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The influences of noise flatness and friction coefficient on the long-time behavior of the first two moments
and the correlation function for the output signal of a harmonic oscillator with fluctuating frequency subjected
to an external periodic force are considered. The colored fluctuations of the oscillator frequency are modeled
as a trichotomous noise. The study is a follow up of the previous investigation of a stochastic oscillator �Phys.
Rev. E 78, 031120 �2008��, where the connection between the occurrence of energetic instability and stochastic
multiresonance is established. Here we report some unexpected results not considered in the previous work.
Notably, we have found a nonmonotonic dependence of several stochastic resonance characteristics such as
spectral amplification, variance of the output signal, and signal-to-noise ratio on the friction coefficient and on
the noise flatness. In particular, in certain parameter regions spectral amplification exhibits a resonancelike
enhancement at intermediate values of the friction coefficient.
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In recent years increasing attention has been focused on
the constructive role of noise in nature: the influence of noise
is not restricted to destructive and thermodynamic effects but
can have unexpected ordered outcomes �1�. Examples in-
clude the ratchet effect �2�, noise-induced multistability as
well as first-order phase transitions in some complex systems
�3�, noise-induced Hopf bifurcations �4�, and stochastic reso-
nance �SR� �5�, to name a few.

Since Benzi et al. �6� originally discovered the phenom-
enon of SR, whereby the effect of a small periodic force can
be amplified by noise in a nonlinear system, there have been
considerable developments in the process of exploring the
essence of SR. Compared with the previous concept, in the
last decade two generalizations can be discerned. First, it is
generally acknowledged that in a wide sense, SR means a
nonmonotonic dependence of the output signal or some func-
tion thereof �moments, autocorrelation functions, and signal-
to-noise ratio �SNR�� on the noise parameters �7�. Second,
the previous concept of SR was confined to systems where
all three ingredients �nonlinearity, periodic, and random
forces� are necessary for the onset of SR. However, recent
investigations show that SR may appear without a periodic
force �8� and in linear systems with multiplicative noise
�7,9�. Since the phenomenon is very broad, there is still no
general agreement about the precise conditions for its occur-
rence, its meaning, or even its defining characteristic signa-
ture. In the course of time a considerable variety of different
quantifiers for SR have been introduced, leading to different
quantitative conclusions regarding the occurrence of SR in a
physical system �see �10��. For example, if we focus on a
bona fide SR—an optimal signal enhancement phenomenon
upon variation in the driving frequency—the most common
quantifiers of SR are the signal-to-noise ratio, the spectral
power amplification, and the hysteresis loops area. Often, a
nonmonotonic resonance-type behavior of one of those three
quantities is considered as the defining characteristic signa-

ture of SR. However, in many cases, it has been found that
some of the three quantities behave monotonically and some
nonmonotonically for same physical system �10�. Thus, in a
general case different quantifiers of SR should be considered
as complementary characteristics of SR. It should be noted
that in a wide sense SR is related with the phenomena of
stochastic parametric resonance �11,12� and stochastic reso-
nant damping �1�. In those cases the prominent quantifier of
SR is the variance of the output signal. However, while sto-
chastic resonant damping is associated with the minimization
of the system output variance, stochastic parametric reso-
nance is considered either with the maximization of the out-
put variance or with the phenomenon of energetic instability,
which manifests itself in an unlimited increase in the second-
order moments of the output with time.

Theoretical investigations �13,14� indicate that noise-
induced nonequilibrium effects are sensitive to noise flatness,
which is defined as the ratio of the fourth moment to the
square of the second moment of the noise process. For ex-
ample, in correlation ratchets �Brownian motors� the direc-
tion of the mean particle velocity crucially depends on the
values of noise flatness �13,14�. The study of such systems
has been motivated, in part, by recent advances in experi-
mental study of motor proteins, i.e., proteins that convert the
energy of adenosine triphosphate �ATP� hydrolysis into mo-
tion along a biopolymer. It is speculated that a multiplicative
noise with several discrete states is likely to be the operating
principle for motor proteins �15�. The stochastic binding of
ATP, the subsequent hydrolysis, and the release of adenosine
diphosphate �ADP� cause fluctuations of the distribution of
charges in the motor protein and thus the energy profile that
is “left” on the periodic biopolymer. It is noticed that one of
the important characteristics of fluctuations of this profile is
noise flatness �15�. In spite of the obvious significance of
noise flatness in ratchets, it seems that analysis of the behav-
ior of SR characteristics depending on noise flatness is still
missing in literature. This is because, due to mathematical
simplicity, most analysis of SR in systems with colored noise
used to be restricted either to cases of Gaussian colored noise*astrid.rekker@tlu.ee
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or to dichotomous noise, while the flatness is constant for
both the dichotomous noise and Gaussian colored noise, be-
ing equal to 1 and 3, respectively.

Inspired by the fact that the harmonic oscillator is the
simplest toy model for different phenomena in nature and as
such it is a typical theoretician’s paradigm for various fun-
damental conceptions �16�, the authors of Ref. �11� have in-
vestigated the long-time behavior of the first two moments
and the correlation function for the output signal of a har-
monic oscillator with fluctuating frequency subjected to an
external periodic force and an additive thermal noise. The
colored fluctuations of the oscillator frequency were modeled
as a three-level Markovian noise. This linear model of a
noisy harmonic oscillator enables exact solutions for mo-
ments of the output signal and predicts some unexpected
effects in the behavior of SR characteristics. In particular, a
multiresonancelike behavior of the variance and the signal-
to-noise ratio as function of the noise correlation time are
observed and a connection between the occurrence of ener-
getic instability and stochastic multiresonance is established.
It is remarkable that for the three-level noise �also called
trichotomous noise� used in �11� the flatness parameter can
have any value from one to infinity and thus constitutes a
case admitting investigations of SR phenomena versus noise
flatness.

The main purpose of this paper is to demonstrate, based
on the exact expressions of several SR characteristics found
in our previous work �11�, that stochastic resonance is mani-
fested in the dependence of SR characteristics for the noisy
harmonic oscillator �such as spectral amplification �SPA�,
SNR, and variance of the output signal� upon noise flatness.
Furthermore, we will show that in certain parameter regions
the SPA and SNR exhibit a resonancelike nonmonotonic be-
havior versus the values of the friction coefficient. Thus the
values of SPA and SNR can be controlled, i.e., either en-
hanced or suppressed, by changing the friction coefficient.
To our knowledge, both the above-mentioned resonance phe-
nomena are new noise-induced effects that have never been
observed, let alone discussed before.

As in our previous work �11�, we consider the stochasti-
cally perturbed harmonic oscillator with a random frequency,

Ẍ + �Ẋ + ��2 + Z�t��X = A0 sin �t , �1�

where Ẋ�dX /dt, X�t� is the oscillator displacement, and � is
a damping parameter. Fluctuations of the frequency �2 are
expressed by a Markovian trichotomous noise Z�t�, which
consists of jumps between three values: z1=a, z2=0, z3=−a,
and a�0. The jumps follow, in time, the pattern of a Poisson
process, the values occurring with the stationary probabilities
ps�a�= ps�−a�=q and ps�0�=1−2q, where 0�q�1 /2. In a
stationary state the fluctuation process Z�t� satisfies

�Z�t�� = 0, �Z�t + ��Z�t�� = 2qa2e−��, �2�

where the switching rate � is the reciprocal of the noise
correlation time �c=1 /�, i.e., Z�t� is a symmetric zero-mean
exponentially correlated noise �17�. The trichotomous pro-
cess is a particular case of a kangaroo process �13� with the
flatness parameter

	 =
�Z4�t��
�Z2�t��2 =

1

2q
. �3�

Thus, for the trichotomous noise, flatness is determined
by the parameter q, which regulates the relative amount of
time spent in the state z=0 as opposed to the states z=a and
z=−a, and as such is a good measure of how close to zero
the value of Z stays on the average. We will restrict ourselves
to the case where for all states of the trichotomous noise the
frequency of the oscillator is positive, i.e.,

a � �2. �4�

Using the Shapiro-Loginov procedure �18�, the exact ex-
pressions of the first and second moments of the displace-
ment X�t� as well as for the correlation function

K��,t� = �X�t + ��X�t�� − �X�t + ����X�t�� �5�

have been calculated in �11�. Particularly, the solution for the
first moment �X�t�� is stable for all values of the system
parameters if inequality �4� holds. In the long-time limit,
t→
, the moment �X�t�� is given by

�X�as � �X�t→
 = A sin��t + �� , �6�

where both the output amplitude A and the phase � of the
output average depend on system parameters �see Eqs.
�A1�–�A3��. The necessary and sufficient condition for the
stability of second moments �i.e., energetic stability� reads as

a2 � acr
2 =

�2��� + ���4�2 + ��2� + ���2

16�2��� + �� + 2q��4�2� + �2� + ��3�
. �7�

In this paper we shall assume that condition �7� is fulfilled.
Beside SPA,

SPA ª

A2

A0
2 , �8�

two another important SR characteristics are the time-
homogeneous part of the variance of the oscillator displace-
ment X defined as

�2�X� ª
1

T
�

0

T

��X2�t��as − �X�t��as
2 �dt , �9�

with T=2
 /� �see also Eqs. �A4�–�A6��, and the output
SNR �11,19�. According to Ref. �19�, the output SNR R is
defined in terms of the Fourier cosine transform of the co-
herent and incoherent parts of the average of the two-time
correlation function at the asymptotic limit t→
 over a pe-
riod T of the external driving, i.e.,

R ª

�1

�2
, �10�

where the coherent part �1 and the incoherent part �2 are
given by �11,19�

�1 =
2

T2�
0

T

d� cos�����
0

T

�X�t��as�X�t + ���asdt =
A2

2
,

�11�
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�2 =
2


T
�

0




d� cos�����
0

T

�K��,t��asdt . �12�

Here we emphasize that for all figures throughout this
work we use a dimensionless formulation of the dynamics
with �=1 and A0=1.

Next we consider the dependence of several SR charac-
teristics �SPA, �2, and R� on the noise flatness 	=1 /2q. The
qualitative behavior of SPA, variance �2, and output SNR
versus 	 is sensitive to values of other system parameters. In
the case exposed in Fig. 1�a� the variance exhibits a single-
peak form of SR at small and moderate values of the noise
switching rate �. As � increases the SR disappears and in this
case the variance is rather an increasing function of q. It is
remarkable that in the transition regime ��	0.25 in Fig.
1�a�� the variance is nearly constant over a finite range of the
values of q. The phenomenon of noise-flatness-induced SR
for the output variance is not restricted to a simple single-
peak form of SR. Figure 1�b� depicts a more complicated
behavior of the variance as a function of q for different val-
ues of the noise amplitude. In the parameter regimes consid-
ered in Fig. 1�b�, for increasing values of q the variance
starts from zero, increasing to a local maximum, next it de-
creases, attaining a local minimum, and then �2 tends to
infinity as q tends to a value qcr�0.5. Such a combined SR
phenomenon, i.e., first an enhancement, next a suppression,
and finally a rapid increase in the output variance is signifi-
cantly associated with the critical characteristics of stochastic
parametric resonance. Namely, the critical value qcr of the
noise parameter q at which the variance tends to infinity
corresponds to the appearance of noise-induced energetic in-

stability �cf. Eq. �7��. Hence, one key factor of the appear-
ance of SR with two local extrema in �2 versus 	 is the
occurrence of energetic instability at some values of the
noise flatness 	. As a rule, in the parameter regimes consid-
ered in Fig. 1 the SR phenomenon for SPA and for SNR is
absent as both SPA and SNR are monotonically decreasing
functions of q �cf. Fig. 2�.

As mentioned above, there are certain ranges of system
parameters for which the behavior of SR characteristics can
be qualitatively different. A plot �Fig. 3� of SPA �A2� versus
the noise parameter q for various other system parameters
shows a typical resonance with nonmonotonic behavior of
the function A2�q� on q. One can discern two cases. First, if
the noise switching rate � is relatively small, then the SR
phenomenon for SPA is exhibited in the form of a suppres-
sion of A2 at some values of q �cf. the curves �1�–�3� in Fig.
3�. Actually, in the case of very small values of the damping
parameter � and the switching rate � the effect of suppres-
sion can be very strong, i.e., at the local minimum of the
function A2�q� the SPA tends to zero. Second, in the case of
moderate values of � a local enhancement of SPA versus q
occurs �curve �4� in Fig. 3�. It is remarkable that the peak of
A2�q� depends on � quite strongly as both its magnitude and
its position change. For example, if � increases, the position
of the peak shifts toward greater values of the noise param-
eter q. In the cases mapped in Fig. 3 with the curves �1�–�3�,

�a�

�b�

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

0 0.1 0.2 0.3
5

10

15

20

Σ
2

q

10
�

6
Σ

2

FIG. 1. Variance of the output signal ��2� vs the noise parameter
q at A0=�=�=1. Panel �a�, parameter values: �=0.1, a=0.8; solid
line, �=0.01; dashed line, �=0.05; dashed dotted line, �=0.15;
dotted line, �=0.25. Panel �b�, �2 vs q at different values of the
noise amplitude a for �=10−4 and �=0.4. Solid line, a=0.034;
dashed line, a=0.038; dotted line, a=0.04. The respective critical
values of q, at which energetic instability appears, are qcr1	0.449,
qcr2	0.360, and qcr3	0.325.
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FIG. 2. SNR �R� and SPA �A2� vs the probability q at A0=�
=�=1. Solid line �R vs q� and dashed line �A2 vs q� correspond to
the parameters: �=0.1, �=0.15, and a=0.8. The inset: dashed-
dotted line �R vs q� and dotted line �A2 vs q� are computed at �
=0.0001, �=0.4, and a=0.04. Note that the SNR vanishes at the
critical value of q=qcr	0.325.
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FIG. 3. Dependence of SPA �A2� on the noise parameter q for
A0=�=1. �1� Dashed line, �=0.68; �2� dashed-dotted line,
�=0.78; �3� dotted line, �=1.2; other parameter values: �=0.01,

�=0.001, and a=0.56. �4� Solid line Ā2�q�=0.2A2�q�: �=1.6,
�=0.001, a=0.95, and �=0.9.
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for the variance �2 the SR phenomenon is absent; �2 in-
creases monotonically to infinity as q tends to qcr �qcr
�0.5� where instability appears. Note that SPA is determined
with the first-order moment of the displacement of the oscil-
lator and is therefore always stable. In contrast to the vari-
ance, the output SNR �R� vs q exhibits SR �see Fig. 4�. For
increasing values of q the SNR starts from infinity, decreas-
ing to a local minimum, next it increases, attaining a local
maximum and then R decreases relatively quickly to zero as
q tends to qcr. The behavior of SNR at q=0 is a simple
consequence of the circumstance that at q=0 the oscillator
�Eq. �1�� behaves as a deterministic oscillator with z=0, and
therefore the noise output spectral density �2 �see Eqs. �10�
and �12�� tends to zero. At energetic instability, q=qcr, the
incoherent part of the output correlation function is very
large and �2 tends to infinity—thus the SNR tends to zero. It
is notable that in accordance with Eqs. �8�, �10�, and �12� the
local minimum of the SNR corresponds to the minimum of
the SPA. For an illustrative purpose, at q=0.25, some typical
realizations of X�t� that correspond to the parameter regime
�2� in Fig. 3 are represented in Fig. 5. Note that in this case
a desynchronization of the realizations of X�t� appears,
which causes a strong suppression of SPA and SNR �cf. Figs.
3 and 4�.

Let us note that the SR phenomenon versus noise flatness
also appears in the case of adiabatic noise �i.e., in the case of
�→0�. At a long correlation time, �→0, it follows that by
conditions

a2 � ��2 − �2�2 − �2�2 � 0, �2 � �2 − 2�2, �13�

the SPA reaches the minimum

Amin
2

A0
2 =

4�2�2��2 − �2�2



n=1

3

���2 − �2 − zn�2 + �2�2�

�14�

at

q = qm �
1

2a2 �a2 + �2�2 − ��2 − �2�2� . �15�

Note that the inequalities �Eq. �13�� are necessary and suffi-
cient conditions for the SR phenomenon of SPA to occur in
the adiabatic limit. Evidently, if the damping parameter � is
low, the suppression of SPA at q=qm is very pronounced, i.e.,
Amin

2 tends to zero as � vanishes. In particular, the SR phe-
nomenon of SPA is accompanied by a strong suppression of
SNR at q=qm �cf. Fig. 6�. The necessary and sufficient con-
ditions for the existence of resonancelike amplification of the
output variance �2 read as

a2 � ��2 − �2�2 + �2�2, �2 � 2�2 − �2. �16�

It can be shown that the maximum of �2 exhibits at
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FIG. 4. SNR �R� vs the noise parameter q at A0=�=1, �
=0.001, a=0.56, and �=0.01. Solid line, �=0.68; dashed line, �
=0.78; dotted line, �=1.2. The critical value of q is qcr	0.482.
The inset depicts R �solid line� and �2 �dotted line� vs q in
the parameter regime �=1.6, �=0.001, a=0.95, and �=0.9;
qcr	0.00151.
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FIG. 5. Three realizations of X�t� at the parameter regime ex-
posed by curve �2� in Fig. 3; q=0.25. The mean value of the oscil-
lator displacement �X�t�� oscillates between �0.21 with the fre-
quency �=0.78 �not shown�.
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FIG. 6. Dependence of three SR characteristics: output SNR
�R�, variance ��2�, and SPA �A2�, on the noise parameter q in the
case of a long correlation time. The curves correspond to the fol-
lowing parameters: A0=�=1, a=0,03, �=0.99, �=0.001, and
�=0.0001. Solid line, A2 vs q; dashed line, �2 vs q; dotted line,
R vs q.
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q = qmax =
1

4a2 �a2 + �2�2 + ��2 − �2�2� . �17�

From Eq. �17� it follows that in the adiabatic regime the
values of noise flatness 	 at which the maximal amplification
of the output variance occurs are in the interval �1,2�. A
comparison of Figs. 3, 4, and 6 shows the vital role of ener-
getic instability at formation of a local maximum of SNR.
Contrary to the parameter regimes considered in Figs. 3 and
4, where the energetic instability appears, in the case of Fig.
6 energetic instability is absent for all values of q.

Next we consider the dependence of SPA and SNR on the
friction coefficient �. In Fig. 7 several graphs depict the be-
havior of the SPA �A2� versus � for different representative
values of the noise parameters. These graphs show a typical
resonancelike behavior of A2���. As a rule, the maximal
value of A2 increases as the noise amplitude a decreases,
while the positions of the maxima are monotonically shifted
to higher � with a rise in a. Note that the output variance �2

is a monotonically decreasing function of � for all values of
the system parameters. Although the dependence of A2 on the
system parameters is generally very complicated �11� and
thus simple analytical conditions for the appearance of the
resonance behavior of SPA versus � are not available, it is
possible for some particular cases. In particular for the case
q=1 /2 and �=� we obtain that the amplitude of the output
signal A reaches a maximum vs � as the conditions

a2 �
2�2�2��2 + 4�2�

�2 + 2�2 , � �
�

2
��65 − 7 �18�

are fulfilled. Thus the effect is possible if the noise amplitude
is greater than a threshold value �Eq. �18��, which grows
with � increasing. For small noise correlation times �c=1 /�
system �1� behaves as a deterministic oscillator with an av-
eraged frequency � and hence the phenomenon of amplifi-
cation of A vs � is absent. In the particular case of �=�, at
the long-correlation-time limit �→0 the behavior of SPA as
a function of the friction coefficient � involves two local
extrema �cf. the solid line in Fig. 7� in the small interval of
the noise flatness, 	� �1,1.125�. The positions of the mini-
mum �− and of the maximum �+ are determined by

�� =
a

�
�3q − 1 � �q�9q − 4� . �19�

The corresponding extremal values of the SPA read as

A�
2

A0
2 =

�q � �q�9q − 4�
2

a2�3q − 1 � �q�9q − 4�
�3q � �q�9q − 4�
2
.

�20�

Evidently, the maximum of SPA increases rapidly as the
noise amplitude a decreases. Note that in accordance with
Eq. �18� the threshold value of the noise amplitude tends to
zero if �→0. It is important, in view of possible experi-
ments, that at the maximum of SPA the relative variance of
the output signal is independent of the noise amplitude and is
lower than one:

��2

A2�
��=�+

=
q

q + �q�9q − 4�
� 1. �21�

As in the case of the conventional resonance phenomenon
�vs �� for a classical periodically driven underdamped os-
cillator, the resonance versus � of a stochastic oscillator �Eq.
�1�� can also be characterized by a phase lag � between the
periodic driving force and the periodic response of the sys-
tem �see also Eq. �6�� that passes through �=−
 /2 when the
friction coefficient � is tuned through the range where reso-
nance occurs. For example in the case considered above
��=0, q=1 /2, and �→�� the resonant value of the friction
coefficient � is �+=a /� and the phase lag � behaves as

tan � =
− ����2�2 + a2�

��2 − �2���2�2 − a2�
. �22�

Thus, � is increased gradually from zero and swept through
the resonant value �+, � decreases from zero, passes
through −
 /2 when �=�+, and approaches a minimum when

�= ��2+�5��+ �it is assumed that ��� when �→��.
This simple example also explains why the variation in

SPA with � is nonmonotonic, whereas the corresponding
variation in the amplitude of a classical oscillator with � is
well known to be monotonically decreasing when � in-
creases. The key factor is that realizations of the stochastic
oscillator displacement X�t� can be synchronized by increas-
ing the friction coefficient �. More precisely, consider an
ensemble of realizations of the stochastic oscillator for each
of which a particular sequence of switching times, between
the states of the dichotomous noise Z�t�, is chosen from the
distribution of switching times. For a given time moment
t the relative amount of realizations for the noise states
z1=a and z2=−a is 1/2. As the switching rate � is very
small, �→0, there is, between two switchings of the noise,
enough time that the transition regimes of the oscillator re-
alizations disappear and the average displacement �X� can
be considered as a sum of the two classical oscillators with
the frequencies ��2−a and ��2+a. In the case of
�=�, the amplitudes of the output signal are equal,
A1=A2=A0 / �2�a2+�2�2� for both oscillators, but the
phase lags �1 and �2 are different: �2=−�
+�1� and
sin �1=−�� /�a2+�2�2. The resultant amplitude A of �X�
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FIG. 7. Spectral amplification �A2� vs the friction coefficient �
for some values of the noise amplitude a. All quantities are dimen-
sionless, with A0=�=1. Dashed line, a=0.2; dotted line, a=0.25;
dashed-dotted line, a=0.3; other parameter values: �=0.0001,
q=0.2, and �=0.91. Solid line, �=0.0001, a=0.1, q=0.472, and
�=1.
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forms as the product of the two terms, namely, A
=2A1�sin �1�. Contrary to A1���, which is the decreasing
function of � and tends to 0 as �→
, the factor �sin �1�
increases monotonically from zero to 1 as � increases. Hence
the maximal value of A forms at an intermediate value of the
friction coefficient �=a /�. We note that at resonance the
difference of the phase lags �2−�1 equals −
 /2.

The phenomenon of �-induced resonance is not restricted
to SPA. Figure 8 depicts the friction-induced resonance for
the output SNR at different values of the switching rate �. In
the case of a long correlation time, �=1 /�c�1, this rela-
tively weak effect occurs when the driving frequency � is
close to the frequencies �1	��2−a, �2	�, and �3
	��2+a, which correspond to the noise states z1=−a, z2
=0, and z3=a, respectively. As the switching rate � is small,
the existence of two extrema �i.e., a minimum and a maxi-
mum� in the dependence of SNR on � can be readily inferred
by physical intuition. As � decreases the increase in the in-
coherent part of the output correlation function is fast enough
to suppress R. If � is sufficiently small, the SNR grows as �
decreases because of the rapid increase in the output ampli-
tude A due to strong resonance of some realizations of X�t� at
�i. Particularly, in the noise state zi all these realizations are
strongly synchronized due to the phase lag �=−
 /2 between
the periodic driving force and the periodic response of the
system by resonance. As � tends to �cr, which corresponds to
the appearance of energetic instability �see Eq. �7��, i.e.,
acr��cr�=a, the drastic increase in the output variance in-
volves a rapid decay of the SNR to zero. Finally we empha-
size that the results obtained for the friction induced reso-
nance are applicable also in the case of the more
conventional dichotomous noise, which is a particular case
of trichotomous noise �q=1 /2�.

Our exact analytical results �11� can be a good starting
point for more in depth investigations. Here we briefly men-
tion three possible directions concerning the role of noise
flatness in the dynamics of a stochastic oscillator. First, it
would be interesting to investigate in more detail the phe-
nomena of hypersensitive response to noise amplitude, and
for the bona fide resonance, the anomalous strong depen-
dence of the SR gain on the frequency of the driving force at
very small intensities of multiplicative noise reported in �11�.

Both phenomena occur only at very large values of noise
flatness. Second, in the case of additive white noise it is
demonstrated that by bona fide SR there exists an exact re-
lation between three common quantifiers for SR, namely,
SNR, SPA, and a hysteresis loop area �10�. Thus, it is impor-
tant to investigate not only SNR, SPA, and variance but also
the behavior of other quantifiers of SR, e.g., the hysteresis
loop area. Finally, our paper is restricted to the case of tri-
chotomous noise. However, in many physical and biochemi-
cal systems, fluctuations have a more general structure, e.g.,
fluctuations behave as a kangaroo process �13,20,21�. We
believe that the model discussed in this paper can be ex-
panded to one that is suitable for studying SR phenomena
versus noise flatness in the case of the general kangaroo pro-
cess.

By conclusion, on the basis of the harmonic oscillator
with fluctuating frequency subjected to an external periodic
force we have proved the existence of noise-flatness-induced
stochastic resonance as well as a friction-generated amplifi-
cation of the output signal of the oscillator. The advantage of
the latter effect is that the control parameter is the friction
coefficient �the damping coefficient�, which can easily be
varied in possible experiments as well as in potential tech-
nological applications, e.g., a variable resistor in electric os-
cillator devices. Stochastically driven harmonic oscillators
have been successfully applied in the description of a wide
variety of problems in nature �20,22�. For this reason, we
believe that the results of this paper not only supply the
phenomena to theoretical investigations of SR but also sug-
gest a possibility to design experiments and observations in
the field of SR.
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APPENDIX: FORMULAS FOR VARIANCE AND SPA

Using the Shapiro-Loginov procedure �18� by Eq. �1�, ex-
act expressions of the first and second moments of the dis-
placement X�t� have been calculated in �11�. To facilitate
reading the present article we will repeat �from �11�� the
main formulas for SPA and variance that are relevant for this
work.

1. Formulas for the first moment

The amplitude A and the phase lag � in Eq. �6� are given
by

A2 = A1
2 + A2

2 =
A0

2�f1
2 + �f2 + 2qa2�2�

f3
2 + f4

2 , �A1�

tan � =
f1f3 − f4�f2 + 2qa2�
f1f4 + f3�f2 + 2qa2�

, �A2�

where

0 0.5 1.0 1.5 2.0
Γ

24.2

24.3

24.4

24.5

24.6

24.7

Β i
R 0 0.01 0.02 0.03

Γ

29.1

29.4

29.7

R���

FIG. 8. A plot of the dependence of SNR �R� on the friction
coefficient � for some values of the noise switching rate �. Param-
eter values: A0=�=1, q=0.5, a=0.4, and �=0.1. Solid line, �1

=27, �=0.05; dashed line, �2=15.5, �=0.1; dotted line, �3=10, �

=0.2. The inset depicts R̄=104R vs � in the parameter regime �
=0.001, a=0.75, and �=0.51.
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f1 = 2��� + 2������ + �� + �2 − �2� ,

f2 = ���� + �� + �2 − �2�2 − �2�� + 2��2 − a2,

f3 = �f2��2 − �2� − ��f1� − 2qa2��� + �� ,

f4 = ���f2 + ��2 − �2�f1� − 4qa2�� . �A3�

2. Formulas for variance

The time-homogeneous part of the variance �2�X� of the
oscillator displacement �see Eq. �9�� can be expressed as

�2�X� =
S1

S2
−

A2

2
, �A4�

where

S1 = A0��2� + ���8A11 + 4�2� + ��A9 − �4�2 + ��2� + ���

��2A7 + �2� + ��A5�
 + �� + ����A1 + A3�

���4�2 + ��2� + ���2 − 16a2
 + 8qa2��2A3 − �A1�
 ,

S2 = 2�2��� + ���4�2 + ��2� + ���2�1 − � a

acr
�2� ,

�A5�

and acr is determined by Eq. �7�. The coefficients A1, A3, A5,
A7, A9, and A11 are given by the formulas

A1 =
A0�f1f4 + f3�f2 + 2qa2��

f3
2 + f4

2 ,

A2 =
A0�f1f3 − f4�f2 + 2qa2��

f3
2 + f4

2 ,

A3 = − �A2, A4 = �A1,

A5 = A0 + ��2 − �2�A1 + ��A2,

A6 = ��2 − �2�A2 − ��A1,

A7 = �A0 + ����2 − �2� + ��2�A1 + ���� − ��2 − �2��A2,

A8 = �A0 + ����2 − �2� − ���A1 + ���2 + ���2 − �2��A2,

A9 = �A8 − �2A5 − �� + ��A7,

A10 = − �A7 − �2A6 − �� + ��A8,

A11 = �A9 − �A10 − 2qa2�A1. �A6�

Evidently, if the noise amplitude a tends to the critical value
acr, the variance �2�X� diverges.
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