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Two approaches to describing the thermodynamics of a subsystem that interacts with a thermal bath are
considered. Within the first approach, the mean system energy ES is identified with the expectation value of the
system Hamiltonian, which is evaluated with respect to the overall �system+bath� equilibrium distribution.
Within the second approach, the system partition function ZS is considered as the fundamental quantity, which
is postulated to be the ratio of the overall �system+bath� and the bath partition functions, and the standard
thermodynamic relation ES=−d�ln ZS� /d� is used to obtain the mean system energy. Employing both classical
and quantum-mechanical treatments, the advantages and shortcomings of the two approaches are analyzed in
detail for various different systems. It is shown that already within classical mechanics both approaches predict
significantly different results for thermodynamic quantities provided the system-bath interaction is not bilinear
or the system of interest consists of more than a single particle. Based on the results, it is concluded that the
first approach is superior.
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I. INTRODUCTION

Let us consider a system in equilibrium at fixed volume
and temperature described by a canonical ensemble. If the
partition function Z for the corresponding canonical distribu-
tion is known, all thermodynamic quantities, such as the in-
ternal energy, the entropy, and the specific heat, can be cal-
culated by simple differentiations of ln Z with respect to the
temperature T. In many situations it is of interest to consider
a subsystem of the overall system, e.g., a smaller system that
interacts with its environment �in the following referred to as
the bath�. The question arises as to how to describe the ther-
modynamics of the subsystem.

If the system-bath coupling is weak, then �to leading
�zero� order in the system-bath coupling� the system can be
described by a canonical distribution determined by the cor-
responding system Hamiltonian. This finding builds the basis
of standard statistical thermodynamics. If the coupling is not
weak, however, the interaction with the bath affects the sys-
tem density matrix, the system partition function ZS, and all
thermodynamic quantities �1–5�. Furthermore, new interest-
ing effects arise due to the system-bath entanglement �4–10�.
In such a case, it is not straightforward, e.g., to define the
energy of the system unambiguously. Different definitions
are possible which incorporate, to a certain extent, the
system-bath interaction into the system energy.

There exist two major approaches to describing the ther-
modynamics of a subsystem �strongly� coupled to a bath.
The first approach �in the following referred to as approach I�
considers the mean energy of the system as fundamental
quantity and assumes that it is given by the expectation value
of the system Hamiltonian which is evaluated with respect to
the total �system+bath� canonical equilibrium distribution
�11–13�. The second approach �approach II�, on the other
hand, is based on the partition function of the system, ZS, and
postulates it to be given as the ratio of the total �system
+bath� and the bath partition functions. Based on the thus

defined partition function of the system, the standard rela-
tions of thermodynamics are invoked to calculate the internal
energy, the entropy, and the specific heat by differentiations
of ln ZS with respect to the temperature T �14–16�.

In recent work �4,12,13�, it was shown that the two ap-
proaches give different results for the specific heat of a
quantum-mechanical point particle or a harmonic oscillator
bilinearly coupled to a harmonic bath, despite the fact that
the results are identical in the classical case. In the present
work, we analyze the two approaches and assess their valid-
ity in detail for several different systems including several
quantum and classical point particles and nonlinear system-
bath coupling.

Our main findings are summarized as follows. If approach
I is employed, then the knowledge of the system partition
function ZS alone is not sufficient to describe the thermody-
namics of the system and the standard procedure calculating
the thermodynamic quantities by differentiations of ln ZS
with respect to T is not valid. Additional knowledge of a
bath-induced interaction operator �S �see below� is required.
We derive general expressions for the mean system energy,
the entropy, and the specific heat in terms of ZS and �S.

If, on the other hand, the strategy of approach II is fol-
lowed to define the partition function of the system ZS, then
obtaining the internal energy, the entropy, and the specific
heat by differentiations of ln ZS with respect to T cannot be
justified by referring to the standard thermodynamic machin-
ery. The so-obtained expressions must be regarded as the
definitions of the corresponding quantities, whose validity
must be proven a posteriori.

We also show that the differences between the two ap-
proaches are not of purely quantum origin. The approaches
predict significantly different results already within classical
mechanics, provided the system-bath interaction is not bilin-
ear and/or the system of interest consists of more than a
single particle. The general results are illustrated by explicit
calculations of thermodynamic quantities for several classi-
cal and quantum model systems. Based on the thus obtained
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results, we conclude that approach I is clearly superior to
approach II, on both physical and logical grounds.

II. THERMODYNAMICS OF A CANONICAL ENSEMBLE

Let us consider a canonical ensemble which is kept in
constant volume L at fixed temperature T. The corresponding
equilibrium distribution �density matrix� reads

� = Z−1 exp�− �H�, Z = Tr�exp�− �H�� . �1�

Here H is the Hamiltonian, Z is the partition function, �
�1 /kBT �kB being the Boltzmann constant�, and Tr�¯� de-
notes the integration over phase-space variables in case of a
classical ensemble or taking the trace in case of a quantum
ensemble. We further define the �information� ensemble en-
tropy operator as

S � − kB ln � =
1

T
�H − F� �2�

and the free energy as

F � −
1

�
ln Z , �3�

so that canonical distribution �1� can alternatively be written
as

� = exp�− ��H − F�� . �4�

Averaging Eq. �2� over canonical distribution �4�, we obtain
the following expression for the ensemble-averaged entropy:

�S	 =
1

T
��H	 − F� , �5�

where we have used the notation �¯	�Tr��¯�. The spe-
cific heat is determined as

C =
d�H	
dT

. �6�

Using Eqs. �1� and �4� we can express the internal energy, the
entropy, and the specific heat through the free energy:

�H	 = −
d�ln Z�

d�
= F − T

dF

dT
, �7�

�S	 = −
dF

dT
, �8�

C = T
d�S	
dT

= − T
d2F

dT2 . �9�

We emphasize that Eqs. �7�–�9� are a direct consequence of
the explicit form and temperature dependence of canonical
operator �1�.

The second law of thermodynamics in differential form
then reads

Td�S	 = d�H	 . �10�

III. THERMODYNAMICS OF A REDUCED
CANONICAL ENSEMBLE

A. General expressions

The expressions for the thermodynamical observables of a
canonical ensemble listed above can be found in any text-
book on statistical thermodynamics. To study the thermody-
namics of a subensemble, let us now consider a system that
is interacting with its environment �in the following referred
to as the bath�. We assume that the Hamiltonian H can be
split into the system �S� Hamiltonian, the bath �B� Hamil-
tonian, and their coupling,

H = HS + HB + HSB. �11�

Here HS depends solely on the system degrees of freedom
and HB depends exclusively on the bath degrees of freedom.

To calculate an observable which depends on the system
degrees of freedom only, it is expedient to introduce the re-
duced density matrix of the system, �S, which is defined by
averaging the total density matrix � over the bath degrees of
freedom,

�S � Z−1 TrB�exp�− ��HS + HB + HSB��� . �12�

Following Kirkwood �17�, Eq. �12� can equivalently be re-
written as �11�

�S = ZS
−1 exp�− ��HS + �S��, ZS � Z . �13�

Here, we have defined the bath-induced interaction operator

�S � −
1

�
ln TrB�exp�− ��HS + HB + HSB��� − HS, �14�

which, in general, depends on the system degrees of freedom
and on the temperature T.

If the system-bath coupling is weak �
HSB
� 
HS
 , 
HB
�,
then, to the leading �zero� order in the system-bath coupling,
the interaction operator is given by �S=−ln�ZB� /�. Here ZB
is the partition function of the bath canonical distribution

�B = ZB
−1 exp�− �HB�, ZB � TrB�exp�− �HB�� . �15�

In this weak-coupling case, the overall partition function fac-
torizes, Z=ZS,cZB �the subscript “c” stands for “canonical”�,
and the reduced density matrix �12� is determined by the
canonical distribution for the system alone,

�S,c = ZS,c
−1 exp�− �HS�, ZS,c = TrS�exp�− �HS�� . �16�

In general, however, HSB cannot be neglected in Eq. �14� and
the simple expression �16� is not valid.

Analogously to Eq. �2�, we introduce the system free en-
ergy

FS � −
1

�
ln ZS, �17�

so that distribution �13� can equivalently be rewritten as

�S = exp�− ��HS + �S − FS�� . �18�

Distributions �13� and �18� can be used for calculating the
expectation value of any operator YS which depends only on
the system degrees of freedom �18�,
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�YS	 � �YS	S, �¯	S � TrS��S¯� � TrS+B��¯� . �19�

B. Approach I (mean energy approach)

In approach I, the mean system energy ES is associated
with the expectation value of the system Hamiltonian �HS	
�11–13�. Accordingly, the system contribution to the specific
heat is determined as

CS =
d�HS	

dT
. �20�

To obtain an expression for the entropy of the system, we
follow the presentation in Sec. II and define the information
system entropy as

SS � − kB ln �S =
1

T
�HS + �S − FS� . �21�

Averaging the expression over distribution �13�, we obtain
the analog of Eq. �5�,

�SS	 =
1

T
��HS	 + ��S	 − FS� . �22�

In passing, we note that there exists a controversy in the
literature whether the so-defined �SS	 can indeed be consid-
ered as a proper thermodynamic entropy of the reduced sys-
tem �4,19,20�. For the purpose of this paper, Eqs. �21� and
�22� can merely be considered as intermediate mathematical
expressions, which allow us to conveniently derive the for-
mulas discussed below.

In contrast to the situation discussed in Sec. II, the system
free energy FS is no longer a universal object which deter-
mines all relevant thermodynamic quantities �SS	, �HS	, and
CS through Eqs. �7�–�9�. It is the explicit dependence of �S
on the system degrees of freedom and the temperature which
violates the standard thermodynamic expressions for the re-
duced system. It is straightforward, however, to generalize
Eqs. �7�–�9� if we assume that operators HS and �S commute.
In this case, using Eqs. �17�–�20�, we obtain the expressions

−
d�ln ZS�

d�
= FS − T

dFS

dT
= �HS	 + ��S	 − T� d�S

dT
� ,

�23�

�SS	 = � d�S

dT
� −

dFS

dT
, �24�

CS = T
d�SS	

dT
+ � d�S

dT
� −

d��S	
dT

. �25�

It is important to note that

� d�S

dT
� �

d��S	
dT

�26�

due to the explicit temperature dependence of �S. If HSB
�0, then the last two terms in Eqs. �23� and �25� give a
non-negligible contribution. If the bath-induced potential �S

in Eq. �24� is temperature independent, then the usual for-
mula �8� for the entropy holds, but the expressions for �HS	
�Eq. �23�� and CS �Eq. �25�� do contain the bath-induced
contributions. Furthermore, Eq. �25� shows that the second
law of thermodynamics �in differential form� is modified to

Td�SS	 = d�HS	 − �d�S	 + d��S	 . �27�

To summarize, knowing the partition function ZS or the
free energy FS alone is not enough to calculate �SS	, �HS	,
and CS within approach I. Instead, the more general Eqs.
�23�–�27� must be used. This should be taken into account if,
e.g., work theorems are employed to obtain the system par-
tition functions beyond the weak system-bath coupling limit
�21,22�. The general expressions �23�–�27� are also impor-
tant for the thermodynamics of small systems �23–25�.

Equations �23�–�27� have been derived assuming that HS
and �S commute. This requirement is not as restrictive as it
might seem at first glance and is enough for the purposes of
the present paper. It is obviously fulfilled within classical
mechanics. It is also fulfilled in the semiclassical limit con-
sidered below described within the Wigner function formal-
ism, provided we start from the total �system+bath� Wigner
distribution and introduce the reduced Wigner distribution of
the system by averaging the total Wigner distribution over
the bath degrees of freedom �see Sec. IV C�.

Even in the general case, where �HS ,�S��0, analogs of
Eqs. �7�–�9� can be derived. To this end, we first rewrite the
system density matrix in the form

�S = ZS
−1 exp�− �HS�exp�− ��̃S� �28�

with a slightly redefined bath-induced interaction operator

�̃S � −
1

�
ln„exp��HS�TrB�exp�− ��HS + HB + HSB���… .

�29�

Second, we replace HS→�HS in Eq. �28� �with � being a

numerical parameter� but keep �̃S unchanged, so that distri-
bution �28� becomes

��,S = Z�,S
−1 exp�− ��HS�exp�− ��̃S� , �30�

Z�,S = TrS�exp�− ��HS�exp�− ��̃S�� . �31�

Then Z�,S and F�,S=−ln�Z�,S� /� become � dependent and,
we obtain the expressions

�HS	 = −
1

�

d�ln Z�,S�
d�

= 
dF�,S

d�



�=1
, �32�

CS = 
d2F�,S

d�dT



�=1
. �33�

C. Approach II (partition function approach)

The reduced distribution �13� remains unchanged if we
introduce a certain �possibly temperature-dependent� func-
tion ��T� and redefine the system partition function and the
bath-induced operators as
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ZS →
ZS

��T�
, �S → �S +

1

�
ln ��T� . �34�

The analogous transformation for distribution �18� reads

FS → FS −
1

�
ln ��T�, �S → �S +

1

�
ln ��T� . �35�

Transformations �34� and �35� shift the origin of the bath-
induced interaction �S. For example, we can take ��T�=ZB
�the bath partition function is defined via Eq. �15��. This
choice is especially reasonable for weak system-bath cou-
pling, because it results in �S=0 if HSB=0. In general, for
any HSB�0, it yields the system partition function

ZS = Z/ZB. �36�

Definition �36� is the key to approach II. According to the
recipe developed in Refs. �14–16�, we should identify Eq.
�36� with the system partition function, and use the standard
Eqs. �7�–�9� to calculate the necessary thermodynamic quan-
tities.

Approaches I and II result in different expressions for
thermodynamic quantities, provided the system-bath cou-
pling is not weak. This will be illustrated in Sec. IV based on
different examples. The validity and predictions of the two
approaches are discussed in Sec. V.

IV. ANALYSIS OF THE TWO DIFFERENT APPROACHES
FOR ILLUSTRATIVE EXAMPLES

A. Model system

We consider a general system-bath problem. We assume
that the system �e.g., a �macro�molecule� consists of NS point
particles, Xi, Pi, and Mi being their positions, momenta, and
masses. The bath comprises NB point particles with positions
xi, momenta pi, and masses mi. All interactions �S-S, S-B,
and B-B� are pairwise, so that the parts of the overall Hamil-
tonian H=HS+HB+HSB are explicitly written as follows:

HS = �
i=1

NS � Pi
2

2Mi
+ US�Xi�� + �

i�j

NS

USS�Xi − Xj� , �37a�

HB = �
i=1

NB pi
2

2mi
+ �

i�j

NB

UBB�xi − xj� , �37b�

HSB = �
i=1

NS

�
j=1

NB

USB�Xi − xj� . �37c�

Here USS, UBB, and USB are the corresponding interaction
potentials �which may be different for any pair of particles i
and j� and the system is allowed to be subjected to an exter-
nal potential US. For clarity, we consider a one-dimensional
ensemble. A generalization to the three-dimensional case is
straightforward.

B. Classical mechanics

We first consider the two approaches to subensemble ther-
modynamics for a system of classical point particles. In clas-
sical mechanics, the partition function for any canonical dis-
tribution is a product of the momentum and coordinate
contributions. Furthermore, the momentum contributions to
reduced distribution �13� can be integrated out, so that the
only nontrivial part of the distribution is the contribution of
the potential energy.

1. Single Brownian particle

Let us first consider a single Brownian particle, which
corresponds to NS=1 in Eq. �37a�. After the insertion of
Hamiltonians �37a�–�37c� into Eq. �12�, we can make use of
the isotropy of space and change the integration variables,
xi→xi−X. This way, we obtain �S=0 and arrive at the stan-
dard result that reduced distribution �13� is the canonical
distribution �16� determined by the system Hamiltonian,

�S = ZS,c
−1 exp�− �� P2

2M
+ US�X��� , �38a�

ZS,c = �2	M/�� dX exp�− �US�X�� . �38b�

It is tempting to assume that all thermodynamic characteris-
tics of the Brownian particle can be obtained through the
bath-independent canonical system distribution �38a� or,
what is equivalent, through the differentiation of partition
function �38b� according to the standard Eqs. �7�–�9�. This is
indeed the case if we use approach I. If we follow approach
II, however, we obtain

Z/ZB = 
ZS,c. �39�

Here ZS,c is the free-particle partition function �38b� and


 =

� dx1 ¯ dxNB
exp�− ���

i�j

NB

UBB�xi − xj� + �
j=1

NB

USB�xj���
� dx1 ¯ dxNB

exp�− ���
i�j

NB

UBB�xi − xj���
. �40�

MAXIM F. GELIN AND MICHAEL THOSS PHYSICAL REVIEW E 79, 051121 �2009�

051121-4



Apparently, 
�1, in general. This becomes evident, e.g., if
we expand the numerator in Eq. �40� in powers of USB. Sym-
bolically, 
=1+O�
USB
�. In approach II, the factor of 

induces �unphysical� bath dependence of the system mean
energy, entropy, and specific heat. Thus, approaches I and II
lead, in general, to different predictions even for a single
classical Brownian particle.

An important exception is a Brownian particle bilinearly
coupled to a harmonic bath,

HB = �
i=1

NB � pi
2

2mi
+

mi�i
2xi

2

2
� , �41a�

HSB = �
i=1

NB mi�i
2

2
�X2 − 2Xxi� , �41b�

where �i denotes the frequencies of the bath oscillators. In
this case, we obtain 
=1 and the two approaches give the
same result. This is only the case for the simple form of the
bilinear system-bath coupling.

If we retain the harmonic bath �Eq. �41a�� but add a non-
linear interaction term to HSB, the situation differs. Let us
consider, for example, the potential

HSB = �
i=1

NB �mi�i
2

2
�X2 − 2Xxi� +

�i

�X − xi�2� , �42�

where �i denote the corresponding constants. The additional
term in the potential, the form of which has been chosen for
demonstrative purposes, may describe repulsion of the par-
ticles at short distances. The reduced system partition func-
tion ZS is given by Eq. �38b�. Incorporating Eqs. �41a� and
�42� into Eq. �40�, we obtain for the factor 
, which de-
scribes the deviation of the system partition function ZS from
the ratio Z /ZB,


 = �
j=1

NB

exp�− �� j
�2mj� j� . �43�

Thus, even for this rather simple example, the factor 
 can
significantly differ from unity and also acquire a temperature
dependence. Within approach II, this would result in incor-
rect predictions for �SS	, �HS	, and CS �26�.

2. Harmonic dumbbell

Let us suppose that the system �e.g., a molecule� consists
of a collection of point particles. In general, the explicit
evaluation of the bath-induced potential �S beyond the weak
system-bath coupling limit is a difficult task �11,27,28�, ex-
cept in the case of a harmonic bath �modeling, e.g., a Gauss-
ian solvent� bilinearly coupled to the system. In the latter
case, the integrations over xi in Eq. �12� can easily be per-
formed analytically. It is instructive to consider the simplest
nontrivial situation, when the system consists of two identi-
cal particles �NS=2�. Such a model can describe, for ex-
ample, a diatomic molecule or a dumbbell. If we require the
total �harmonic� Hamiltonian H �Eq. �11�� to be translation-
ally invariant, we arrive at the expressions

HS =
P1

2

2M
+

P2
2

2M
+

M
S
2

2
�X1 − X2�2, �44a�

HSB + HB = �
i=1

NB � pi
2

2mi
+

mi�1i
2

2
�X1 − xi�2 +

mi�2i
2

2
�X2 − xi�2� ,

�44b�

where �1i, �2i, and 
S denote the corresponding oscillator
frequencies �29�.

For later use it is convenient to rewrite Eq. �44b� in the
equivalent form

HSB + HB = �
i=1

NB � pi
2

2mi
+

mi

2
��1i

2 + �2i
2 ��xi −

�1i
2 X1 + �2i

2 X2

�1i
2 + �2i

2 �2�
+

M
�
2

2
�X1 − X2�2. �45�

Here


�
2 = �

j=1

NB mj�1j
2 �2j

2

M��1j
2 + �2j

2 �
�46�

is the frequency of the bath-induced harmonic potential. In-
tegrating out the bath modes, we obtain a reduced distribu-
tion �S in the form of Eq. �13� with

�S =
M
�

2

2
�X1 − X2�2, �47a�

ZS =
2	M

�
L� 2	

�M�
�
2 + 
S

2�
. �47b�

Here L is the �one-dimensional� system volume. It is seen
that the influence of the bath manifests itself in the additional
attractive harmonic potential �S, which is coordinate depen-
dent but temperature independent, so that d�S /dT=0 �30�.

For the Hamiltonians �44a� and �44b�, the ratio of the total
and the bath partition functions yields the system partition
function, i.e., Z /ZB=ZS �Eq. �47b��. One might thus expect
that approaches I and II give the same predictions for the
thermodynamic quantities. Due to the presence of the bath-
induced potential �S, this is, however, not the case. Indeed, if
we would follow approach II, the mean system energy is
given by

ES = −
d�ln ZS�

d�
= −

d�ln�Z/ZB��
d�

=
3

2�
, �48�

which corresponds to the thermal energy of a system with 3
degrees of freedom �one for the center-of-mass translation
and two for the vibration�. If, on the other hand, according to
approach I, we associate ES with �HS	, then Eq. �23� yields

�HS	 = −
d�ln ZS�

d�
− ��S	 =

1

2�
�3 −


�
2


�
2 + 
S

2� . �49�

Thus, approach II predicts for the heat capacity that CS
=3kB /2, irrespective of the strength of the dumbbell �
S

2�
and solvent-induced �
�

2 � potentials. This seems to be physi-
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cally incorrect, given that the reduced distribution �S con-
tains the bath-induced attractive harmonic potential �S �Eq.
�47a�� and does not coincide with canonical distribution �16�
for the dumbbell alone. Approach I, on the other hand, pre-
dicts the bath-dependent specific heat to be

CS =
kB

2
�3 −


�
2


�
2 + 
S

2� . �50�

The coupling to the solvent has the strongest influence in
case of two free Brownian particles �
S

2=0�. In this case, the
actual number of degrees of freedom is reduced by 1, which
is in accordance with the physical expectations.

C. Quantum mechanics

We next analyze the two approaches to subensemble ther-
modynamics for quantum-mechanical point particles. In the
quantum-mechanical case, there exist pitfalls and subtleties
in the calculation of the specific heat already for a single
Brownian particle bilinearly coupled to a heat bath of har-
monic oscillators. This was demonstrated in Refs. �4,12,13�.
To elucidate the nature of these subtleties and to simplify the
presentation, we restrict ourselves to a semiclassical analysis
and calculate the leading-order ���2� quantum corrections to
the thermodynamic quantities. To this end, we employ the
Wigner representation �31�.

To simplify the notation, we introduce a collective index a
which runs over all NS+NB system and bath particles and use
a tilde to denote the corresponding positions, momenta, and
masses. Thus, total Hamiltonian �11� reads

H = �
a
� p̃a

2

2m̃a
� + U�x̃1, . . . , x̃NS+NB

� . �51�

Within the Wigner representation, we treat p̃a and x̃a as
�semi�classical phase-space variables. The Hamiltonian re-
tains its classical form, but the canonical distribution for the
overall system �Eq. �1�� is given by the corresponding
Wigner distribution �denoted by the superscript W�

�W = Z−1 exp�− �H + �H�1�� + O��2� , �52a�

Z = Tr�exp�− �H + �H�1��� + O��2� , �52b�

� � �2	��2. �52c�

Here, as in the classical case, Tr�¯� denotes the integration
over the corresponding phase-space variables. The quantum
correction H�1� is explicitly given as �31,32�

H�1� = �
a
�−

�2

8m̃a

�2U

� x̃a
2 +

�3

24m̃a
� �U

� x̃a
�2�

+ �
a,b

�3p̃ap̃b

24m̃am̃b

�2U

� x̃a � x̃b

. �53�

It is noted that H�1� is explicitly temperature dependent and
contains mixed coordinate-momenta terms.

The reduced Wigner distribution of the system, �S
W, is ob-

tained by integrating the Wigner distribution of the overall

system �Eq. �52a�� over the phase-space variables of the
bath. Since H and H�1� in Eq. �52a� are functions but not
operators, expressions �12�–�27� derived in Sec. III remain
also correct for the reduced Wigner distribution. In general,
the Wigner transform of an operator differs from its respec-
tive classical expression, because quantum mechanically po-
sitions and momenta do not commute. However, if an opera-
tor can be split into a part which depends only on coordinates
and a part which depends only on momenta, then the Wigner
transform is given by the corresponding classical expression.
This is the case for HS, HB, and HSB. Therefore, we can use
the classical expression for HS while evaluating the mean
system energy.

1. Quantum Brownian particle

As in Ref. �13�, we consider a single Brownian particle
bilinearly coupled to a heat bath of harmonic oscillators. The
system Hamiltonian is given by Eq. �37a� with NS=1, the
bath Hamiltonian by Eq. �41a�, and the system-bath coupling
by Eq. �41b�. Inserting the corresponding formulas into Eqs.
�51� and �53�, we can integrate the bath degrees of freedom
out of the overall �system+bath� Wigner distribution �52a�
and arrive at the system distribution

�S
W = ZS

−1 exp�− ��HS + �S�� + O��2� . �54�

Here HS= P2 /2M is the free-particle Hamiltonian, the bath-
induced interaction operator reads

�S = − �
P2

2M

�
��2

12
, 
2 = �

j=1

NB mj� j
2

M
, �55�

and the partition function is given by the expression

ZS = L� 2	M

��1 − ��
��2/12�
= L�2	M

�
�1 +

��
��2

24
�

+ O��2� . �56�

The bath-induced operator �S is position independent, but
depends on momentum and temperature.

The ratio of the total �Z� and bath �ZB� partition functions
can also be readily obtained from expressions �52a� and �53�
to yield

Z

ZB
= L�2	M

�
�1 −

��
��2

24
� + O��2� . �57�

A comparison of Eqs. �57� and �56� shows that the partition
function of the system is not given by the ratio of the total
�Z� and bath �ZB� partition functions. The quantum correc-
tions in the two expressions have the same magnitude but
opposite signs.

Since the bath-induced operator �S is momentum and
temperature dependent, it is not expected that the differentia-
tion of the partition function alone gives the averaged energy
�HS	. Indeed, the calculation gives
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−
d�ln ZS�

d�
=

1

2�
−

�
2

12
� + O��2� . �58�

On the other hand, if we follow approach I and use Eq. �23�
or perform directly an average over distribution �54�, we
obtain the correct value

�HS	 =
1

2�
+

�
2

24
� + O��2� . �59�

Finally, approach II predicts for the average system energy

ES = −
d�ln�Z/ZB��

d�
=

1

2�
+

�
2

12
� + O��2� . �60�

It is noted that Eqs. �60� and �59� were derived in �13� using
a different method. The results obtained for the average sys-
tem energy via the different approaches, Eqs. �58�–�60�, are
all different, thus providing a nice example of how noncriti-
cal use of the standard thermodynamic equations �23� can
lead to ambiguous results.

2. Quantum harmonic dumbbell

As a final example we consider the harmonic model of a
dumbbell coupled to a bath quantum mechanically �33,34�.
The thermodynamics of the quantum harmonic dumbbell can
be constructed within the Wigner distribution method em-
ploying the general Eqs. �52a� and �53�. The total classical
dumbbell+bath Hamiltonian H in Eq. �52a� is given by Eqs.
�44a� and �45�. Further, H is inserted into Eq. �53� to derive
the quantum correction H�1�. The so-obtained expression is,
however, quite cumbersome and is not presented. Here, we
only give the results necessary for the discussion of the ther-
modynamic quantities.

The reduced Wigner distribution of the system is given by
the general formula �54�, where HS is defined via Eq. �44a�
and the bath-induced operator reads

�S = �S
0 −

��2

12
�S

1. �61�

Here we have introduced the notation

�S
0 =

M
�
2

2
�X1 − X2�2, �62a�

�S
1 = M�
S

2 + 
�
2 �2�X1 − X2�2 +

P1
2

2M
�
1

2 + 
S
2�

+
P2

2

2M
�
2

2 + 
S
2� −

P1P2

M

S

2, �62b�


1
2 =

1

M
�
j=1

NB

mj�1j
2 , 
2

2 =
1

M
�
j=1

NB

mj�2j
2 . �62c�

The frequency 
�
2 of the bath-induced harmonic potential is

defined via Eq. �46�. The bath-induced operator �S is explic-
itly coordinate dependent �due to classical contribution
�62a�� as well as momentum and temperature dependent �due
to quantum correction �62b��. The corresponding partition
function reads

ZS = ZS
cl�1 +

��2

24
�4
S

2 + 2
�
2 + 
1

2 + 
2
2�� , �63�

where the classical system partition function ZS
cl is given by

Eq. �47b�.
The mean energy of the dumbbell calculated via approach

I �employing Eq. �54�� is given by the expression

�HS	 = �HS	cl + ��HS	q + O��2� . �64�

Here the first term is the classical contribution

�HS	cl =
1

�
�1 +

1

2


S
2


�
2 + 
S

2� , �65�

and the quantum correction reads

�HS	q =
�

24�5
S
2 + 
1

2 + 
2
2 +

1

2


S
2


�
2 + 
S

2 �2
S
2 + 
1

2 + 
2
2�� .

�66�

In the limit 
S
2=0, 
1

2=
2
2; the dumbbell reduces to two

noninteracting Brownian particles. Correspondingly, mean
energy �64� gives twice of what is predicted by Eq. �59�. The
same is true for the bath-induced interaction operators �S �cf.
Eqs. �61� and �55��.

On the other hand, if we follow approach II, we obtain for
the ratio of the partition functions of the overall system and
the bath

Z

ZB
= ZS

cl�1 −
��2

24
�2
S

2 + 
1
2 + 
2

2�� , �67�

and correspondingly as prediction for the mean energy of the
system

−
d�ln�Z/ZB��

d�
=

3

2�
+

��

12
�2
S

2 + 
1
2 + 
2

2� + O��2� .

�68�

The comparison with Eq. �64� shows that approaches I and II
give not only different classical contributions to the mean
system energy, but also very different quantum corrections. It
is also interesting to note that the strength of the bath-
induced potential, 
�

2 , does not enter the expression for the
mean energy �Eq. �68��, while the mean energy calculated
via approach I �Eq. �64�� depends sensitively on this quan-
tity.

V. DISCUSSION AND CONCLUSIONS

The results presented above demonstrate that the two dif-
ferent approaches to describing the thermodynamics of a
subsystem can predict very different results if the system-
bath coupling is not weak. This was already shown earlier
for a quantum harmonic oscillator �12� and for a quantum
Brownian particle �13� bilinearly coupled to a harmonic bath.
The results obtained here corroborate and extend these ear-
lier findings. The study also shows that ambiguities in the
description of reduced thermodynamics already occur in the
classical case for more complex systems, such as an anhar-
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monic bath �Sec. IV B 1� or if the system under study con-
sists of more than a single point particle �Sec. IV B 2�. Based
on the results above we shall now analyze the two ap-
proaches and discuss their advantages and shortcomings.

The different predictions of the two approaches for the
thermodynamic quantities can be related to the ambiguities
in the definition of the energy of a system that is coupled to
the environment. If the system-bath coupling is not negli-
gible, the system-bath interaction HSB �or a certain part of it�
may be included in the system energy �35�, thus resulting in
a variety of definitions. Furthermore, the results for the ther-
modynamic quantities may depend on the particular physical
quantity that is considered fundamental �e.g., the system en-
ergy or the partition function�.

Approach I associates the mean system energy ES with the
expectation value of the system Hamiltonian �HS	. The defi-
nition ES= �HS	 clearly associates the observable �ES� with
the corresponding physical operator HS. This definition ap-
pears natural and fits into the general scheme of statistical
thermodynamics and probability theory. For example, if we
think of ES as the mean internal energy �e.g., the internal
energy of a molecule with several vibrational degrees of
freedom�, the choice ES= �HS	 is well physically justified. As
a result of the definition ES= �HS	, the bath and the system-
bath coupling influence the mean system energy ES only in-
directly, through the reduced distribution �density matrix� of
the system �S given by Eq. �13�. It is important to note that
�S does not coincide with the canonical distribution for the
isolated system. As a consequence, the thermodynamics of
the reduced system is described by relations �23�–�27�. Once
the definition ES= �HS	 is accepted, no other assumptions are
necessary to construct the system thermodynamics. Corrobo-
rating the results obtained in Refs. �12,13�, the present ex-
tended study shows that the use of this definition gives rise to
physically and logically consistent results for both quantum-
mechanical and classical systems.

The fundamental quantity of approach II, on the other
hand, is the partition function of the system, ZS. To obtain
thermodynamic quantities, approach II involves two steps.
First, the partition function of the system is identified as the
ratio of the total and bath partition functions, Z /ZB �Eq.
�13��. In addition to this choice, approach II assumes that the
standard thermodynamical relations given by Eqs. �7�–�9�
can be used to calculate thermodynamic quantities such as
the mean energy, the entropy, and the specific heat. The
choice ZS=Z /ZB for the partition function of the system ap-
pears to be reasonable, notably in the limit of weak system-
bath coupling. However, as discussed in Sec. III C, the par-
tition function ZS=Z /ZB corresponds to the reduced
distribution �S given in Eqs. �13� and �34�, which does not
coincide with the corresponding canonical distribution for

the isolated system alone. Instead, �S contains an additional
bath-induced operator �S which, in general, depends on the
temperature and on the degrees of freedom of the system. In
such a case, as has been shown in Sec. III A, the thermody-
namic relations for a subensemble, Eqs. �23�–�27�, should be
employed instead of the standard thermodynamic relations
�7�–�10�, provided the system-bath coupling is not small.
Therefore, there is no a priori theoretical justification for
using ZS=Z /ZB in Eqs. �7�–�10�, and we have to additionally
postulate that differentiations of FS=−ln�Z /ZB� /� give, ac-
cording to Eqs. �7�–�9�, the mean system energy, entropy,
and specific heat. Thus the two fundamental assumptions of
approach II, the choice of ZS and the validity of the standard
thermodynamic relations �7�–�10� even for the subensemble,
cannot be proven within the approach itself.

It also worthwhile to mention another peculiarity of ap-
proach II. As was pointed out in Refs. �12,13�, the mean
energy of the system obtained within approach II corre-
sponds to the definition

ES = �H	 − �HB	B � �HS	 + �HB + HSB	 − �HB	B, �69�

where �¯	B denotes averaging over the bath distribution
�Eq. �15��. For nonvanishing system-bath interaction, the
term �HB+HSB	− �HB	B gives an additional contribution to ES
that is not present in approach I. As a consequence of the
structure of this additional term, it is not possible to intro-
duce an operator of the mean energy, whose average will
give ES. Furthermore, considering, for example, ES as the
mean internal energy of a molecule with several vibrational
degrees of freedom, it does not appear to be consistent that
definition �69� contains contributions which are explicitly de-
termined by the bath degrees of freedom.

To summarize, although approaches I and II give identical
results for the thermodynamics of a subsystem if the system-
bath coupling is negligible, their predictions differ signifi-
cantly for finite system-bath coupling. These differences
arise because different quantities are considered as funda-
mental in the two approaches and are related to the different
definitions of the mean energy of the system used. The re-
sults obtained above and those presented earlier �13� suggest
that approach I is superior from both the physical and the
logical points of view.
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