercooled liquid to a crystal is rather sharp and
we can determine the crystallization time without ambiguity.
As the temperature is reduced, the transformation tends to be
less sharp, and we determined the transition time by observ-
ing diffraction patterns as well as the evolution of tilings.

Figure 7 shows the crystallization time as a function of
temperature, which is known as a TTT diagram. This dia-
gram indicates that the crystallization time becomes the
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FIG. 7. (Color online) The time-temperature-transformation dia-
gram for monatomic LJ and LJG liquids.

shortest at ~0.867, and it is longer than 1077 at 0.57,,. If
one uses the values of m, ry, and €, relevant for the LJ
potential of Ar, this time of 1077 corresponds to 10 us. The
glass transition temperature TZ shown in Fig. 7 is determined
under the following condition. First, we prepared a glassy
sample by instantaneous cooling to 0.157,. After that, the
sample was annealed at this temperature with different an-
nealing times: 107, 10?7, 1037, 10*7, and 10°7. We used these
five samples as initial states for determination of glass tran-
sition. The temperature was increased from these initial
states by 1072¢y/kp a step and the energy was determined by
its average for 17 period at each temperature step. Finally,
we determined T; by a sudden increase in E vs T graph. We
found that TZ does not depend on the waiting time and is
located at the temperature which a crystallization time is the
shortest.

For comparison, the results for a monatomic LJ system
are also plotted in Fig. 7. Consequently, the LIG system has
a much longer crystallization time than the LJ system, and
we can clearly see the temperature dependence of the TTT
diagram in the LJG system. It shows a typical nose shape,
which has been observed by experiments for various glass-
forming materials [26-28]. A similar TTT diagram is also
found by MD simulations with some empirical potentials for
metal [29,30]. Our system has a much longer crystallization
time than that reported in these papers in spite of the simpler
shape of our interatomic potential.

A LJ liquid rapidly transforms into the triangle lattice at a
few thousand MD steps. At low temperatures, particles con-
dense into some clusters which are separated by some voids,
and then such voids are eliminated gradually. On the other
hand, at high temperatures, the system can transform in such
a way that voids do not appear because particles can move
more freely. This is the reason that the crystallization time in
a LJ system becomes slightly longer at higher temperatures.

Figure 8 shows results for the relaxation time dependence
of potential energy at temperatures from 0.338 to 0.33 and
from 0.23 to 0.20. It can be found from Fig. 8(a) that the
system at temperatures very close to T, (=0.34) behaves as if
it is an equilibrium liquid state for a while, and it drastically
transforms into a crystalline state by nucleation. The crystal-
lization time in this temperature region is distributed because
it depends on whether nucleation occurs or not by chance.
Figure 9 shows one example of the process of nucleation and
growth at temperatures close to T, In Fig. 9, the nucleation
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FIG. 8. (Color online) Time dependence of potential energy at
several temperatures. (a) shows the region close to T, 0.33<T*
=0.338. (b) shows the region at low temperatures, 0.20=T"
=0.23.

(a) occurs in the inner part, and (b) grows rapidly. However
in a while, (c) the order is destroyed from the outer side.
Since particles, especially on the surface, can move around
rather freely, rearrangement can easily occur. Therefore, the
system can remove defects and (d) eventually reaches a per-

FIG. 9. (Color online) The process of nucleation and growth at
a temperature close to T:n (a) The nucleation occurs in the center.
(b) The nucleation grows rapidly. (c) A part of crystalline phase is
destroyed and rearrangement occurs. (d) Eventually, the system be-
comes an almost perfect crystal.
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FIG. 10. (Color online) The system-size dependence of the time-
temperature-transformation diagram for monatomic LJG liquids.
The numbers of particles in each system are 1024 and 4096. The
temperature range in N=4096 system is from 0.24 to 0.341.

fect crystal. In Fig. 8(b), the potential energy at a low tem-
perature shows a higher value for long time scales compared
with those at higher temperatures. It indicates that the system
at sufficiently low temperatures remains in a metastable state
for a long time.

Figure 10 shows the system-size dependence of TTT dia-
gram. The numbers of particles in each system are N=1024
and 4096. In both systems, a longer time is needed for crys-
tallization near Tfn, and the temperature which has the short-
est crystallization time is almost the same. 7, in a larger
system is higher than that in a smaller system. This tendency
agrees with the size dependence of T, found in confined
systems [31]. We also find that the shortest time in a large
system becomes longer than that of small systems. It is be-
cause in a large system, a much longer time is needed for the
spread of crystalline phase to the whole system. However, at
lower temperatures, the growth of the crystallization time is
suppressed in a large system. The reason of this result is that
the state is different between two systems at the time when
the system is assumed to have crystallized. At this time,
many samples in the N=4096 system are a polycrystalline
state which has more than two domains. On the other hand,
the N=1024 system has less domains and sometimes one
domain spreads to the whole system. If we determine the
crystallization time when the system has one or two do-
mains, a large system will take a longer time to crystallize.

We also investigated the crystallization time under PBCs.
The boundary condition dependence of the TTT diagram is
shown in Fig. 11. The number of particles is 1024 in both
systems. It is difficult to determine the crystallization time
clearly under PBCs in the same way as under FBCs. In both
systems, first nucleation occurs at almost same time. The
difference appears in a subsequent process. In a system under
FBCs, if the nucleus starts to grow, a crystal phase spreads
rapidly to the entire system. It is more difficult for the
nucleus to grow under PBCs and a perfect crystal cannot be
obtained unlike under FBCs. We determine the crystalliza-
tion time under PBCs by the potential energy, which remains
nearly constant after a long time scale (i.e., the crystallization
time). The definition of crystallization time is different from
one in FBCs system. Under FBCs, we define the crystalliza-
tion time as when the number of characteristic tiling struc-
tures becomes nearly constant. The similarities between
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FIG. 11. (Color online) The boundary condition dependence of
the time-temperature-transformation diagram for monatomic LJG
liquids.

these two systems are that the crystallization time becomes
longer at temperatures close to 7,, and it is the shortest at a
temperature 15% below T,. The difference appears in a be-
havior at low temperatures. The growth of the crystallization
time in PBCs system is suppressed compared to that of FBCs
system. Also in this case, the state is different between two
systems at the time when the system is assumed to have
crystallized. A crystalline state in PBCs system is less perfect
than that of FBCs system. It is more difficult in PBCs system
to get a perfect crystal because of boundary constraint.

IV. CONCLUSIONS

We presented strong evidence of vitrification of a simple
monatomic liquid in two dimensions by an adequate choice
of LJG parameters. We have shown that the glassy state can
survive a fairly long time at low temperatures and the glass
transition temperature is an increasing function of the cool-
ing rate in the preparation process of the amorphous state.
The Gaussian part of the LJG potential stabilizes the pen-
tagonal configuration and packing of pentagons produces
frustration in crystallization. Two competing length scales
and the local structure made by them can have a great impact
on the degree of disorder in the system, which leads to sup-
press crystallization. It has also been shown that in 3D sys-
tems [19], the glassy state can be formed if the LJG potential
has appropriate parameters favoring the formation of an
icosahedral local order. The effect of this frustration with
packing is the origin of the stability of the glassy state.

One of the features of this system is that the time needed
for crystallization is sufficiently long. It enabled us to deter-
mine the TTT diagram of the simple system. It has a nose
shape and the transformation time into crystal is the shortest
at a temperature 14—15 % below T,,, which are independent
of the system size and boundary conditions. Above the glass
transition temperature, crystal nuclei rapidly spread to the
whole system. Below T;, the growth of crystal nuclei be-
comes slower as temperature is decreased, because rear-
rangement of atoms occurs less frequently.

This model will enable us to explore in greater detail the
mechanism of nucleation and growth processes in the mon-
atomic glass. The study in this direction will lead us to solve
the problem about slow nucleation kinetics of glass-forming
liquids. Due to simplicity of the model, one can use the LIG
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system for further study of other phenomena related to the
glass transition and for a detailed comparison with theories.
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