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A nearest-neighbor-interaction Ising spin glass, in the presence of an external magnetic field, is studied on
different hierarchical lattices that approach the cubic lattice. The magnetic field is considered as uniform or
random �following either a bimodal or a Gaussian probability distribution�. In all cases, a spin-glass attractor
is found, in the plane magnetic field versus temperature, associated with a low-temperature phase. The physical
consequences of this attractor are discussed, in view of the present scenario of the spin-glass problem.
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I. INTRODUCTION

Short-range-interaction spin-glass �SG� models �1–4�
have raised a lot of controversies in the last decades. From
the theoretical point of view, the case of Ising spins repre-
sents the most convenient to be investigated, in such a way
that a large effort has been dedicated to the understanding of
the Ising SG model. The majority of works concentrated on
three-dimensional Ising SG models, for which, besides its
physical realizations, it is generally accepted nowadays that a
SG phase occurs at finite temperatures �5–13�.

Hierarchical lattices have been a very useful tool for the
study of SG models �5,8,14–26�, essentially due to the pos-
sibility of carrying out exact calculations, or performing rela-
tively low-time-consuming numerical computations. Apart
from a few exceptions �17,23,25,26�, most of the hierarchical
lattices considered so far belong to the Migdal-Kadanoff
�MK� family. Taking into account the significant reduction of
efforts in the investigation of these models, some of the re-
sults obtained are quite impressive: �i� the lower critical di-
mension, below which the SG phase transition occurs at zero
temperature, which was the object of a lot of controversy
about 3 decades ago, was correctly estimated within a MK
renormalization-group �RG� approach �5�, almost 1 decade
before the consensus that this quantity should be greater than
2, but smaller than 3, through different numerical ap-
proaches, such as numerical simulations �6,7,9� and zero-
temperature domain-wall arguments �8�. �ii� The critical-
temperature estimates of Ref. �5� for an Ising SG on a MK
hierarchical lattice of fractal dimension D=3, with symmet-
ric distributions, are �kBTc /J�=1.05�0.02 ��J distribution�
and �kBTc /J�=0.88�0.02 �Gaussian distribution of width J�.
The most recent Monte Carlo simulations on a cubic lattice
�12� yield �kBTc /J�=1.120�0.004 in the first case, whereas
for the latter, �kBTc /J�=0.951�0.009, leading to relative
discrepancies of about 4% when compared to the results of
Ref. �5�, taking into account the error bars. �iii� A zero-
temperature analysis of a Gaussian Ising SG, on a special
hierarchical lattice with fractal dimension D=2 �17�, yielded

an estimate for the stiffness exponent y �y=−1 /�, where � is
the exponent associated with the divergence of the correla-
tion length at zero temperature� in agreement with those ob-
tained from other, more time-consuming, numerical ap-
proaches. �iv� The same hierarchical lattice of Ref. �17�,
mentioned above, produced a precise ferromagnetic-
paramagnetic critical frontier for the �J Ising SG model
�25�.

A major question in the SG problem nowadays concerns
the applicability of some results from the mean-field solution
for short-range-interaction systems. In particular, whether the
SG phase is properly described by an infinite number of
order parameters �i.e., an order-parameter function �27��,
manifesting the property of replica-symmetry breaking
�RSB� �10�; moreover, if an Ising SG, in the presence of an
external magnetic field, exhibits the Almeida-Thouless �AT�
line �28�, which separates a low-temperature region charac-
terized by RSB, from a high-temperature one, described in
terms of a single order parameter, along which the replica-
symmetric solution holds. Numerical simulations for nearest-
neighbor-interaction Ising SGs are always hard to perform
since equilibration becomes difficult for large system sizes
and low temperatures. However, in spite of the small lattice
sizes considered, there are evidences from Monte Carlo
simulations that a critical line in the presence of a field exists
in d=4 �29�, but not in d=3 �11,13�. Furthermore, a zero-
temperature analysis of the energy landscape in the case d
=3 is compatible with a transition from the SG to the para-
magnetic phase for a finite critical field, although the possi-
bility of a critical field equal to zero was not excluded �30�.
However, it is possible to have a critical frontier separating
the SG and paramagnetic phases, for low-dimensional short-
range-interaction Ising SGs in the presence of a magnetic
field, which is not an AT-type line. In order to ensure that this
critical line represents a true AT line, one should also verify
evidences of RSB below such a frontier. This possibility
would correspond to an “intermediate” scenario �30� be-
tween the mean-field RSB solution and the much simpler
droplet picture �1–3�. In this case, one would expect that
RSB effects should appear below this line, at some finite
dimension d, contrary to claims of the droplet model, accord-
ing to which the AT line should occur only in the limit of
infinite dimensions.
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One of the advantages for the study of SGs on hierarchi-
cal lattices is that one does not go through equilibration dif-
ficulties. In view of this, the D=3 MK hierarchical lattice has
been used also for an investigation of RSB in the low-
temperature phase on an Ising SG without a magnetic field
�18,21,22,24�. For temperatures in the range 0.7 Tc�T
�Tc, a picture showing characteristics of RSB was observed,
although for lower temperatures the results agree with the
simpler, replica-symmetric scenario.

To our knowledge, short-range-interaction SGs in the
presence of an external magnetic field have never been in-
vestigated on hierarchical lattices. In the present work, we
study an Ising SG model, in the presence of different types of
external magnetic fields, on three hierarchical lattices �two of
them with a fractal dimension D=3 and another one charac-
terized by D�3.58�. In the next section we define the model,
the hierarchical lattices, and the numerical procedure. In Sec.
III we present and discuss our results.

II. MODEL AND NUMERICAL PROCEDURE

Herein, we study an Ising SG in the presence of an exter-
nal magnetic field

H = − �
�ij�

JijSiSj − �
i

hiSi �Si = � 1� , �1�

where 	Jij
 denote random couplings between two spins lo-
cated at nearest-neighboring sites i and j of a given hierar-
chical lattice, following a symmetric Gaussian probability
distribution,

P�Jij� =
1

�2�J2
exp�−

Jij
2

2J2
 . �2�

For the magnetic fields we consider three different cases,
namely,

P�hi� = ��hi − H0� �uniform field� , �3�

P�hi� =
1

2
��hi − H0� +

1

2
��hi

+ H0� �symmetric bimodal distribution� , �4�

P�hi� =
1

�2��2
exp�−

�hi − H0�2

2�2 � �Gaussian distribution� .

�5�

The Hamiltonian of Eq. �1� will be investigated on three
different hierarchical lattices that approach the cubic lattice.
These lattices are generated by starting the process from the
0th level of the lattice-generation hierarchy, with a single
bond joining the external sites �denoted by 	 and ��. Then, in
each iteration step one replaces a single bond by a unit cell,
such as the ones shown in Fig. 1, in such a way that in its
first hierarchy, each lattice is represented by a unit cell; the
hierarchical lattice is constructed up to a given Nth hierarchy
�N
1�. The cells in Figs. 1�a� and 1�b� are considered as
dual to one another and their results for critical temperatures

usually represent the lower and upper limits, respectively,
with respect to the correct value of the cubic lattice �31�. The
cell of Fig. 1�c� is a three-dimensional Wheatstone Bridge
cell and, to our knowledge, it has never been used in the
study or random magnetic models.

The RG procedure works in the inverse way of the lattice
generation, i.e., through a decimation of the internal sites of
a given cell, leading to renormalized quantities associated
with the external sites. Defining the dimensionless couplings
and fields, Kij =�Jij and Hi=�hi ��=1 / �kBT��, the corre-
sponding RG equations may be written in the general form
�see Ref. �32� for the explicit form of these equations for the
MK cell of Fig. 1�a��

K	�� =
1

4
log�Z−−Z++

Z−+Z+−

 , �6�

H	� =
1

4
log�Z++Z+−

Z−−Z−+

 , �7�

H�� =
1

4
log�Z++Z−+

Z−−Z+−

 , �8�

where ZS	,S�
represent partition functions of a given cell with

the external spins kept fixed �S	 ,S�= �1�,

ZS	,S�
= Tr	Si�i�	,��
�exp�− �H�� . �9�

It should be noticed that the Hamiltonian associated with any
of the cells of Fig. 1 may be split into H=H�+H	S	

+H�S�, where H� represents the Hamiltonian of the cell with
H	=H�=0. Therefore, the partition function ZS	,S�

may be
rewritten as

ZS	,S�
= exp�H	S	 + H�S��ZS	,S�

, �10�

where

ZS	,S�
= Tr	Si�i�	,��
�exp�− �H��� �11�

represents the partition function of a given cell without con-
sidering the contributions of the fields on its external sites.

(b)(a) (c)

FIG. 1. Basic cells of three hierarchical lattices that approach
the cubic lattice. �a� The MK cell of fractal dimension D=3 �usually
called of diamond cell�. �b� The dual of the diamond cell �fractal
dimension D=3�. �c� The tridimensional Wheatstone-Bridge cell
�fractal dimension D�3.58�. Empty circles represent the external
sites, whereas black circles are sites to be decimated in the renor-
malization process.
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Accordingly, Eqs. �6�–�8� take the following form

K	�� =
1

4
log�Z−−Z++

Z−+Z+−

 , �12�

H	� = H	 +
1

4
log�Z++Z+−

Z−−Z−+

 , �13�

H�� = H� +
1

4
log�Z++Z−+

Z−−Z+−

 . �14�

Thus, we clearly see through Eqs. �13� and �14� that after the
RG transformation, the field on each remaining site depends
on the previous field on this site plus a contribution due to
the decimation of the inner spins in the cell.

If at the beginning of the RG procedure �Nth hierarchy�,
one uses the probability distribution of Eq. �2� for the cou-
plings and one of the probability distributions of Eqs. �3�–�5�
for the fields, one has at this level the average values �Kij�
=0 and �Hi�=H0 �uniform field and Gaussian distribution� or
�Hi�=0 �symmetric bimodal distribution�. An important
quantity to be used herein is the ratio of associated widths,

r =
�K

�H
; �K = ��Kij − �Kij��2�1/2; �H = ��Hi − �Hj��2�1/2,

�15�

which, at the Nth level, is infinite for a uniform field �since
�H=0 in this case�, whereas r=J /H0 �bimodal distribution�
and r=J /� �Gaussian distribution for the fields�. However,
as the renormalization procedure goes on �in fact, right after
the first RG transformation�, the system of coupled equations
that define the renormalization �Eqs. �6�–�8�� introduces cor-
relations between the couplings and fields, and as a result of
this, one has a joint probability distribution, P�Kij ,Hi ,Hj�, to
be followed.

We have used the method proposed in Ref. �33� to follow
this distribution numerically. This technique consists in gen-
erating a pool of M triplets 	Kij ,Hi ,Hj
, initially chosen by
generating random numbers according to the above distribu-
tion for the couplings, and one of the probability distribu-
tions for the fields. An iteration consists in M operations,
where in each of them one picks randomly triplets from the

pool �each chosen triplet is assigned to a bond in one of the
cells of Fig. 1� in order to generate the effective quantities of
Eqs. �6�–�8� that will define a triplet of the renormalized
pool. At zero temperature Eqs. �6�–�8� become much simpler
�see, e.g., Ref. �32� for the explicit form of these equations
for the MK cell of Fig. 1�a�� and we have used these simpli-
fied forms to determine the zero-temperature critical points.
It is important to notice that in this procedure there may
occur superpositions of random fields in given sites of the
unit cells; whenever this happens, we consider an arithmetic
average of the superposed random fields. After each itera-
tion, one calculates the lowest moments associated with the
couplings and fields and, in particular, the ratio r defined in
Eq. �15�. Below, we present and discuss the results obtained
from this formalism.

III. RESULTS AND DISCUSSION

For the results that follow, we have used M =160 000,
although we checked that our results did not change �within
the error bars� for larger pools of triplets. For all three hier-
archical lattices considered, the first moments presented
small fluctuations around their initial values �i.e., �Kij�=0
and �Hi� �either zero or not�� under successive renormaliza-
tions. Therefore, our criteria for the identification of the at-
tractors, and their associated phases, were based on the
widths �K, �H, and their ratio r, which showed that the be-
havior of �K always prevailed over the one of �H.

We have found typically two distinct behaviors for these
quantities, under successive RG transformations, which we
associated with two distinct phases as described below. �i�
Paramagnetic �P� phase: this occurs for sufficiently large
temperatures and/or fields, where �K→0 and �H→0, with
r→0. �ii� SG phase: this phase appears for low temperatures
and fields, being characterized by �K→� and r→�. In most
of the cases, we have found throughout this phase an in-
crease on �H as well, but still keeping r→�; however, in
some situations �essentially for symmetric field distribu-
tions�, we have found that �K→� and �H→0. The critical
frontier separating these two phases was considered as the
one where the parameter r changes very slowly. Typical be-
haviors of the ratio r, under successive RG transformations,
are illustrated in Fig. 2 for an Ising SG on the hierarchical
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FIG. 2. Evolution of the ratio r with the RG steps n, for an Ising SG on the hierarchical lattice defined by the unit cell of Fig. 1�a�, in
the presence of an initial uniform field H0. �a� Typical values of H0 /J at zero temperature; the critical field is in the range 0.52� �H0c /J�
�0.54. �b� Typical temperatures for �H0 /J�=0.3; the critical temperature is in the range 0.65� �kBTc /J��0.70.
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lattice defined by the unit cell of Fig. 1�a� in the presence of
an initial uniform field H0. In Fig. 2�a� we present this quan-
tity for different values of H0 /J at zero temperature, whereas
in Fig. 2�b�, we have fixed the initial field ��H0 /J�=0.3� and
have varied the temperature; in both figures one sees that the
ratio of widths r may present qualitatively distinct behaviors,
depending on the initial parameters considered, signaling dif-
ferent attractors of the renormalization.

In Fig. 3 we exhibit phase diagrams obtained from the
present RG approach for the Ising SG defined by Eqs. �1�,
�2�, and �5� on the diamond hierarchical lattice of Fig. 1�a�.
In Fig. 3�a� we present phase diagrams in the plane H0 versus
temperature for different choices of �; one notices that for
increasing values of �, the SG phase decreases; a similar
effect has been observed in mean-field theory, where this
phase is delimited by an AT line, associated with RSB �34�.
It is important to stress that the case �=0 in Fig. 3�a� corre-
sponds, within the RG procedure, to an initial uniform field;
therefore, the uniform and Gaussian random fields produce a
qualitatively similar critical frontier. In Fig. 3�b� we show the
phase diagram in the plane � versus temperature, for the case
of a symmetric Gaussian distribution for the fields �H0=0�,
which displays also a SG phase for low temperatures.

In Fig. 4 we exhibit the phase diagram for the present
Ising SG model under the bimodal random field defined by
Eq. �4�. One notices that the critical frontier of Fig. 4 pre-
sents a change of concavity for low temperatures and so it is
qualitatively different from those of a uniform field �case �
=0 in Fig. 3�a�� and Gaussian random field �cases �
0 in
Fig. 3�a��. Curiously, this critical frontier is very similar to
the one of a symmetric Gaussian distribution shown in Fig.
3�b�. Analogous to the previous cases, shown in Fig. 3 �uni-
form and Gaussian random fields�, the most important as-

pect, i.e., the existence of the SG attractor, associated with a
SG phase at low temperatures applies for the bimodal ran-
dom field as well.

We have also investigated the present Ising SG model on
the hierarchical lattices of Figs. 1�b� and 1�c�; although the
results are quantitatively different, the qualitative behaviors
of the phase diagrams are the same as those shown above for
the diamond hierarchical lattice. In Tables I and II we com-
pare critical parameters, associated with the phase diagrams,
for the three hierarchical lattices investigated. In Table I we
present the values of the critical temperatures for H0=0, in
the case of the uniform and bimodal distributions for the
fields, whereas for the Gaussian distribution, the results refer
to the particular width �� /J�=1. In Table II we present val-
ues of critical fields, at zero temperature; for a Gaussian
distribution, our zero-temperature results correspond to the
cases �� /J�=1 or H0=0 �cf., e.g., Fig. 3�. From these tables
one notices that the critical parameters for the hierarchical
lattices defined by the cells in Figs. 1�a� and 1�b� are always
below and above, respectively, the ones of the hierarchical
lattice of Fig. 1�c�. This confirms the current belief that these
lattices yield lower and upper limits for phase-diagram criti-
cal parameters �31�; in addition to that, it suggests that the
Wheatstone-Bridge lattice of Fig. 1�c� may lead to good ap-
proximations in the study of three-dimensional SG systems.
In fact, the corresponding critical-temperature estimate for
H0=0 �uniform and bimodal cases� shown in Table I,
�kBTc /J�=0.980�1�, is in good agreement with the recent es-
timate from Monte Carlo simulations on a cubic lattice,
�kBTc /J�=0.951�9� �12�, leading to a relative discrepancy of
2%, taking into account the error bars.

The results above are reinforced by a zero-temperature
analysis of the evolution of the widths associated with the

TABLE I. The critical temperatures for H0=0, with the fields following Eqs. �3�–�5�, for the hierarchical
lattices defined by the cells of Fig. 1. In the case of the Gaussian distribution for the fields, we have chosen
�� /J�=1. Error bars refer to the usual approach to criticality characteristic of the RG technique.

Hierarchical lattice kBTc /J Uniform and Bimodal kBTc /J Gaussian ��� /J�=1�

Cell 1�a� 0.880�1� 0.661�1�
Cell 1�b� 1.761�1� 1.750�1�
Cell 1�c� 0.980�1� 0.891�1�
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FIG. 3. Phase diagrams for an Ising SG on the hierarchical lattice defined by the unit cell of Fig. 1�a� in the presence of an initial random
magnetic field following a Gaussian probability distribution. �a� Plane H0 vs temperature for different values of �. �b� Plane � vs temperature
for H0=0. P and SG denote the paramagnetic and spin-glass phases, respectively.
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couplings ��J� and fields ��H� with respect to the RG steps n,

�J � bny ; �H � bnu, �16�

which are characterized by the exponents y �usually known
as the stiffness exponent� and u; the scaling factor is b=2 for
all three cells of Fig. 1. In Fig. 5 we illustrate the power-law
behaviors of Eq. �16� for the case of an initial uniform field
H0 on a hierarchical lattice defined by the unit cell of Fig.
1�a�. The values of H0 chosen in Fig. 5 correspond to zero-
temperature points in the spin-glass phase of the case �=0 in
Fig. 3�a�. The scaling range �in the RG steps n� starts for
small n �typically around n=5� for 0�H0�H0c /2, but for
larger values of H0 �essentially as one approaches the critical
value H0c� the scaling forms of Eq. �16� are only satisfied for
higher ranges of the iteration steps n. We have noticed that,
in all cases, the exponents y and u are weakly dependent on
the initial value H0 �as can be seen on the examples shown in
Fig. 5�; as a consequence of this, we have assumed univer-
sality with respect to H0 for each of these exponents. Our
estimates, for the case of an initial uniform field H0, are
presented in Table III for each of the hierarchical lattices of
Figs. 1; the error bars take into account slight variations in
these exponents throughout the interval 0�H0�H0c. The
fact that y
u supports the existence of a low-temperature
SG phase based on the criterion described above for the
quantity r of Eq. �15�.

At this point, it is important to stress that for the families
of hierarchical lattices associated with the cells in Figs. 1�a�
and 1�b�, for which the fractal dimension may be changed
easily by varying the number of parallel paths, we have also

investigated lattices with fractal dimensions D�3 �more
specifically, those characterized by three parallel paths, for
which D�2.585�. In these cases, we did not find any evi-
dence of a SG attractor, suggesting that for these lattices one
has a lower critical dimension, 2.585�Dl�3. Taking into
account the above-mentioned properties of these lattices,
concerning lower and upper limits for the critical tempera-
tures, one may expect that these bounds for the lower critical
dimension, associated with a SG phase in the presence of an
external magnetic field, should apply to other lattices as well.

To conclude, we have investigated a nearest-neighbor-
interaction Ising spin-glass model, in the presence of an ex-
ternal magnetic field, on three different hierarchical lattices
that approach the cubic lattice. In the beginning of the
renormalization-group procedure, the magnetic field was
considered as uniform, or randomly distributed, following
either a bimodal or a Gaussian probability distribution. In all
cases considered, a spin-glass attractor was found, in the
plane magnetic field versus temperature, which was associ-
ated with a low-temperature spin-glass phase. In the particu-
lar cases of hierarchical lattices for which the fractal dimen-
sion may be changed easily by varying the number of
parallel paths, we have verified that the lower critical dimen-
sion, associated with a finite-temperature spin-glass phase,
lies in the interval 2.585�Dl�3. The present results show
that, in what concerns the hierarchical lattices studied, there
is a spin-glass phase in the presence of an external magnetic
field, contrary to the claim of recent numerical simulations
on the cubic lattice �11,13�. Since the above results concern

TABLE II. Zero-temperature critical values of the fields following Eqs. �3�–�5� for the hierarchical lattices
defined by the cells of Fig. 1. In the case of the Gaussian distribution for the fields, we have chosen either
�� /J�=1 or H0=0. Error bars refer to the usual approach to criticality characteristic of the RG technique.

Hierarchical lattice Uniform H0c /J Bimodal H0c /J
Gaussian ��� /J�=1�

H0c /J Gaussian �H0=0� �c /J

Cell 1�a� 0.530�1� 3.919�1� 0.433�1� 3.036�1�
Cell 1�b� 1.414�2� 21.45�2� 1.418�1� 20.25�2�
Cell 1�c� 0.590�2� 5.907�2� 0.566�2� 5.884�2�
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FIG. 4. Phase diagram for an Ising SG on the hierarchical lattice
defined by the unit cell of Fig. 1�a� in the presence of an initial
random magnetic field following a symmetric bimodal probability
distribution.
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the existence of a spin-glass attractor, under renormalization-
group transformations, the question of replica-symmetry
breaking throughout this phase, which would characterize
the critical lines presented herein as Almeida-Thouless lines,
represents a point that deserves further investigations. Taking

into account that hierarchical lattices have been a useful tool
for studying spin-glass systems, the present results motivate
the investigation of replica-symmetry-breaking properties for
spin glasses on hierarchical lattices in the presence of exter-
nal magnetic fields. It is possible that the picture found pre-
viously on the D=3 Migdal-Kadanoff hierarchical lattice,
without a magnetic field �18,21,22,24�, exhibiting replica-
symmetry-breaking characteristics only close to the critical
temperature, may change under the presence of an external
magnetic field.
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