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In the original formulation of vibration-transit �V-T� theory for monatomic liquid dynamics, the transit
contribution to entropy was taken to be a universal constant, calibrated to the constant-volume entropy of
melting. This model suffers two deficiencies: �a� it does not account for experimental entropy differences of
�2% among elemental liquids and �b� it implies a value of zero for the transit contribution to internal energy.
The purpose of this paper is to correct these deficiencies. To this end, the V-T equation for entropy is fitted to
an overall accuracy of �0.1% to the available experimental high-temperature entropy data for elemental
liquids. The theory contains two nuclear motion contributions: �a� the dominant vibrational contribution
Svib�T /�0�, where T is temperature and �0 is the vibrational characteristic temperature, and �b� the transit
contribution Str�T /�tr�, where �tr is a scaling temperature for each liquid. The appearance of a common
functional form of Str for all the liquids studied is a property of the experimental data, when analyzed via the
V-T formula. The resulting Str implies the correct transit contribution to internal energy. The theoretical entropy
of melting is derived in a single formula applying to normal and anomalous melting alike. An ab initio
calculation of �0, based on density-functional theory, is reported for liquid Na and Cu. Comparison of these
calculations with the above analysis of experimental entropy data provides verification of V-T theory. In view
of the present results, techniques currently being applied in ab initio simulations of liquid properties can be
employed to advantage in the further testing and development of V-T theory.
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I. INTRODUCTION

We are interested in the theoretical description of the mo-
tion of nuclei �or atoms� in real monatomic liquids. For many
years, such descriptions have been available for gases and
crystals, consisting in each case of an approximate but trac-
table “zeroth-order” Hamiltonian, plus complicated but small
corrections. Zeroth order for a gas is free particle motion,
from Boltzmann �1�, and the correction is potential energy.
Zeroth order for a crystal is harmonic vibrational motion
�2,3� and the major correction is anharmonicity. These theo-
ries are extremely valuable, as the zeroth-order Hamiltonian
provides a complete orthogonal basis set for the nuclear mo-
tion. Hence for any physically meaningful problem, the mo-
tion can be analyzed and statistical mechanics can be con-
structed in terms of the basis set. These theories account for
equilibrium and nonequilibrium properties of gases and crys-
tals to an accuracy on the order of experimental accuracy.

Our proposal for this kind of theory for monatomic liq-
uids is vibration-transit �V-T� theory �4�. The key postulate is
that the many-body potential-energy surface is overwhelm-
ingly dominated by intersecting macroscopically equivalent
random valleys. The zeroth-order Hamiltonian expresses
normal-mode vibrational motion in a single random valley
harmonically extended to infinity. “Macroscopic equiva-
lence” means that this Hamiltonian for any random valley
gives the same statistical averages in the thermodynamic
limit �5�. The motion of nuclei is then composed of two
parts: brief periods of vibration in one random valley, inter-
spersed with transits which carry the system between neigh-
boring random valleys. Transits, each involving a small local
group of nuclei, proceed at a high rate throughout the liquid.
For calculation of the partition function, the effect of transits
is to correct the potential surface for the valley-valley inter-

sections �4,6�. For nonequilibrium calculations as, e.g., of
time correlation functions, the same transits provide the dif-
fusive jumps of the nuclei �4,7�. The vibrational motion is
tractable and is calibrated from potential properties of a
single random valley. The vibrational contribution to a ther-
modynamic function is around 90% of the total �4,6�. The
transit motion is complicated, but its contribution to a ther-
modynamic function is only around 10% �4,6�. This paper is
mainly concerned with the vibrational and transit contribu-
tions to the entropy of monatomic liquids.

In the original formulation of V-T theory, transits are ac-
counted for only insofar as they give the liquid access to all
the random valleys. This property is modeled by multiplying
the single random valley partition function by a universal
number, calibrated from the entropy of melting data �4�. For
Str, the transit contribution to entropy, this yields Str
=0.8NkB, the same for every monatomic liquid. Theory for
the total entropy agrees with high-temperature experimental
data for normal melting elements to within �0.2NkB ��4�,
Fig. 2�. Since 0.2NkB is approximately 2% of the total en-
tropy for the elemental liquids, the original V-T formulation
is quite satisfactory for such a simple model. Nevertheless,
the original formulation suffers two deficiencies which we
wish to correct here.

�1� Since Str is a universal constant, it does not account
for the different behaviors of individual liquids. However,
these differences largely account for the scatter which results
in theoretical errors of up to 2% in the entropy.

�2� Since Str does not depend on V or T, the consistent
contribution to all other thermodynamic functions is zero.
But we now know that the transit contribution to internal
energy at melt is around 10%, and this energy must be in-
cluded to get a good theoretical value of the melting tem-
perature Tm.
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To correct these deficiencies, we must account explicitly
for the V and T dependences of Str. To this end, in Sec. II we
extend the original analysis of experimental high-
temperature entropy data to normal and anomalous melting
elemental liquids. We find that all the data for Str�T� at con-
stant volume can be fitted to a single curve, providing a
scaling formula for the V and T dependences of Str. The
fitting yields values for each liquid of the vibrational charac-
teristic temperature �0 and of a new transit characteristic
temperature �tr. The original “universal entropy constant”
has a role in the present formulation, where it is expected to
vary weakly with V and also to vary weakly among the el-
emental liquids.

In liquids, as in all condensed-matter systems, the poten-
tial energy that governs the nuclear motion is the electronic
ground-state energy as a function of nuclear positions �2,6�.
Hence the parameters in the liquid dynamics Hamiltonian
can be calculated from electronic structure theory. Over the
years, pseudopotential perturbation theory for nearly-free-
electron �NFE� liquids has been extremely useful in the study
of liquid dynamics for real liquids �8–12�. This is the basis of
a series of tests of V-T theory for liquid Na �7,13–16�. Ex-
tension of this principle beyond NFE liquids, by means of
density-functional theory �DFT�, is the subject of Sec. III
First, V-T theory for the entropy of melting is reviewed and
a single equation covering normal and anomalous melting is
derived. Results from a new method �17,18�, using DFT to
calculate the vibrational parameters, are then applied to test
the V-T theory of entropy for Na and Cu. Ab initio tech-
niques are currently being applied to a wide range of liquid
dynamics studies, and their potential in testing and develop-
ing V-T theory is noted. In Sec. IV, broader application of the
present reformulation of the transit entropy is described. The
verification of V-T theory provided by the present ab initio
test is also discussed.

II. ANALYSIS OF EXPERIMENTAL ENTROPY DATA

In V-T theory, the liquid entropy is given by

S�V,T� = Svib�V,T� + Str�V,T� + Sel�V,T� . �1�

Svib describes the nuclear motion in a single random valley
harmonically extended to infinity. In classical statistical me-
chanics,

Svib�V,T� = 3NkB�ln�T/�0�V�� + 1� . �2�

The characteristic temperature �0 is given by

ln�kB�0� = �ln����� , �3�

where �¯� is the average over the vibrational normal-mode
frequencies �. The quantum corrections to Eq. �2� are
straightforward �6� and are negligible in the present analysis.
Str represents the transit motion of the nuclei. Sel represents
the excitation of electrons from their ground state with
nuclear positions fixed at a random structure. Two small con-
tributions, neglected here, express anharmonicity of the vi-
brational motion and the interaction between nuclear motion
and electronic excitations ��6�, Sec. 4�.

The experimental data are at ambient pressure, where the
volume increases with temperature. It is most helpful to re-
move the volume dependence of the experimental data, by
correcting Sexpt�V ,T� to Sexpt�Vm ,T�, where Vm is the fixed
volume of the liquid at melt. At fixed volume, the parameters
of our analysis are simply constants. With ��S /�V�T=�BT,
where � is the thermal expansion coefficient and BT is the
isothermal bulk modulus, the correction to second order is

Sexpt�Vm,T� = Sexpt�V,T� + �V�BT +
1

2
�2V2	 ���BT�

�V



T

,

�4�

where �= �Vm−V� /V. For a given liquid the analysis requires
highly accurate experimental data for the entropy and its first
volume correction, at a significant range of temperatures
above Tm. The liquids satisfying this requirement are ten
NFE metals. These are listed in Table I, along with Tm, the
highest temperature of our analysis Th, and references for the
experimental data.

TABLE I. Results of the high-temperature entropy analysis for ten liquids. Tm is the melting temperature
and Th is the highest temperature of the analysis. Experimental data are from the references cited. Sn and Ga
are anomalous melters �19�. Snuc is given by Eq. �6� and ��Sexpt� is the estimated mean error in the high-T
entropy data after correction to V=Vm �see Appendix A�.

Element
Tm

�K�
Th

�K� References
�0

�K�
�tr

�K�
Snuc�Tm�

�NkB�
��Sexpt�
�NkB�

Na 371.0 1100 �20–23� 97.6 570 7.725 0.07

K 336.4 1040 �22–25� 58.0 570 8.986 0.11

Rb 312.6 900 �22,24,26� 35.8 530 10.183 0.12

Cs 301.6 948 �22,24,26� 26.0 540 11.032 0.11

Al 933.5 1400 �24,27–29� 198.0 980 8.451 0.09

Pb 600.6 1023 �21,27,28,30� 53.3 580 11.041 0.09

In 429.8 920 �21,31� 74.2 600 9.040 0.16

Hg 234.3 630 �21,32� 52.5 260 8.284 0.04

Sn 505.1 1173 �21,27,30� 73.7 640 9.567 0.15

Ga 302.9 773 �21,33� 99.6 360 7.148 0.07
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The second volume correction is negligible until the first
volume correction reaches a magnitude around 0.3NkB. The
second volume correction is calculated for Hg since the data
are sufficient for this purpose �32�. For the alkali metals, the
second volume correction is estimated from experimental
data in the vicinity of the melt curve �34�. For the remaining
five liquids, the highest temperature Th is such that the sec-
ond volume correction can be neglected.

The analysis will now be confined to the volume Vm, and
the corresponding notation will be suppressed. The first step
is to find Str from Sexpt using Eq. �1� in the form

Str�T� = Sexpt�T� − Svib�T� − Sel�T� . �5�

Sel�T� is calculated from free-electron theory in the leading
Sommerfeld expansion. This is sufficiently accurate for the
liquids studied here, because Sel�T��0.02Sexpt�T� throughout
the analysis. Svib�T� is calculated from Eq. �2� with an initial
choice for �0. At this point, eight curves of Str vs T have
clear maxima, with the exceptions being Pb and Ga. For the
eight, the temperature at the maximum is denoted �tr, and we
graph Str�T� vs T /�tr. The curves look like they will fall on a
single line if they are shifted by various constants in Str. This
is done by varying �0 since a change in �0 changes Str by a
constant �Eqs. �2� and �5��. To bring the curves together, a
common value for the maximum of Str is needed. We choose
0.8NkB, the universal entropy constant of the original V-T
formulation. All ten liquids, including Pb and Ga, can be
shifted to lie on a single smooth curve, as shown in Fig. 1.

In this analysis, the actual data for Str�T� for each liquid is
a set of points with small scatter. Therefore, placing the ten
data sets on a single curve is not a precise operation. But the
scatter is so small that this imprecision is negligible. The
fitted values of �0 and �tr are listed in Table I. The total
nuclear motion entropy is

Snuc�T� = Svib�T� + Str�T� . �6�

To show its magnitude, Snuc�Tm� is also listed in Table I.

Aside from experimental data, the information used in the
analysis includes Eqs. �1�–�3�, plus the constraint that all the
curves must have a common maximum of 0.8NkB at T=�tr.
For each liquid, this information plus the parameters �0 and
�tr constitute a fit of the experimental entropy data at volume
Vm. However, we do not expect a precise common maximum
to hold for all monatomic liquids nor do we expect this maxi-
mum to be volume independent. For a more quantitative
analysis of this issue, we turn next to the entropy of melting.

III. TESTING V-T THEORY

A. Theory for the entropy of melting

The experimental information relating to the universality
of the transit entropy is the entropy of melting. To use this
information we need to express the entropy of melting theory
in terms of the entropy formulation of Sec. II. To keep the
notation simple we shall continue with our standard notation
for the liquid and use a superscript c to denote the crystal.
Hence S and Sc are the entropy of the liquid and crystal,
respectively, and Vm is the liquid volume at the melting tem-
perature Tm. The measured constant-pressure entropy of
melting, corrected so that both crystal and liquid have the
same volume Vm, is

	S�Vm,Tm� = S�Vm,Tm� − Sc�Vm,Tm� . �7�

For all the normal melting elements for which accurate ex-
perimental data are available to determine this quantity, the
mean and standard deviations are �6,19,35�

	S�Vm,Tm� = �0.80 � 0.10�NkB. �8�

The distribution is essentially the same when 	S is evaluated
at the crystal volume Vm

c , so the volume dependence is weak.
Among the elements for which accurate experimental data
are available, six do not belong to this distribution and are
called anomalous. Their values of 	S in units of NkB are
1.48 �Sn�, 2.37 �Ga�, 2.68 �Sb�, 2.62 �Bi�, 3.76 �Si�, and 3.85
�Ge�. The anomalous 	S’s are not only larger than the nor-
mal value, they are much larger. As a fiducial for elemental
metals, the liquid entropy at melt is Sm�10NkB. In compari-
son, the experimental error is �0.5%, the width of the nor-
mal 	S distribution is very small at �1%, and the anoma-
lous 	S is very large at 10–30%.

To rationalize these experimental results, we shall write
the V-T equation for 	S�Vm ,Tm�. The crystal entropy, with
classical harmonic vibrations, is

Sc�V,T� = 3NkB�ln�T/�0
c�V�� + 1� + Sel

c �V,T� . �9�

Then with Eqs. �1� and �2�,

	S�Vm,Tm� = 3NkB ln��0
c�Vm�/�0�Vm�� + Str�Vm,Tm�

+ 	Sel�Vm,Tm� . �10�

In normal melting, there is no significant change in the elec-
tronic structure, so that the internuclear forces are nearly the
same in liquid and crystal, and so is the electronic density of
states. Hence �0

c�Vm���0�Vm� and 	Sel�Vm ,Tm��0, so that
from Eq. �10�, 	S�Vm ,Tm��Str�Vm ,Tm�. It then follows from
Eq. �8� that

0.5 1 1.5 2 2.5
T / θ

tr
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FIG. 1. �Color online� Transit entropy for ten liquids calculated
from the data referenced in Table I. Within small scatter, all lie on a
single curve as a function of the scaled temperature, where �tr is a
material parameter. The scatter is small compared to the mean ex-
perimental error �Table I�.
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Str�Vm,Tm� � �0.80 � 0.10�NkB �11�

for normal melting elements.
In contrast, anomalous melting is accompanied by a

change in the electronic structure. Si and Ge melt from co-
valent crystal to metallic liquid ��36�, Chap. 3�, while Sb and
Bi melt from semimetal crystal to metallic liquid ��10�, p.
81�. For Sn and Ga, the electronic structure change upon
melting becomes apparent through compression. Si, Ge, Sb,
and Bi all have a triple point on the melt curve at modest
compression �37�, and so do Sn and Ga �37,38�. The inter-
pretation is that compression drives a relative shifting of
electronic bands, the shift being continuous with compres-
sion for the liquid, but being concentrated at the crystal-
crystal transition in the solid. Hence the melting is anoma-
lous in the vicinity of a triple point. The classic example is
Cs �39–41�, where melting is normal at ambient pressure but
becomes anomalous under compression when the triple point
is approached ��6�, Fig. 26.5�.

Because of the change in electronic structure, the internu-
clear forces and electronic density of states are significantly
different between liquid and crystal. Hence in addition to the
normal Str�0.8NkB on the right-hand side of Eq. �10�, the
terms in nuclear vibration and electronic excitation are both
important. These terms have a positive sum because melting
is entropy driven, and the term in ln��0

c /�0� is usually domi-
nant.

Let us apply these results to Fig. 1. Equation �11� holds
for normal melting, and since Str�Vm ,T� changes little be-
tween Tm and �tr, according to Fig. 1, Str�Vm ,�tr��0.8NkB
for normal melting elements. But this is a purely liquid quan-
tity, independent of the melting process, so this relation
should be valid for monatomic liquids in general. Let us
denote this common maximum 
�V�, a function of volume.
The above argument suggests


�Vm� � 0.8NkB. �12�

In Fig. 1, the approximation is taken to be an equality. In
principle, 
�V� is a material parameter but, as the following
test shows, we are not yet able to resolve specific material
dependence.

B. Testing through ab initio calculations

The test reported here is the comparison of �0 from ab
initio calculations with results from the analysis of experi-
ment for Na and Cu. The technique �17,18� calculates the
electronic ground state by DFT �using the VASP code �42��
for a system of N atoms in a cubic cell, with periodic bound-
ary conditions on the nuclear positions. The system is
quenched to a structure, where the frequencies and eigenvec-
tors of the normal vibrational modes are calculated, and �0 is
evaluated from Eq. �3�. The eigenvalues �mass times squared
frequencies� are always positive, except for the three ex-
pressing translation, which are zero to numerical accuracy.
The structures found are numerically dominated by random
ones. Each calculation is done at the density of the liquid at
melt, and �0�DFT� is listed in Table II.

Table II also lists �0�expt�, which is from Table I for Na.
For Cu, with insufficient data for the analysis of Sec. II,

�0�expt� is estimated separately. The estimation procedure is
general and is outlined for Cu in Appendix B. The agreement
between theory and experiment in Table II is certainly better
than we should expect.

The application of DFT to liquid dynamics research is
currently making notable progress. From ab initio MD, melt-
ing properties of Si have been calculated by Sugino and Car
�43�, and Wang et al. �44� calculated the carbon phase dia-
gram. This work points to the possibility of an ab initio test
of Eq. �10� for anomalous melting. High-pressure melting
curves have been calculated for Pb by Cricchio et al. �45�
and also for Ta by Taioli et al. �46�. In each case the shape of
Tm�P� suggests normal melting, and this again can be tested
by calculating the quantities in Eq. �10�. Kresse’s summary
of DFT calculations of the static structure factor and pair
distribution function for group IIIB-VIB elements shows bet-
ter results for metallic than nonmetallic liquids �47�. While
the metallic liquids should be well described by random val-
leys, the molecular character of As, Se, and Te, possessing
strong and weak bonds, poses a challenge regarding the un-
derlying potential-energy surface. A similar challenge is
posed by Ge, whose ab initio static and dynamic structure
factors compare well with experiment as shown by Chai et
al. �48�, and whose primarily metallic liquid appears to have
some tetrahedral coordination in its fluctuation spectrum at
Tm.

The example of highly compressed Na has attracted much
attention. It was predicted from theory by Neaton and Ash-
croft �49� that under compression crystalline Na will trans-
form to low-symmetry structures that include semimetallic
behavior and tend ultimately to semiconducting. Experi-
ments by Hanfland et al. and Syassen confirmed the struc-
tural changes to 120 GPa �50,51�, and work by Gregoryanz
et al. revealed a change from normal to anomalous melting
�52�. This was in turn confirmed by ab initio MD calcula-
tions by Raty et al., which also showed that the liquid un-
dergoes electronic structure changes analogous to those in
the solid �53�. We notice that the anomalous melting regime
in Na involves 2s and 2p electrons entering the valence and
is related theoretically to the sequence of anomalous melting
elements Sn, Ga, Sb, and Bi mentioned in Sec. III A.

A novel theoretical technique uses Monte Carlo perturba-
tion theory to make accurate first-principles calculations of
the liquid free energy at arbitrary temperatures �54,55�. This
technique, as well as ab initio MD, will make possible more
accurate tests of V-T theory than we can obtain through
analysis of experimental data, as in the present study.

IV. DISCUSSION AND CONCLUSIONS

In this work, we are able to improve the formulation of
the transit contribution to thermodynamic functions, and to

TABLE II. DFT calculations of �0 for the liquid at Vm �17�,
compared with the same quantity determined from experimental
entropy data.

Liquid
�

�g /cm3�
�0�DFT�

�K�
�0�expt�

�K�

Na 0.935 98.4�3.0 97.6�2.3

Cu 8.00 171�5 171.4�5.4
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carry out an ab initio test of the V-T theory of liquid entropy.
The broad implications of these results will be discussed.

A. Transit contribution to thermodynamics

In the original formulation, transits are accounted for
through the multiplicative factor exp�N ln w� in the partition
function, where ln w=0.8 is calibrated from entropy of melt-
ing data. Hence the transit free energy is −NkBT ln w, the
transit entropy is the universal constant NkB ln w, still a good
approximation, but the transit internal energy is zero. Now,
in Sec. II, the experimental high-temperature entropy data
are analyzed, and Fig. 1 is found for Str�V ,T� at constant V.
In principle one can integrate the constant-volume relation
dU=TdS to find Utr�V ,T� up to a volume-dependent constant
of integration. We then have the transit free energy Ftr�V ,T�
to replace our original −NkBT ln w in the liquid free energy.
This accomplishes the goal set out in the Introduction and
provides in principle the transit contribution to every thermo-
dynamic function.

The shape of the transit entropy curve in Fig. 1 can be
understood from qualitative properties of transits. At very
low temperatures �T�Tm� the system freezes into a single
random valley and becomes an amorphous solid. The motion
is entirely vibrational, there are no transits, and Str=0, as is
the corresponding Utr. Upon warming, transits begin at a
given temperature and both Str and Utr increase from zero.
This behavior is seen in MD simulations of supercooled liq-
uid Na, where the mean potential energy increases from its
pure vibrational value of �3 /2�NkBT at around 140 K ��13�,
Fig. 4�. This is confirmed as a transit effect by observing that
self-diffusion increases from zero at approximately the same
temperature ��13�, Fig. 10�. With increasing temperature, Str
and Utr saturate and have zero slope at the common tempera-
ture �tr. The reason for the saturation of Str and Utr, and their
subsequent decrease with increasing T, is the truncation of
the random valley potential surface at the intervalley inter-
sections. A model for part of this decrease, the boundary
effect, has been applied to the high-temperature specific heat
of Hg �56�. Now we have more information than specific-
heat data since Fig. 1 shows both the low-T increase and
high-T decrease of the transit entropy. Figure 1 explains the
previously disorganized behavior of liquid specific-heat
curves ��56�, Fig. 2�. Figure 1 will be helpful in modeling the
statistical mechanics of transits and especially in modeling
the transit free energy.

In the past we have used Tm as a scaling temperature for
liquid properties. This is not satisfactory in principle, be-
cause Tm depends partially on properties of the crystal. Not
surprisingly, Tm utterly fails as a liquid scaling temperature
for anomalous melting elements ��19�, Figs. 3 and 4�. We
now have a two-component theory for the nuclear motion
entropy, where each component has its independent scaling
temperature, �0�V� for Svib and �tr�V� for Str. This is a purely
liquid theory, with no parametric dependence on crystal
properties.

B. Ab initio testing of V-T theory

At the time of the original formulation �4�, no potential-
energy property of any random valley had been calculated.

Indeed, the existence of the random and symmetric classes of
valleys, and their contrasting potential-energy properties,
was only hypothesized in that first paper. At the time, we
adopted the approximation �0�Vm���0

c�Vm� for normal melt-
ing elements since �0

c was available from force-constant
models calibrated to experimental dispersion curves �57�.
This is still a respectable approximation, probably accurate
to 3–4% on average for normal melting elements �but not for
anomalous melting elements; see �58�, Tables I and II�. But
now, with ab initio values of �0�V�, the correct theoretical
Svib�V ,T� can be calculated from Eq. �2� and compared with
Svib�V ,T� extracted from experiment. This is essentially the
comparison made in Sec. III B. But that comparison goes
much deeper than a casual glance would suggest. That test
provides the following extensive support of V-T theory.

�1� The test verifies the original hypothesis that the ran-
dom valleys are numerically dominant and hence account for
the entire statistical mechanics as N→
, and that the ran-
dom valleys are uniform in their potential properties, so that
a single example is sufficient as N→
. The verification re-
sults from the fact that a single random valley is used for the
calculation of �0 for each liquid, while the experiment
samples enormous numbers of valleys of all types.

�2� The test verifies that vibrational motion in a harmoni-
cally extended random valley is the correct theory for that
part of the experimental entropy which is identified with Svib.
This is because that part of the experimental entropy is re-
produced by ab initio evaluation of Eq. �2� over the entire
temperature range of the available experimental data for each
liquid tested.

�3� The test is consistent with 
�Vm�=0.8NkB for Na and
Cu. The expected material dependence of 
�Vm� is a refine-
ment remaining for future work.

V-T theory is unique in that it offers a Hamiltonian theory
capable of unifying equilibrium and nonequilibrium theories
of liquid dynamics. Further testing will help to develop a
robust theory. Techniques currently being applied in ab initio
simulations can be employed to advantage in the develop-
ment of V-T theory.
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APPENDIX A: ERROR ESTIMATES

Error in Sexpt�Vm ,T� arises from experimental error in the
high-T entropy data, and the experimental error in the vol-
ume correction. We estimate the mean of each error over the
range from Tm to Th and add their magnitudes to obtain the
total mean experimental error ��Sexpt�, as listed in Table I.
Much of this error is already present in the data for
Sexpt�Vm ,Tm�. The remaining error is T dependent and has an
average around zero for each liquid. This error is large
enough to cause a noticeable error in the shape of Fig. 1.
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The relative experimental error in �0 is ��0�expt� /�0 and
is almost entirely due to ��Sexpt�. From Eq. �2� it follows that

��0�expt�
�0

=
��Sexpt�
3NkB

. �A1�

This gives a range of 1–5% for the experimental error in �0
in Table I. The error in �tr is entirely due to the T-dependent
error, because �tr depends on the shape of the curve and not
on its magnitude. The error in �tr in Table I can reach 10%.

Moments of the frequency distribution can be calculated
from DFT to an accuracy of 1% for elemental crystals. These
crystal calculations are done in the infinite lattice model �2�,
where an arbitrary number of Brillouin-zone k points is pos-
sible. In contrast, the liquid system has only 3N normal
modes for an N-atom system. Because of the small system
size �N=150� for our DFT calculations, the present error in
�0�DFT� is allowed as 3%.

APPENDIX B: ESTIMATION OF SCALING
TEMPERATURES FOR Cu

The slope of Str�Tm� is Ctr�Tm�, the transit contribution to
the specific heat, which can be found from data as follows.
The experimental specific heat at constant volume is Cexpt,
while the vibrational contribution in classical statistical me-
chanics is Cvib=3NkB, so that Ctr=Cexpt−3NkB−Cel. Match-
ing this quantity, with error estimates, to the slope of a
smooth curve fitted to Fig. 1 yields Tm /�tr in the range 0.8–
1.3 for Cu at Tm. Then Fig. 1 implies that Str�Vm ,Tm� is
�0.78–0.80�NkB. From experimental entropy data for Cu,
Snuc�Tm�=10.00NkB, so that Svib�Tm�= �9.21�0.01�NkB, giv-
ing �0= �171.4�0.6� K. For Cu, ��Sexpt� is just the esti-
mated experimental entropy error at Tm, namely, 0.086NkB.

This method becomes inaccurate when �Ctr� is large. For a
compilation of Cvib+Ctr for elemental liquids at melt, see
�4�.

�1� L. Boltzmann, Wien. Ber. 66, 275 �1872�.
�2� M. Born and K. Huang, Dynamical Theory of Crystal Lattices

�Clarendon Press, Oxford, 1954�.
�3� M. Born and Th. von Karmen, Phys. Z. 13, 297 �1912�.
�4� D. C. Wallace, Phys. Rev. E 56, 4179 �1997�.
�5� Macroscopic equivalence applies to one liquid at one density.

Statistical properties of random valleys vary with density and
vary from one liquid to another.

�6� D. C. Wallace, Statistical Physics of Crystals and Liquids
�World Scientific, New Jersey, 2002�.

�7� G. De Lorenzi-Venneri, E. D. Chisolm, and D. C. Wallace,
Phys. Rev. E 78, 041205 �2008�.

�8� W. A. Harrison, Pseudopotentials in the Theory of Metals �W.
A. Benjamin, New York, 1966�.

�9� N. W. Ashcroft, Phys. Lett. 23, 48 �1966�.
�10� T. E. Faber, Theory of Liquid Metals �Cambridge University

Press, Cambridge, England, 1972�.
�11� N. W. Ashcroft and D. Stroud, Solid State Phys. 33, 1 �1978�.
�12� N. H. March, Liquid Metals: Concepts and Theory �Cambridge

University Press, Cambridge, England, 1990�.
�13� D. C. Wallace and B. E. Clements, Phys. Rev. E 59, 2942

�1999�.
�14� B. E. Clements and D. C. Wallace, Phys. Rev. E 59, 2955

�1999�.
�15� E. D. Chisolm, B. E. Clements, and D. C. Wallace, Phys. Rev.

E 63, 031204 �2001�.
�16� G. De Lorenzi-Venneri and D. C. Wallace, Phys. Rev. E 76,

041203 �2007�.
�17� N. Bock, T. Peery, E. D. Chisolm, G. De Lorenzi-Venneri, D.

C. Wallace, E. Holmström, and R. Lizárraga, Bull. Am. Phys.
Soc. 53�2�, J9:00004 �2008�.

�18� E. Holmström, N. Bock, T. Peery, R. Lizárraga, G. De
Lorenzi-Venneri, E. D. Chisolm, and D. C. Wallace �unpub-
lished�.

�19� D. C. Wallace, Proc. R. Soc. London, Ser. A 433, 615 �1991�.
�20� E. I. Gol’tsova, High Temp. 4, 348 �1966�.
�21� R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K.

Kelley, and D. D. Wagman, Selected Values of the Thermody-
namic Properties of the Elements �ASM, Metals Park, OH,
1973�.

�22� G. H. Shaw and D. A. Caldwell, Phys. Rev. B 32, 7937
�1985�.

�23� Yu. S. Trelin, I. N. Vasil’ev, V. B. Proskurin, and T. A. Tsyga-
nova, High Temp. 4, 352 �1966�.

�24� M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr., D. J. Frurip,
R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data
Suppl. No. 1 14, 61 �1985�.

�25� E. E. Shpil’rain, K. A. Yakimovich, V. A. Fomin, S. N. Sko-
vorodjko, and A. G. Mozgovoi, in Handbook of Thermody-
namic and Transport Properties of Alkali Metals, edited by R.
W. Ohse �Blackwell, London, 1985�, p. 435.

�26� N. B. Vargaftik, V. F. Kozhevnikov, V. G. Stepanov, V. A.
Alekseev, and Y. F. Ryzhkov, in The Seventh Symposium on
Thermophysical Properties, edited by A. Cezairliyan �ASME,
New York, 1977�, p. 926.

�27� E. A. Brandes, Smithells Metals Reference Book �Butterworths,
London, 1983�.

�28� R. R. Miller, in Liquid Metals Handbook, 2nd ed., edited by R.
N. Lyon �U.S. GPO, Washington, D.C., 1952�, p. 38.

�29� Y. Tsu, H. Suenaga, K. Takano, and Y. Shiraishi, Trans. Jpn.
Inst. Met. 23, 1 �1982�.

�30� M. B. Gitis and I. G. Mikhailov, Sov. Phys. Acoust. 11, 372
�1966�.

�31� D. P. Almond and S. Blairs, J. Chem. Thermodyn. 12, 1105
�1980�.

�32� H. A. Spetzler, M. D. Myer, and T. Chan, High Temp. - High
Press. 7, 481 �1975�.

�33� H. Köster, F. Hensel, and E. U. Franck, Ber. Bunsenges. Phys.
Chem. 74, 43 �1970�.

�34� I. N. Makarenko, A. M. Nikolaenko, and S. M. Stishov, Inst.
Phys. Conf. Ser. 30, 79 �1977�.

�35� In the years between �19�and �6�, we realized that Tl should be
removed from the analysis because available crystal data are
for hcp, while melting proceeds from bcc. This changes the

WALLACE, CHISOLM, AND BOCK PHYSICAL REVIEW E 79, 051201 �2009�

051201-6



average 	S /NkB insignificantly from 0.79 to 0.80.
�36� V. M. Glazov, S. N. Chizhevskaya, and N. N. Glagoleva, Liq-

uid Semiconductors �Plenum, New York, 1969�.
�37� D. A. Young, Phase Diagrams of the Elements �University of

California Press, Berkeley, CA, 1976�.
�38� A. Jayaraman, W. Klement, Jr., and G. C. Kennedy, Phys. Rev.

130, 540 �1963�.
�39� A. Jayaraman, R. C. Newton, and J. M. McDonough, Phys.

Rev. 159, 527 �1967�.
�40� J. Yamashita and S. Asano, J. Phys. Soc. Jpn. 29, 264 �1970�.
�41� D. B. McWhan, G. Parisot, and D. Bloch, J. Phys. F: Met.

Phys. 4, L69 �1974�.
�42� http://cms.mpi.univie.ac.at/vasp/
�43� O. Sugino and R. Car, Phys. Rev. Lett. 74, 1823 �1995�.
�44� X. Wang, S. Scandolo, and R. Car, Phys. Rev. Lett. 95,

185701 �2005�.
�45� F. Cricchio, A. B. Belonoshko, L. Burakovsky, D. L. Preston,

and R. Ahuja, Phys. Rev. B 73, 140103�R� �2006�.
�46� S. Taioli, C. Cazorla, M. J. Gillan, and D. Alfè, Phys. Rev. B

75, 214103 �2007�.
�47� G. Kresse, J. Non-Cryst. Solids 312–314, 52 �2002�.
�48� J.-D. Chai, D. Stroud, J. Hafner, and G. Kresse, Phys. Rev. B

67, 104205 �2003�.
�49� J. B. Neaton and N. W. Ashcroft, Phys. Rev. Lett. 86, 2830

�2001�.
�50� M. Hanfland, I. Loa, and K. Syassen, Phys. Rev. B 65, 184109

�2002�.
�51� K. Syassen, in High Pressure Phenomena, edited by R. J.

Hemley, G. Chiarotti, M. Bernasconi, and L. Ulivi �IOS, Am-
sterdam, 2002�, p. 251.

�52� E. Gregoryanz, O. Degtyareva, M. Somayazulu, R. J. Hemley,
and H. K. Mao, Phys. Rev. Lett. 94, 185502 �2005�.

�53� J.-Y. Raty, E. Schwegler, and S. A. Bonev, Nature �London�
449, 448 �2007�.

�54� C. W. Greeff and R. Lizárraga, Shock Compression of Con-
densed Matter - 2007, AIP Conf. Proc. No. 955 �AIP, New
York, 2007�, p. 43.

�55� C. W. Greeff, J. Chem. Phys. 128, 184104 �2008�.
�56� D. C. Wallace, Phys. Rev. E 57, 1717 �1998�.
�57� H. Schober and P. H. Dederichs, in Landoldt-Bornstein New

Series Vol. 13a, edited by K.-H. Hellwege �Springer, Berlin,
1981�.

�58� E. D. Chisolm and D. C. Wallace, Phys. Rev. E 69, 031204
�2004�.

IMPROVED MODEL FOR THE TRANSIT ENTROPY OF … PHYSICAL REVIEW E 79, 051201 �2009�

051201-7


