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Statistical mechanics of Floquet systems: The pervasive problem of near degeneracies
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Although the statistical mechanics of periodically driven (“Floquet™) systems in contact with a heat bath has
some formal analogy with the traditional statistical mechanics of undriven systems, closer examination reveals
radical differences. In Floquet systems all quasienergies &; can be placed in a finite frequency interval
0=g;<w (with o the driving frequency and #2=1). Therefore, if we describe a Floquet system approximately
by restricting its available state space to be spanned by a finite number N of basis states, then the number of
near degeneracies (|sj—sk|§5 for arbitrarily small fixed &) in this interval grows without limit as N is
increased. As we noted in a previous paper, this leads to pathologies, including drastic changes in Floquet
states, as NV tends to infinity. In earlier work on Floquet systems in contact with a heat bath these difficulties
were often put aside by fixing N while taking the coupling to the bath to be smaller than any quasienergy
difference. This led to a simple explicit theory for the reduced density matrix, with some major differences
from the usual time-independent statistical mechanics. We show that, for weak but finite coupling between
system and heat bath, the accuracy of a calculation within the truncated space spanned by the N lowest energy
eigenstates of the undriven system is limited, as N increases indefinitely, only by the usual Born-Markov
approximation, which neglects bath memory effects. As we seek higher accuracy by increasing N, we inevi-
tably encounter quasienergy differences smaller than the system-bath coupling. We therefore derive here the
equations for the steady-state reduced density matrix without restriction on the size of quasienergy splittings. In
general, this matrix is no longer diagonal in the Floquet states. We analyze, in particular, the behavior near a
weakly avoided crossing, where near degeneracies of quasienergies appear. In spite of the Floquet state
pathologies, the explicit form of our results for the density matrix gives a consistent prescription for the

statistical mechanics of periodically driven systems in the limit as N approaches infinity.
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I. INTRODUCTION

Time-periodic quantum systems are of great importance
in several fields of science, such as atomic and solid-state
systems driven by monochromatic electromagnetic fields [1],
quantum ratchets [2], and quantum chaos [3]. The Floquet
theorem states that the solutions of the time-dependent
Schrodinger equation with a time-periodic Hamiltonian of
period 27/ w are of the form exp(—igt)u(t), where u(z) has
the same periodicity as the Hamiltonian. The “quasienergy”
€ plays a role similar to the energy in static systems. It de-
termines the behavior of the wave function under finite one-
period, rather than infinitesimal, time translations. The
quasienergy & is defined only mod w, and we follow the
convention of taking 0=e<w.

Here we address Floquet systems in thermal contact with
a bath. Energy is continuously exchanged between the sys-
tem and the periodic driving field with relaxation provided
by the bath. This leads to a fundamental question of statisti-
cal physics: is there an asymptotic, time-periodic, ensemble
characterizing the quantum system and, if so, how does it
depend on the coupling to and the temperature of the bath?
For a time-independent system with Hamiltonian H,, the an-
swer is given by the canonical reduced density operator
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p=exp(-BH,)/Z, where B is the inverse temperature and Z
is the partition function. This density operator is independent
of the form and magnitude of the coupling to the environ-
ment, to lowest nontrivial order in that coupling, and the
operator is diagonal in the energy eigenstates of the system
Hamiltonian. This holds even if two states are separated by
an energy small compared to their coupling with the bath
(“near degeneracy”), or even if they are exactly degenerate,
their statistical weights are given by their energy. There is no
anomaly associated with their near or strict degeneracy. That
simplicity does not carry over to the case of near degeneracy
in quasienergy.

For time-periodic systems in thermal contact with a bath
the general long-time behavior has not yet been fully clari-
fied. In particular, the role of the inevitable introduction of
arbitrarily large numbers of near degeneracies of quasiener-
gies in the finite interval w, as the number of basis states
increases without limit, has not been addressed. Earlier work
includes a number of papers [4-10] which have discussed
specific physical systems, treating either those whose quan-
tum states span only a finite space or others whose state
space has been truncated to a finite set and then studied nu-
merically, but usually with coupling to the bath small com-
pared with any quasienergy spacing. The example of driven
Rydberg atoms in thermal contact with discrete wave guide
modes was studied by Bliimel e al. [4] and extended [7] to
driven one-dimensional harmonic and anharmonic oscillators
and to incoherent chaotic tunneling near a singlet-doublet
crossing [8]. Dittrich er al. [5] considered a single near de-
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generacy in their numerical analysis of dissipative coherent
destruction of tunneling in a double well. Their attention was
directed primarily to the tunneling dynamics rather than to
the steady-state density matrix. An extension to strong cou-
pling to the bath was presented by Thorwart et al. [11] for
tunneling and relaxation of a particle in a bistable one-
dimensional well using methods and approximations suitable
only when a (small) finite number of system energy eigen-
states is significantly accessible. The statistical mechanics of
a more general class of periodically driven systems was dis-
cussed by one of us [12], restricted to a finite state space with
a nondegenerate quasienergy spectrum, in the limit of cou-
pling to the bath much weaker than the smallest quasienergy
spacing. In this limit, where the density operator is assumed
diagonal in the representation of the Floquet states, the ma-
trix elements can be obtained by solving a set of linear rate
equations. In sharp contrast to the time-independent case,
they do depend on the explicit form (though not on the mag-
nitude) of the coupling between system and bath, and they
are not simple smooth functions of the quasienergy.

In the general case of time-periodic quantum systems with
a state space whose number of dimensions N increases with-
out limit, the situation is more complex. Since the quasien-
ergies are restricted to a finite range of width w, the mean
spacing between neighboring quasienergy levels approaches
zero as their number increases. Therefore, any fixed coupling
to the thermal environment is never small relative to all level
spacings for a sufficiently large basis size. It becomes essen-
tial to deal with degenerate and near degenerate quasiener-
gies, a situation which has been explicitly excluded in previ-
ous analyses. Indeed, in the limit N— ¢ an infinite number
of quasienergy degeneracies avoided by increasingly weak
level repulsions occur, and many anomalies of the spectrum
and the Floquet states appear, as was pointed out in [13]. So
it is of special importance to determine the effect of the bath
when the coupling becomes comparable to or even large with
respect to one or more of the relevant quasienergy splittings.

In this paper we address the critical question of the appro-
priate description of the steady state of time-periodic quan-
tum systems with small but finite coupling to the bath. We
review in Sec. II the derivation from the master equation of
the set of linear equations that determine the reduced density
matrix, and we discuss the similarities to and differences
from the presentations in [5,8]. This matrix is in general no
longer diagonal in the basis of the Floquet states of the sys-
tem, but it does approach a limiting time-periodic form. We
obtain a set of linear homogeneous equations which deter-
mine all of the density-matrix elements in the long time sta-
tionary time-periodic state [Eq. (2.20)]. This result is no
longer limited to the regime of system-bath coupling weak
compared to all quasienergy spacings. For a finite Hilbert
space and in the limit of infinitesimal coupling we discuss
the differences from the conventional statistical mechanics of
time-independent systems.

We next study in detail the influence of a single weakly
avoided crossing of Floquet quasienergies (as a function of
driving field strength) on a finite density matrix since it is
there that the near degeneracies of interest develop. In Sec.
IIT we find that the important consequences of such an
avoided crossing can be incorporated by introducing an ad-
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ditional effective coupling [Eq. (3.4)] between the two states
involved, mediated by the bath. This coupling decreases with
distance from the avoided crossing (which conveniently pa-
rametrizes the quasienergy separation of the two states), and
it depends on the ratio of the coupling strength I' of the two
states to the bath and their minimum quasienergy splitting A.
Remarkably, all of the diagonal elements of the density ma-
trix in the representation of the “diabatic” states defined well
away from the center of the avoided crossing, a basis which
is fixed throughout the crossing, are determined by a set of
linear rate equations [Eq. (3.3)] of exactly the structure fa-
miliar from ordinary time-independent statistical mechanics
but with this single added effective coupling rate. For T’
<A the additional coupling not only influences the reduced
density-matrix elements in the subspace of the two states
themselves but may completely change the whole steady-
state reduced density matrix, so that average system observ-
ables will in general change radically with driving field
strength in the range of the avoided crossing. Physically,
high order near resonances of the driving field between
eigenstates of the undriven system can populate high energy
levels, which then affect populations of lower energy levels
in the relaxation cascade. In the opposite limit, ['>A, the
coherence necessary for the high order resonance is disrupted
by the interactions with the bath, and the avoided crossing
has negligible influence on the reduced density matrix which,
in this limit, is approximately diagonal in the diabatic basis.
We present a simple, albeit somewhat artificial, example
which can be solved in some detail, specifically exhibiting
these effects.

We then use this insight to discuss time-periodic quantum
systems with a Hilbert space of increasingly large dimension
in Sec. IV. We find that weakly enough avoided crossings,
while having great impact on the Floquet states, have no
significant consequences for the density matrix (in a
N-independent basis). It is this central result which justifies
the neglect in many cases of all but a finite basis set in the
calculation of the statistical mechanics of a Floquet system,
as is essential for any numerical study. Specifically, for the
calculation of statistical properties, we establish the validity
of using the conventional approximation of eliminating from
the undriven system spectrum all states of sufficiently high
energy (the cutoff to be determined by the accuracy desired)
and allowing the periodic driving field to mix only the re-
maining states. Within that finite basis set we have derived a
prescription for calculating the full reduced density matrix,
in general no longer diagonal in the Floquet representation.
A brief summary is given in the conclusion (Sec. V).

II. REDUCED DENSITY MATRIX
A. Equations of motion and time-periodic solutions

We review and extend the derivation of the steady-state
solution for the reduced density matrix in the weak-coupling
limit (“Born-Markov approximation™) for Floquet systems,
previously discussed [4,8] for situations where all quasien-
ergy spacings were large compared with the coupling to the
bath (and therefore only for systems restricted to a finite
number of states). In contrast, we stress that the validity of
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the more general equations is not limited to that regime. This
is consistent with the equations resulting from the approxi-
mations proposed in [5], where a single near degeneracy re-
lated to the coherent destruction of tunneling in a one-
dimensional double well is numerically studied for a
quasienergy spacing smaller than the coupling to the bath. It
goes beyond the assumptions in [8], where such a situation is
explicitly excluded by Eq. (2.7). Furthermore, we give a de-
tailed justification for an approximation using time-averaged
rates that was introduced in [8].

We write the Hamiltonian generally as the sum of H(z),
describing the dynamics of the system driven by a time-
periodic external field with period 277/ w, the Hamiltonian H,,
of the bath, and the interaction between system and bath H,

H(t):H.s(t)+Hb+Hsb' (21)

The total density operator of this closed coupled system,

p7(1), is the solution of the equation of motion,

ipr(1) =[H(1),pr(1)]. (2.2)

We trace over bath variables to obtain the reduced density
operator for the system,

p=Trb Pr> (23)

and do the standard recasting of the master equation into an
integrodifferential equation (see, e.g., [14,15]), whose itera-
tion gives directly the expansion in powers of the system-
bath interaction,

diﬁ(t)=— J dt' Try{H(),[Hy(t"), pr(t') ]}
1 0

(2.4)

Here the tilde labels operators in the interaction picture. We
have omitted the linear term involving Tr, Hy,, which ordi-
narily vanishes. This is the case, e.g., for an interaction be-
tween system and bath characterized by creation or destruc-
tion of single bath bosons, such as phonons or photons, or of
free electrons or other fermions. Otherwise, this equation is
still general and exact.

In order to trace over the bath variables under the integral,
we make two simplifications: (i) approximate factorization of
the total density matrix [16],

pr(t") = p(t')py, (2.5)
and (ii) the Markov approximation: the rate of change of the
density matrix depends only on its current value, not on its
prior history, as described in detail below. Their validity re-
lies ultimately on being able to neglect any memory effects
within the bath. The relevant correlation time 7. associated
with the bath, defined explicitly following Eq. (2.7), must be
small compared with the times characterizing the evolution
of the reduced density operator [see condition (2.10) below].

The physical meaning of the factorization (2.5) is that we
neglect more than a single interaction of the system with the
bath during the bath correlation time. The effect of higher
order correlations, where subsequent interactions depend on
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the state of the bath modified by earlier ones, is negligible, as
we show in more detail in Appendix A.
We choose as the form of the coupling Hamiltonian
H,=yAB, (2.6)
where A is a Hermitian operator which acts only on the Flo-
quet system and B is a Hermitian operator which acts only on
the heat bath. A sum of such factorized operator products,
2 YA B 18 also readily treated. But if the various bath
operators B, are dynamically uncorrelated with each other,
then the results below are modified only by an extra index on
v, each matrix element of A and each spectral function g(E)
(to be defined below), and a sum over that index. We take the
single product to avoid the consequent algebraic clutter since
no essential difference results in the ultimate equations [the
extra sums being merely incorporated into the definition of
the complex “rates” below (2.14)]. Then the trace over bath
variables involves only the single combination

G(7) =Tr, p,B1)B(t - 7), (2.7)
This correlation function for the bath operator B is charac-
terized by a decay time 7., which we assume to be much
shorter than the times characterizing the evolution of the re-
duced density operator p(z) [see Eq. (2.10) below]. Then the
main contribution to the integral in Eq. (2.4) is from values
of ' within a range of order 7, below the upper limit ¢. Thus
to a good approximation we can extend the lower limit to —o
and also make the Markov approximation: replace #’ by ¢ in
the argument of pr under the integral. Returning to the
Schrodinger picture and changing the integration variable to
T=t—t', we then have

% +i[H,(1),p(1)] = - )/zf dr{G(n)[AA(t - 7,0)p(2)
0

—A(t=7,0)p(nA]+H.c.}. (2.8)
The rate of change of the reduced density operator due to the
coupling to the bath is of order
Iy = Y744%)(B%), (2.9)
suggesting that the condition for validity of the “Born” and
Markov approximations is
71, < 1. (2.10)
Appendix A demonstrates that this same inequality assures
that higher order corrections are negligible. The validity of
the above approximations is discussed in the literature on
undriven systems; a particularly clear discussion is given in
Ref. [15]. As the approximations have been made within the
interaction picture, they are equally valid for a time-periodic
system Hamiltonian H(f). We emphasize that we do not re-

quire infinitesimal coupling to the bath. That coupling needs
only be small enough to satisfy condition (2.10).
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We recall that the solutions of the isolated system
Schrodinger equation id,|¢)=H,(t)|¢) are of the Floquet
form |¢;(r))=exp(—ig;t)|u;(r)) with the quasienergies &;
chosen to lie in the strip 0=e<w and with the time-
periodic parts |u;(1))=|u;(t+2/ w)) forming a complete or-
thonormal basis for the system ar any given time t. We intro-
duce the matrix elements of the reduced density operator in

this time-periodic basis,
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pif(1) = (u ()| p()|u(1)), (2.11)

which will turn out to be very convenient in the following
calculations and which, as we will show later, leads to time-
independent density-matrix elements in steady state. In this
basis the equation of motion of the reduced density-matrix
elements takes the form

d . ” . ” .
(5 + isij)Pi_,‘(f) =—9 > el(M+m)wl|:+Aik(M)Akl(m)Plj(t)f dTG(T)el(elk_mw)T—Aik(m)sz(t)Azj(M)f d7G(7)e!Cme)T
0 0

k,.M.,m

+ pik(t)Akl(m)Alj(M)f dTG*(T)ei(S/k_mw)T_Aik(M)pkl(t)Alj(m)f dTG*(T)ei(S-f’_mw)T],
0 0

where we defined the Fourier components of the matrix ele-
ments of the system operator A,

(w(D|Alu;(0)) = 2 Ay(m)e™, (2.13)

with the property A;;(m)=Aj,(-m), and where we have intro-
duced the notation g;=¢;-¢;.

We simplify the notation by introducing complex time-
periodic rates,

Rij(t) = % gikwlRij;kl(K)’ (2.14)
with Fourier coefficients
Ryj(K) =2 R} 1(K)
=27y Aji(m + K)Ay(m)g(ey — mw),
(2.15)

where g(E) is the Fourier transform of G(7). We will ap-
proximate

f“’ d1G(7)e "~ mg(E), (2.16)

0

neglecting a principal-value contribution. From the definition
of G(7) [Eq. (2.7)], one finds

g(E)=2 P J(vB|v)SE+E, -E,),

!
vV

(2.17)

where v labels bath states of energy E, which are in thermal
equilibrium and have occupation P,><exp(—BE,).

Then we have, as the fundamental equation of motion of
the reduced density-matrix elements in the Floquet represen-
tation, the following set of linear differential equations:

(2.12)

1 .
(% + iSij)Pij(l‘) == 5% {sz(f)Rik;lk(f) + pil(t)R;k;lk(t)

=P[R0 + Ry (0] (2.18)

This is the generalized Master Equation for all density-
matrix elements. It is essentially equivalent to the forms
found in [5,8], where a specific system and coupling were
studied. We next replace the time-periodic rates Rj;,(1) by
their average over one driving period,

Rjji= > R} 1= Ryyi(K=0). (2.19)

This approximation [8] implicitly assumes that the density-
matrix elements do not vary substantially over a driving pe-
riod, and it is further discussed in Appendix B. Such averag-
ing, referred to there as a “modified rotating wave
approximation,” is also to be found in [5,8]. We then find a
steady-state solution of Eq. (2.18) for which the matrix ele-
ments p;; are independent of time,

. 1 * *
L&;ipij=— 52 [PljRik;lk + pilek;lk - sz(le;ki + Rki;l_i)]'
k.l

(2.20)

B. Large quasienergy splittings

The general result (2.20) simplifies greatly if the system-
bath coupling is sufficiently weak relative to all quasienergy
spacings, resulting in a form of the density matrix which has
been discussed previously [10,12]. The states of some sys-
tems of interest span only a finite-dimensional space (e.g.,
spin systems). Because of the finite number of states, at a
given driving strength X\ there will be a smallest quasienergy
separation. In this section we take that smallest separation to
be large compared to the coupling to the heat bath (an as-
sumption made, in fact, in all earlier work on driven dissipa-
tive systems in the weak-coupling limit), and we will point to
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both the similarities to and the differences from the conven-
tional statistical mechanics of time-independent systems.

In the limit where the absolute values of all rates |R;;.x
are sufficiently small compared with all splittings |8,-j, it is
clear from Eq. (2.20) that all off-diagonal density-matrix el-
ements can be neglected, and we arrive at the familiar form,

0=pi> Rix = 2 praRiis
k X

(2.21)

relating the state occupation probabilities p;= p;;. Here the
diagonal time-independent rates,

Ry =Ry = 27V 2 |A(m) Pelen —mo),  (2.22)

are of the form of the usual transition rates of perturbation
theory, the square of coupling matrix elements times the den-
sity of states (at the energy transferred from bath to system),
summed over initial states of the bath with appropriate ther-
mal equilibrium weighting. Of course, in the static case the
equation also holds without the summation over k (detailed
balance). That is not the case here.

As was pointed out earlier [10,12], there are some impor-
tant differences in this result from that familiar in static prob-
lems. Because of the possibility of absorption and emission
of multiple quanta of the time-dependent driving field, the
occupation probabilities are not simple Boltzmann factors,
and indeed they depend on the detailed form of the Hamil-
tonian coupling the system to the heat bath. From definition
(2.17) of the spectrum of the bath correlation function we
have

g(E) = g(- E)e ", (2.23)

which is used in the time-independent case to derive the
detailed balance equation. In a Floquet system it leads, using
Egs. (2.17) and (2.22), to the relation
R", = R/ ePlejejr+mo) (2.24)
Ji J'J ’ ’
relating only the pieces of the transition rates between sys-
tem states j and j' which involve the transfer of exactly m
quanta from the field. After summation over m we find for
the ratio of the full transition rates between these states,

m
R % Rjjr
o= : (2.25)
Rjrj e Plore 3 R emPme

m

There are situations where the R}’;, have for some pairs
(j,j') just one value of m, say m,, with a non-negligible
value. This is the case for a very small driving amplitude
(A<<1) or for high-lying states of the undriven system that
are weakly affected by the periodic driving if the levels j and
J' are far enough from any avoided crossing. Then in the
above ratio the terms R;';‘,) cancel and the form of the coupling
Hamiltonian Hy, is no longer relevant. One gets R;;//R;:;
~exp[ B(g;—&;; +myw)], much as in the time-independent
case, but reflecting the need for m, quanta of the driving
field.
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In general, the states are mixed by the driving field, giving
rates E,,,R;.'j'., where more than one value of m contributes
significantly. Consequently the above ratio R;;//R;; will no
longer depend just on a single quasienergy difference. In
order to find the stationary weights p;= p;; one always has to
solve Eq. (2.21). This solution will in general not fulfill the
detailed balance equations. Even for the simple situation
above, where the direct and inverse rates for states j and j’
have a simple Boltzmann factor ratio, we cannot then con-
clude that the corresponding probabilities p; and p;» have the
same ratio. As in the case of a time-independent Hamil-
tonian, the stationary solution of Eq. (2.21) will not depend
on the overall amplitude 7y of the coupling Hamiltonian (if y
is sufficiently small for lowest-order perturbation theory to
be valid). In contrast to the time-independent case, however,
the solution will depend on the rates R;';., and thus on the
precise form of the coupling Hamiltonian Hg,, as noted in

[12].

II1. ISOLATED WEAKLY AVOIDED CROSSING

As a function of the strength of the driving field N\ the
quasienergy spectrum of Floquet systems is generally per-
vaded by avoided crossings. Near weakly avoided crossings
quasienergy separations are small and the corresponding Flo-
quet states are rapidly varying. These features can have im-
portant consequences for the density matrix. We consider a
finite set of Floquet states for which, in the neighborhood of
the driving field strength A being studied, there is a weakly
avoided crossing, with small quasienergy splitting A at the
center of the crossing at Ay near \. At the same time all other
quasienergy separations at A are assumed to be large com-
pared to the appropriate measure [see Eq. (3.5)] of the cou-
pling strength to the bath. Then only the two Floquet states
involved in the weakly avoided crossing are sensitive func-
tions of A over the small crossing region. For very weak
coupling to the bath compared with A we know from the
results of Sec. II B that p is diagonal in the Floquet basis at
any fixed A. In contrast to the time-independent case, where
the density-matrix elements depend only on the state ener-
gies, here they will change rapidly as the Floquet states do,
not only within the subspace of the states of the avoided
crossing but, as we will show, in general throughout the rest
of the density matrix as well. In the opposite limit, when the
system-bath interaction effectively broadens those two states
by much more than A, we will show that there is little influ-
ence from the crossing on the density matrix (in a
N-independent basis) or on the statistical properties of the
system determined therefrom. This will allow us in Sec. IV
to extend our analysis to many driven systems for which the
quasienergy spectrum is dense, as is often the case in prac-
tice.

We review briefly the description of the states and
quasienergies in the neighborhood of an isolated weakly
avoided crossing, introducing the notation which will be
used later. We assume that within a suitably small neighbor-
hood of driving strengths around the avoided crossing point
Ao the time-periodic parts |u;(¢)) and |u,(z)) of the unper-
turbed diabatic states (i.e., if there was no avoided crossing)
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> A\

FIG. 1. Behavior of quasienergies around an avoided crossing of
size A. The dashed lines show diabatic (unmixed) states 1,2 and the
solid curves show the adiabatic Floquet states a,b.

do not depend significantly on N and that the unperturbed
quasienergies are locally linear in N\ with slopes o and o>,
respectively. Then, the quasienergies and the time-periodic
part of the Floquet states can be well described by the results
of diagonalizing a 2 X2 Hamiltonian matrix (the Floquet
analog of nearly degenerate perturbation theory using the
extension of Rayleigh-Schrodinger perturbation theory de-
veloped by Sambé [17]). The quasienergies are given by

(o1 +0)

1
€ap=80t (N=Xp) £ 5\"(01 — ) (N = N)* + A%,

(3.1)

where the indices @ and b refer to the two “adiabatic” Flo-
quet states continuous in A\, and A is the minimum quasien-
ergy splitting at the avoided crossing point A=\,. This is
shown schematically in Fig. 1. The adiabatic states a and b
exchange their character when \ is varied through A, while
by assumption the diabatic states 1 and 2 remain unchanged.

We define the dimensionless distance d from the avoided
crossing at A=\, as

d=\=N\y)(o—)/A, (3.2)

the ratio of the quasienergy separation of the unperturbed
states at N to the gap A. The central region of the avoided
crossing is thus given by |d|<1.

A. Diabatic basis and effective rate R*¢

Over the central region |d|=<1 of the weakly avoided
crossing the diabatic states |u;(z)) and |u,(1)), as well as the
time-periodic parts of all other Floquet states, are approxi-
mately independent of A, so they constitute a natural fixed
basis of time-periodic functions to use in studying this re-
gion. In Appendix C we derive the set of rate equations for
the reduced density-matrix elements p;; in this diabatic basis.
Quite strikingly, under a number of plausible assumptions,
which are discussed in Appendix C, the equations allow for a
separate determination of the diagonal and off-diagonal ele-
ments. The former are simply given by
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0= PiiE Eij - 2 P]:,R_,‘i, (3.3)
J J

where the rates designated with a bar, I?,- j» are defined in the
diabatic basis in analogy to Eq. (2.22) except for

r

Rp=Ry=R®=——
2= 4d? + (T/A)?

(3.4)
with the superscript on R* as a reminder that this is an ef-
fective rate associated with the small quasienergy separation
near the avoided crossing (ac). Here we have introduced the
symbol

FEEr(ﬁlk+k2k)+kll+E22_2E11;22’ (3.5)
k

where the prime on the summation denotes the restriction k
#1,2. (Note that the sum of the last three terms is positive
in spite of the minus sign; by definitions (2.15) and (2.22)
they can be written as 27Y’S,[A;,(m)—Ay(m) P g(-mw).)
The rate I" will turn out to be the relevant coupling to the
heat bath, specific to the crossing of states 1 and 2, which
will be the measure of whether that coupling can be consid-
ered weak or strong relative to the quasienergy splitting of
those states.

These equations [Eq. (3.3)] for the diagonal density-
matrix elements p;; in the diabatic basis have exactly the
formal structure of the corresponding equations in the limit
of bath coupling small compared to all quasienergy splittings
[Eq. (2.21)]. The results differ from that simpler situation in
three essential ways:

(i) The effective transition rate R* between the two spe-
cial states 1 and 2 is not simply the second-order rate
2R, R, imposed directly by the bath. It reflects the mixing
in a more complex way, effectively including driving and
bath coupling to all orders, and it can be simply determined
from the rate I' defined in Eq. (3.5) and the properties of the
avoided crossing, namely, the distance d and the minimal
quasienergy splitting A.

(ii) The dependence on the parameter N, which in the
original adiabatic basis strongly affects a great number of
rates, appears in the diabatic basis only in the single rate R*
[see Eq. (3.4), where the distance from the avoided crossing,
d, is linearly related to \].

(iii) These are not the only significant density-matrix ele-
ments; there exist also two nonvanishing off-diagonal ele-
ments p;, and p,;=p], in this diabatic basis, given by

_ Pui— P2

pu_Zd—iI‘/A' (3.6)

Their importance can be assessed by a comparison of the
absolute value of p;, to the sum of the positive and real
values p;; and p,,,

P12l _ lp11— Pl 1
pPuitPn Pt pn V4d*+ (I'/A)?

A
=, 3.7
ERNER)

which is negligible in the limit I'>A (that is, where the
coupling to the heat bath is stronger than the minimum
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quasienergy separation of the Floquet states). This demon-
strates that in this limit the density matrix in this two-
dimensional subspace is approximately diagonal in the di-
abatic basis. In the opposite limit, the density matrix in the
subspace is nearly diagonal in the adiabatic Floquet basis.
The appropriate basis to diagonalize p is given in general in
Appendix D.

Although we have no general analytic solution of Eq.
(3.3) for the diagonal density-matrix elements, we can say a
good deal about the consequences of a weakly avoided cross-
ing, as the relevance of the effective rate R* depends cru-
cially on the ratio of the bath-induced rate I" to the size of the
avoided crossing A,

(1) I'<A. In this limit (which is just the case discussed in
Sec. II B above) the rate I" characterizing the coupling to the
heat bath is even smaller than the quasienergy splitting at the
weakly avoided crossing. Consequently, the effective rate R*
[Eq. (3.5)] is much larger than I in the center of that cross-
ing,

R*(d=0)>T. (3.8)

The immediate consequence of this large effective rate is that
the diagonal density-matrix elements p,; = p,, become equal
there, which may drastically change all other weights p;;,
coupled directly or indirectly via Eq. (3.3) to p;; or py,
relative to the corresponding values just outside the avoided
crossing. An explicit example demonstrating such a drastic
change for the entire density matrix is studied in Sec. III B.
A numerical example consistent with this general prediction
is given in Fig. 11 of Ref. [8].

The off-diagonal matrix element p;, is not necessarily
small, though, since it is given by the product of one large
and one small factor [see Eq. (3.6)]. In fact, as discussed in
Appendix D, the off-diagonal element is negligible in the
adiabatic basis only.

(2) I'>A. In this limit the rate I" induced by the coupling
to the heat bath is stronger than the size of the weakly
avoided crossing. Consequently, the effective rate R* [Eq.
(3.5)] is much smaller than I" throughout the whole range of
the avoided crossing,

R*<T. (3.9
This suggests that the effective rate R* due to the avoided
crossing has negligible influence compared to the other rates
affecting states 1 and 2. Therefore the entire density matrix is
not affected by the existence of the weakly avoided crossing.
The off-diagonal matrix element p;, is negligible in this
limit.

There is an exception to the above conclusion if the two
sums 2R, and =, R,; contributing to I' have vastly different
magnitudes. This is possible, as we are explicitly looking at a
very weakly avoided crossing, and this typically arises from
such dissimilar pairs of states, such as those arising from
undriven states one of which is of low and the other of very
high energy. In what follows we will take state 2 to be the
one with higher average energy (H,). There are two cases:
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nﬁl%
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FIG. 2. Simple example with a thermal bath coupling neighbor-
ing states only (double headed arrows) and flux F introduced by the
effective rate R* due to an avoided crossing of states n; and n,.

(i) 2Ry <R*“<Z/R,;: this case may occur if the heat
bath is dominated by phonons (or by other bosons) with an
upper energy limit wp, small compared to the separation in
average energy of the diabatic state 2 and its neighbors, so
that state 2 will decay primarily to state 1, with flux p,,R*.
Similarly, state 2 is fed primarily by the direct process from

state 1 with flux p;;R* (in the extreme limit of all Eﬂ:O,
only by this process). Since stationarity demands that the
incoming and the outgoing flows for state 2 are equal, one
finds pq;=p,,, with corresponding large changes in other
state occupations p;;. This modification of the density matrix
occurs for all values of d and I'/A for which the presumed
rate inequalities hold. Values of those parameters can be sig-
nificantly larger than unity, but eventually large enough val-
ues will reduce R to the point where the lower inequality is
violated.

(i) S{R;y<R*°<3Z/R,. this case may occur when the
heat bath is dominated by the electromagnetic radiation field,
with photons of arbitrarily high energy and large density of
states. Then state 2, essentially a high energy undriven state,
will decay rapidly. By precisely the same argument used in
the previous case, p;;= pyy, and states now strongly con-
nected to 2 acquire substantial occupancy. Again, the ranges
of d and '/ A over which this situation holds can be large.

B. Simple example

It is instructive to obtain specific results for a simple,
albeit somewhat artificial, example of a system. We assume
first that for Floquet states labeled by some index n
=1,2,...,N, the thermal bath leads to coupling only of
neighboring states—i.e., the only nonzero rates are of the
form R, ,,+, as shown in Fig. 2—and that we are in the limit
of coupling to the bath weak with respect to all quasienergy
differences. In this special situation the lowest state 1 has to
be in detailed balance with state 2 and from this it follows
that all states are in detailed balance. If we make the specific
choice R, ,,_;=R, and R, ,,;=R,, each independent of n, and
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denote the ratio R,/R;=vy<1, then the occupations p,
= p,,=(1=7)y""1/(1-9") fall off exponentially with the in-
dex n. We assume N to be sufficiently large that we can
neglect (for algebraic simplicity) the factor y" below.

Now we want to study how these occupations change if
there is a single weakly avoided crossing of states n; and n,
(in Sec. III A these were the states called 1 and 2). This
introduces the additional rate R*. It simplifies the algebra to
define the fluxes between states n and n—1,

Fn,n—l Eann,n—l _pn—an—l,n’ (310)

in terms of which we can rewrite the basic equations derived
above for the diagonal density-matrix elements [Eq. (3.3)] as

(pnl _pnz)Rac = Fnz,nz—l - F112+1,112v (31 1)
(pnl _pnz)Rac =Fn1+l,n1 - Fnl,nl—l’ (312)
0=F,,—F,,—1 for n#mny;n, and n# 1,
(3.13)
0=F2‘]. (314)
Their solution is
0, n=n,
Fooa=\F, m<n=n, (3.15)
0, n>n,,
with
F= (pnl _pnz)RaC (316)

being the flux from n; to n, due to the avoided crossing. This
result is illustrated in Fig. 2. The states above n, and the
states below n; are still in detailed balance—i.e., F,,_1=0,
as without the avoided crossing. The states from n; to n,,
however, are no longer in detailed balance and there is a
stationary flux F connecting them due to the avoided cross-

ing.
For the occupations p, we find
py n=n
r+ ,}/1—nl
Pn=YPn 1 ny<n=mn (3.17)
pnz’}/l_n29 n> nz,
with
Rac 1 _ 2—hny
r= RE1=y7™ (3.18)
Ry 1-vy

and p; determined by the normalization X,p,=1.

The parameter r measures the ratio of the effective rate
R describing the direct connection of the state n, to the
state with which it is crossing, namely, n;, relative to its rate
of loss R, to the state directly below it, times a factor of
order 1. There are three distinct interesting ranges of r in
terms of the behavior of the density-matrix elements.
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pn“

> 1

FIG. 3. Dramatic change in occupations p, with (solid curve)
and without (dashed curve) avoided crossing.

(i) When r>1 we have p, ~p, and almost constant
weights between n; and n,. The weights of states above n,
are much larger than they would be without the avoided
crossing, due to the drastically increased weight Py which is
being fed directly by n;.

(ii) For y2™<r<1 we have Pn,=Pn,> still a much
higher occupancy than in the absence of the avoided cross-
ing. Again the weights of states above n, are much larger
than they would be without the avoided crossing. This case,
with r only slightly less than 1, is sketched in Fig. 3.

(iii) If r decreases still further, r<<y™2™, then p,
~p,¥""!, which is the result without the avoided crossing.
Equilibration with the bath will be completely dominated by
the transition processes along the ladder of states.

This model admittedly has some special features which
make it soluble. For instance, there is detailed balance in the
absence of an avoided crossing. But it illustrates the dramatic
change in all occupations due to a single avoided crossing.
As one relevant application the model does perfectly de-
scribe the relative occupations of Floquet states concentrated
on islands of regular motion in one-dimensional driven sys-
tems which in the classical limit have a mixed (regular and
chaotic) phase space. In particular, the dramatic conse-
quences due to an avoided crossing shown in Fig. 3 have
been observed [18]. It remains to be seen to what extent this
broad modification of the occupation numbers by a single
avoided crossing is exhibited in higher dimensions.

IV. LIMIT OF INFINITE-DIMENSIONAL HILBERT SPACE

As we have already noted, there are some interesting Flo-
quet systems, such as finite spin systems, which are limited
to a space spanned by a finite number of basis states. Their
statistical mechanics can then be calculated (numerically)
from the equations and analysis of the previous sections of
this paper (and we will not be concerned with them further
here). However, many others, like a particle confined by a
potential well, have eigenstates spanning infinite Hilbert
spaces, with a quasienergy spectrum which becomes dense
and Floquet states which change rapidly as the basis size N
increases, so that the above results do not readily apply. In
fact, our results also permit the calculation to any desired
accuracy of many of these, as well, by appropriate truncation
of the basis set, as we now show.
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We limit ourselves to systems with an unbounded discrete
spectrum of undriven energy eigenstates. We take the trun-
cated Hilbert space spanned by the N lowest energy eigen-
states, the usual choice made in numerical calculations.
Within this approximation the Floquet states of the isolated
system (at any fixed time) are confined to that finite-
dimensional space. For the undriven system the statistical
(Boltzmann) weights of the states neglected by the truncation
can be made arbitrarily small by a suitably large choice of
the energy cutoff. We now increase the Hilbert space acces-
sible to the driven system by the addition of the (N+1)st
undriven energy eigenstate. With increasing A, as its quasien-
ergy nears that of one of the original N Floquet states, it will
mix significantly with that state. But we have shown above
(Sec. II) that if the corresponding avoided crossing is suffi-
ciently weak, A<<T’, then the reduced density matrix is ap-
proximately diagonal in the unmixed diabatic states, and the
addition of the new state to the basis set remains of little
statistical significance. Therefore, if we can demonstrate that
all of the states neglected by the truncation of high energy
undriven eigenstates mix with those retained only through
such weakly avoided crossings, then we can choose the en-
ergy cutoff of the basis to obtain statistical properties to any
desired accuracy.

Indeed, this desired behavior of the quasienergy of a Flo-
quet state arising from a high energy undriven eigenstate has
been seen in numerical calculations [1]. Such a state is found
to mix with the Floquet states that arise from low energy
undriven eigenstates, as A increases, only near weakly
avoided crossings. In the appendix of Ref. [13] we have ana-
Iytically demonstrated the effect explicitly, with an exponen-
tial decrease with basis size N of newly introduced quasien-
ergy gaps, for systems whose undriven energy eigenvalues
above some level exhibit increasing spacings between suc-
cessive levels (such as a particle confined by a one-
dimensional potential which increases faster than harmoni-
cally). This can be rationalized in terms of a perturbation
expansion: an increasingly large number of driving field
quanta is needed to connect to higher lying states, which are
modified only in increasingly higher order perturbation
theory. More generally, numerical studies [19] suggest that
once the first N undriven states have been included in the
basis, the Floquet states arising from the first N’ of these, for
suitably large N—N', are affected by further extension of the
basis set only by weakly avoided crossings. Again, perturba-
tion theory suggests that this is a reflection of the very dif-
ferent spatial behavior of these states.

For a class of periodically driven systems in an infinite
Hilbert space we earlier found [13] many anomalies due to
the infinite number of ever more weakly avoided crossings.
The present results show that these anomalies, and the non-
convergence of the Floquet states with increasing basis size,
lead to negligible consequences for the reduced density op-
erator or for the statistical properties calculated therefrom
when the system is in fixed weak contact with a thermal bath.

In practice, one has to determine the quasienergy spec-
trum for increasing basis size N until (i) newly appearing
avoided crossings are small enough, A<<T’, and (ii) the sta-
tistical (Boltzmann) weight of the newly introduced states,
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plus that of all neglected states, is small enough to achieve
the desired accuracy. Once the basis size N is appropriately
chosen, one can use Eq. (2.20) to determine the density-
matrix elements and calculate statistical properties.

It is important to recognize that, because of the require-
ment A<T" for avoided crossings with all neglected basis
states, the minimum truncation size N depends in general on
the magnitude, as well as the form, of the system-bath cou-
pling since both enter the determination of I'. Indeed, the full
statistical properties of the Floquet system will depend on
that magnitude (we have already emphasized in Sec. II B the
general dependence on the form of the coupling) even if the
coupling is very weak: for a given magnitude we choose N to
achieve a desired accuracy. We now reduce the magnitude
(keeping the form fixed) sufficiently that I becomes less than
one of the gaps A associated with an avoided crossing of a
state neglected by the truncation with a state that has been
retained. Then that avoided crossing becomes no longer ir-
relevant. It leads to a large rate R*° [Eq. (3.4)] that may cause
quite different statistical weights, as was explicitly shown for
the simple example in Sec. III B. We can understand this as
the appearance of a new, high order, near resonance which is
no longer disrupted by the bath interaction, resulting in the
appreciable occupation of the upper (higher average energy)
level of that pair and modifying the statistical weight of the
states to which it is connected.

This is emphatically not to suggest the lack of a well-
defined statistical behavior of a Floquet system with given
coupling to a bath. Indeed, the above procedure describes
how that is to be calculated to any desired accuracy. How-
ever, the behavior does depend on the specific magnitude and
form of that coupling, in sharp contrast to the situation for
conventional time-independent statistical mechanics.

V. CONCLUSION

We have derived Eq. (2.20) for the reduced density ma-
trix, in the stationary state, of Floquet systems with weak but
finite coupling to a heat bath. These equations are valid very
generally, with only the restriction that for arbitrary bilinear
system-bath coupling (or its extension to a sum of such
terms) the coupling strength I", be small compared to the
driving frequency w and the inverse bath relaxation time
1/ 7., so that the Born-Markov approximations remain valid.
Earlier discussions were often restricted [4,7,10,12] to situa-
tions where all quasienergy spacings were large compared
with the coupling to the bath (and therefore only for systems
restricted to a finite number of states). Near degeneracies
have been treated [5,8,11] only under restricted or specific
circumstances. New and interesting results give a prescrip-
tion for practical calculation of the steady-state statistical
properties of many realistic Floquet systems, including ones
with dense quasienergy spectra.

If the coupling to the bath I', is restricted only to be small
enough for the Born-Markov approximations to be valid, the
diagonal and off-diagonal matrix elements are approximately
time independent in the basis of the time-periodic parts of
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the Floquet states. In the special case of a Hilbert space
truncated to finite dimensions and the coupling weak com-
pared to all quasienergy separations, then the equations sim-
plify and are equivalent to those discussed in [10,12]. The
density matrix is diagonal, but the values of the diagonal
elements (occupation probabilities of the Floquet states) de-
pend on the detailed form (though not on the magnitude, as
long as it is sufficiently weak) of the coupling of the system
to the bath.

Weakly avoided crossings, where quasienergies become
nearly degenerate, are a pervasive feature of Floquet sys-
tems. Therefore, we have analyzed in detail the general
density-matrix equations in such regions. The rate equations
for diagonal density-matrix elements in the diabatic basis
[Eq. (3.3)] are shown to be identical to those well away from
the crossing and with arbitrarily weak coupling to the heat
bath, except that the avoided crossing introduces a new ef-
fective rate R*, defined in Eq. (3.4), between the diabatic
states 1 and 2 of the crossing. This rate depends on the ef-
fective coupling I' of the states 1 and 2 to the heat bath, the
distance d from the avoided crossing, and the relative
strength of the coupling to the heat bath, I'/A. In addition,
significant off-diagonal density-matrix elements p;, and p,;
may appear [see Eq. (3.6)].

The density operator changes drastically with N in the
neighborhood of an avoided crossing, d =<1, if also the bath
coupling is weak enough, I'<A. Quite importantly, signifi-
cant changes occur in the weights not only of the states
mixed in the crossing but in those of many other states as
well. At the center of the crossing the two states of the cross-
ing pair acquire equal weight, in general a very different
relative occupation from that outside the crossing region, and
this consequently modifies significantly the weights of the
network of states with which they interact, directly and indi-
rectly, as described by the rate equations. This is exhibited
explicitly for the simple example worked out in Sec. III B,
where the occupations of all states between those labeled n
and n, are strongly modified in this regime. On the other
hand, if the coupling to the bath is relatively large, I'>A,
then physical intuition suggests that the interaction with the
bath effectively broadens the quasienergy dispersion curves
by more than the gap itself, such that the avoided crossing
should have no consequences on the statistical properties of
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the system. We have shown that this is indeed the case,
namely, that the density matrix (in a A-independent basis)
remains virtually unaffected.

Having studied in detail Floquet systems spanned by a
finite basis, we have looked at the consequences when the
size of the basis set increases without limit as for a particle
confined by an unbounded potential and driven periodically.
We have concluded that, in many cases, the important
anomalies of such systems, including the appearance of an
infinite number of weakly avoided crossings and the noncon-
vergence of the Floquet states with increasing basis size, play
no important role for the physical properties of the system in
contact with a heat bath, confirming our physical intuition.
One can safely employ, in numerical calculations, a finite
suitably truncated basis set for such a system. However, a
special feature of such a Floquet system, which has a dense
quasienergy spectrum, is that its statistical properties depend
in general on both the form and the overall strength of the
coupling between the system and the bath.

These calculations have been based on a perfectly peri-
odic driving field. We recognize that effects that we have
neglected, notably fluctuations in amplitude and frequency of
the driving field, are similarly expected to wash out the ef-
fects of sufficiently weakly avoided crossings. Those effects
will be examined in a future publication.
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APPENDIX A: VALIDITY OF LOWEST-ORDER
BORN APPROXIMATION

In the still exact Eq. (2.4) we have made the lowest-order
Born approximation by using the factorization (2.5) of the
total density matrix directly on the right-hand side of that
equation. In order to check the validity of this approxima-
tion, we analyze in this appendix the lowest-order correc-
tions arising from the factorization of the total density matrix
only in the first iterate of Eq. (2.4), namely,

+ f i’ f Cdr f " oL (0. L) L (). L (). 5 © 1111,
0 0 0

- f dr' f Car f Car Tr,[H (1), [H (1), Trp([Hp ("), [H (7). 5(1") © p3]]) ® p3]1.
0 0 0

(A1)

Each of these two terms has the structure of three nested time integrals, with a sum of integrands from the nested commutators
(the terms differing only by the order of the factors), each of which is a product of four system operators and a fourth order
correlation function of the bath. A representative such bath correlation function is
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(B(nB(:")B(t")B(1")) - (B(1)B(1"))(B(")B(1") (A2)

=(B(OB(")(B(:")B(1")) +(B(1)B("))}B(t")B(1"))
(A3)

=G(t-1"G({t' -1")+G(t-1")G(' -1"), (A4)

where the equality of (A3) and (A2) makes use of the gen-
eralized Wick theorem [20]. The final pair of correlation
function products (A4) has the important property that in
each of the two terms the time intervals overlap. [The only
combination where this is not the case is explicitly subtracted
in (A2).] Thus all three times appearing in the integrals, #',
¢, and 1", must be close to ¢ in order to give an important
contribution since G(7) is significant only for 7<<7.. [This
validates again the Markov approximation, here
p(")= p(t).] The same condition holds for all contributions
to the fourth order term. Each such term has an upper limit
given by

Ty = y'7(AB?. (A5)
This is small compared to the magnitude of the second-order
rate I', if the weak-coupling condition 7.I',<<1 is fulfilled,
namely, that during the bath correlation time 7, the impact of
the second-order terms is small; Eq. (2.10) is itself sufficient
to ensure the smallness of higher order corrections.

A more restrictive condition, 1"2<s,-j for all 7,j, was im-
posed in Ref. [7], namely, that the system-bath coupling must
be smaller than the smallest quasienergy splitting. In con-
trast, the above estimate of the fourth order term shows that
larger system-bath couplings with I';>eg;; can equally well
be treated with the present approach as long as the weak-
coupling condition [Eq. (2.10)] is fulfilled.

APPENDIX B: VALIDITY OF TIME AVERAGING
OF THE RATES

The replacement of rates by their averages over a driving
period [see Eq. (2.19) and the sentence preceding it] relies on
the assumption that the density-matrix elements do not vary
substantially over that period, T=2m/w. At first glance this
seems to be wrong as, e.g., an off-diagonal density matrix
p;;(t) with an associated quasienergy difference &;;, which
can be as large as w, would have in the absence of the cou-
pling to the heat bath a substantial variation over the time 7.
But it will turn out that such off-diagonal matrix elements
(corresponding to large quasienergy differences) are in fact
small at large times.

We use the observation that the set of differential equa-
tions [Eq. (2.18)] is linearly coupled and has time-periodic
coefficients Ry, (t) with period 7. Thus one can apply the
Floquet theorem, which requires the general solution to be of
the form

pij(t) = 2 ane}\ntrij;n(l)s (B 1)

with time-periodic functions r;;,,(1+7T)=ry;,,(1) and €M’ an
eigenvalue of the time-evolution operator for all density-
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matrix elements over one period. (The \,, are assumed here
to be nondegenerate.) This solution is in general not periodic
in time.

In the following we are interested in the solution for large
times. All solutions with Re(\,) <0 decay to zero in this
limit and are of no further interest. From the general proper-
ties of a density matrix, 0=p;=1 and |p,|*=p;p;=1, it
follows that solutions with Re(\,) >0 are impossible. So we
are left with discussing solutions with Re(\,)=0. For the
trace of the density matrix to be 1, i.e., time independent and
nonzero, there must be a solution Ay=0. Thus we have a
stationary solution for the density-matrix elements

pif(1) =rijo(1), (B2)
which is time periodic with at least some diagonal compo-
nents which have nonzero time averages. (We cannot ex-
clude that in addition to this, there is a traceless quasiperi-
odic solution from pairs of purely imaginary \,. As its time
average would be zero, we ignore it in the following.)

We now expand this stationary time-periodic solution in
Fourier coefficients,

pi(t) = > pij(K)eint’ (B3)
K

so that the above differential equations [Eq. (2.18)] reduce,
for each of the Fourier components, to

- l(SU + Kw)PzJ(K)

1 .
=5 > {pi(K = M)R .y (M) + pyf( K = M)R ;. (— M)
kLM

= pr(K = M)[Ryj1i(M) + Ry, ,(= M) ]} (B4)
The right-hand side is second order in the small system-bath
coupling constant y because each rate factor (2.15) is. Al-
though we are explicitly concerned with couplings which are
not arbitrarily weak with respect to the smallest quasienergy
differences in the problem, we want to consider, as in the
conventional static case, coupling which is weak on higher
energy scales, such as the driving frequency w. Then for
nonzero values of K the necessary smallness of the left-hand
side of Eq. (B4) must be achieved by the smallness of p;(K),
and it is consistent to neglect all such components of the
density matrix in the solution; we will set

pij(K #0)=0, (B5)
and we will simply write p;; for p;;(K=0), which is by defi-
nition time independent. (We point out that this implies a
time-periodic density operator for large times, as one would
expect physically.) This time independence of p;; at large
times then implies in Eq. (B4) that only M=0 terms
appear—i.e., that the complex rates R can be replaced by
their time averages R(M=0). [Note that for a quasienergy
difference g;;= * w between a Floquet state close to the
lower boundary and a state close to the upper boundary of
the chosen strip 0=e<w, one would need to choose K
=71 in Eq. (B4) or choose a conveniently displaced strip.]
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APPENDIX C: DERIVATION OF THE EFFECTIVE
RATE R*¢

In this appendix we derive the rate equations for the re-
duced density-matrix elements in the diabatic basis of an
isolated weakly avoided crossing in the stationary limit. This
leads to an effective rate R*, which expresses the entire \
dependence related to an avoided crossing.

Starting from the operator [Eq. (2.8)] one follows the
steps leading to Eq. (2.20), but now in the diabatic basis of
the avoided crossing, which is related to the adiabatic basis
by

| (1)) = aluy (1) + Blus(t)), (C1)

luy(1)) = Bluy (1)) = afuy (1), (C2)

with a=\(1+d/\1+d/2, B=\(1-d/\N1+d?)/2, and d,
the dimensionless distance from the center of the avoided
crossing, is defined in Eq. (3.2). This basis change alters the
left-hand side of Eq. (2.20), as the coherent dynamics is less
conveniently described in the diabatic basis. The right-hand
side is left invariant, but now with rates in the diabatic basis,
and can be simplified with the following assumptions:

(1) We assume that the avoided crossing is sufficiently
weak and isolated within the quasienergy spectrum, such that
we can neglect any dependence of diabatic states 1 and 2 on
the driving amplitude N, valid over a sufficiently limited
range of \ near \y. We assume the same for all other Floquet
states, such that the diabatic basis is independent of N\ within
that range.

(2) All other quasienergy separations near =N\ are as-
sumed to be much larger than the splitting A, as well as
larger than the effective coupling to the bath, such that all
off-diagonal density-matrix elements can be neglected except
for P12 and P21-

(3) We define rates R;;,, in the diabatic basis in analogy to
Eqgs. (2.19) and (2.15), where the A dependence appearing in
the quasienergies €, and &, is neglected in the neighborhood
of the avoided crossing. That is, the Fourier-transformed bath
correlation function g(e—mw) is taken to be constant over
this very small range of e. This is a good approximation as
long as A7,<1 holds, which is the case for the weakly
avoided crossings we are interested in. Together with as-
sumption 1 this makes the rates R;;.;; independent of \.

(4) We set Aj,(m)=A,,(m)=0 [see Eq. (2.13)] as we as-
sume that the spatial structures of states 1 and 2 are very
different. We are explicitly looking at a very weakly avoided
crossing, and this typically arises from such dissimilar pairs
of states, such as those arising from undriven states, one of
which is of low and the other of very high energy. Similarly,
any other state j cannot be spatially similar to 1 and 2 simul-
taneously, leading to A, ;(m)A,;(m)=0.

(5) For simplicity we restrict the discussion to periodic
drivings that are symmetric, i.e., Hy(t)=H(—r). This makes
the rate R,y.;;, which appears in the definition of I' in Eq.
(3.5), real.
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For the density matrix in the subspace of states 1 and 2 we
find

ATm(pyy) == py 2 Rie+ 2 pucRia» (C3)
X X

~AIm(pp) = - pn Rop+ 2 prRias (C4)
k P

iA[(pyy = p2) = 2dp1a] = pol’ (C5)

with the symbol I introduced in Eq. (3.5).

The third equation expresses the off-diagonal element p,,
in terms of the diagonal elements, as explicitly written in Eq.
(3.6). Consequently, the left-hand side of the first two equa-
tions can be written in terms of the diagonal elements,

A Im(pyy) = R*(py; — p22) (Co)

where we use the notation R* introduced in Eq. (3.4). We
now redefine the effective rates Eij in the diabatic basis equal
to the original rates R;; except for R,=R* and similarly
R,;=R* (note R;,=0 by assumption 4 above). This allows us

to rewrite the first two equations in the standard rate equation
form as if there were just diagonal density-matrix elements

[Eq. (3.3)].

APPENDIX D: DIAGONALIZING THE DENSITY MATRIX

It is instructive to ask in which basis the reduced density
matrix is diagonal near a weakly avoided crossing and
whether this is close to the diabatic 1, 2 basis above or close
to the a,b basis of the Floquet states. The relevant sector of
the density matrix in the 1, 2 basis is given by

P11 Alpy1 = p2)
p= ( ) (D1)
A(p11 = p2) P2
with
A= ; (D2)
T 2d-iT/A’
It is diagonal in the basis of the two states,
A 1 / 1
|udl>= i l+_|M1>+ 1—_|M2> /\1'5,
Al z z
A 1 1 -
|”d2>:{—m \/1_z|“1>+ 1+2|M2>]/\2, (D3)
with
z=V1+4/AP, (D4)
leading to diagonal elements
par.ar =[p11(1+2) +pn(l -2)]/2, (D5)
pa.ar=p11(1 =2) + poo(1 +2)]/2. (D6)
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One can check that this gives the expected result in two
limiting situations.

(i) Far from the avoided crossing, d> 1, or for I'>> A, the
effective rate R* between states 1 and 2 becomes small, we
have A—0 and z— 1, and we regain the 1,2 basis as that in
which the reduced density matrix is diagonal.

(ii) For weak coupling, I'<<A and near the avoided cross-
ing, d<<1, we have z> 1. It is immediately clear that at the
center, where d — 0, the appropriate basis states for a diago-
nal density matrix become nearly the equal admixtures of
states 1 and 2, which are the Floquet states a and b. In fact,
this is the case for all d in this limit of weak coupling to the
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bath; for infinitesimal I" these states which diagonalize p are
exactly the Floquet states.

We can readily understand these two limits in terms
of the balance between energy pumping of the system
by the periodic field and relaxation by the bath. For I'<<A
the near resonant periodic driving dominates, and the
Floquet states in the absence of the bath are approximate
solutions only weakly relaxed. In the opposite limit, I'> A,
those Floquet levels are effectively broadened more by the
bath interaction than their separation, and the mixing of the
diabatic states is a perturbation on their relaxation by the
bath.
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