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In this paper, we study exactly the thermal conductance for a low dimensional system represented by two
coupled massive Brownian particles, both directly and via a Green-Kubo expression. Both approaches give
exactly the same result. We also obtain exactly the steady-state probability distribution for that system by
means of time averaging.
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I. INTRODUCTION

Exact results, in physics, play an important and useful
role as a reference for other methods. For instance, they can
be used to study specific features of models which are not
easily accessible to approximative methods, such as com-
puter simulations. However, nontrivial exact results are few
and difficult to come by: in the literature of transport phe-
nomena there are not many exact calculations for transport
coefficients based on the mechanical parameters of the sys-
tems under observation �1–9�. Indeed, the calculation of
transport coefficients is one of the most important goals of
nonequilibrium physics.

In fact, the rigorous derivation of Fourier’s law for bulk
Hamiltonian systems is still under debate �2�. The soluble
harmonic models used to evaluate the thermal conductance
do not reproduce the necessary scattering of the energy un-
less local thermal reservoirs �which act in part as effective
scatterers for the energy incoming on them� are coupled to
the bulk sites. Other models such as mass disordered ones
have been proposed but there is evidence that mass disorder
alone will not give rise to Fourier’s law in two dimensions
�1�. The presence of anharmonicity on the coupling level
would probably be sufficient for energy to scatter and diffuse
from site to neighboring site. However, the technical details
for obtaining exact rigorous results are, as far as we know,
too difficult to overcome at the present level �2�.

On the other hand, for equilibrium statistical mechanics
the probability distribution for a given system can be found,
given that it obeys Liouville’s theorem �10� and the external
macroscopic constraints �11�, by means of an ensemble of
points in phase space when that system is ergodic. However,
ergodicity is not a necessary condition for obtaining the long
times of the stationary probability distribution since it is al-
ways possible, at least in principle, to obtain the time aver-
age for any physical quantity during the realization of an
actual experiment.

What distinguishes time averaging from other exact meth-
ods derived from the solution of a Fokker-Planck formalism
is that time averaging can take into account, exactly, all the
orders of the moments of the dynamical variables. The
Fokker-Planck formalism is exact only to the second-order
moments while time average is akin to the stationary solution
of the Kramers-Moyal equation that is correct at all orders of
moments �12�. For simplicity’s sake we use Gaussian white
noise in the present work but the method is readily general-
izable to any type of noise given that all its moments are
known.

Our present goal is to study exactly the validity and con-
sistency of some methods used in the derivation of transport
coefficients �namely, the thermal conductance� for small
classical systems. The reasons for using small systems in our
model are many fold. First, exact calculations become fea-
sible. Second, macroscopic transport properties associated
with large systems must have a mechanical counterpart in
small systems. Macroscopic flows of mass, momentum, or
energy are the effects of the averaging of the action of mi-
croscopic forces and work. Third, small systems are interest-
ing per se. There are difficulties inherent to small systems
due to the fact that one cannot take the thermodynamic limit
that averages out many problems associated with solving the
dynamics of large systems, similarly to the law of large num-
bers that arises from the summation of many random vari-
ables �13�. We can also take into account exactly the effects
of the inertia and of a possible non-Markovian nature for the
noise.

For deriving the exact time-averaged thermal conduc-
tance, we choose a simple system which is capable of non-
trivially transmitting heat between its constitutive parts, via
mechanical work, when subjected to a gradient of �white-
noise� temperature: a system of two coupled Brownian par-
ticles �BP� with the coupling constant k acting as the sole
information channel between the particles. In the present
case, the system dynamics is linear and the linear-response
treatment shall be proven to be exact, as we will see in the
following.

We can apply a method previously used by the authors
�14,15� to the study of thermal conduction between the
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coupled BP system. The exact time-averaging method of
Refs. �14,15� is capable of obtaining exactly the stationary
probability distribution for Brownian particles submitted to
white and colored noises. In particular, by submitting a
single massive BP to two different thermal contacts, at dis-
tinct temperatures �similarly to some glasses that are sub-
jected to thermal vibrations and structural modifications rep-
resented by distinct noise functions at different time scales
�16��, we can keep it from reaching thermal equilibrium �15�.

Since the present model is effectively zero dimensional,
the thermal conductance between the Brownian particles is
defined simply as the energy flow per unit time per tempera-
ture difference between the particles, i.e., the conductive
flow of energy �for particle 1, from particle 2� is defined as
j1,2=−��T1,2−T2,1�, where � is the interparticle thermal con-
ductance in first-order approximation. Indeed, there have
been some recent developments in treating finite systems that
can be adapted to the problem under study �17,18�. In that
case, the transport coefficient � is obtained via a convenient
Green-Kubo �GK� formulation. The calculation of the trans-
port coefficients by this method can be an interesting starting
point for the study of more complex models, such as poly-
mers subjected to gradients of temperature �2,5,9�. It will
also provide an important test for the choice of flow variable
appropriate for such models. However, in order to avoid the
rather artificial construction of an ensemble of reservoirs that
need to be coupled to the particles along the linear polymer
�harmonic crystal�, a generalization of the method will be
needed to include nonlinearities on the potential. This way, a
much more realistic picture of thermal conduction will be
obtained.

The thermal conductance between two particles is not a
well defined macroscopic quantity since we are far from the
thermodynamic limit and cannot define a macroscopic �and
diffusive� flow of heat. However, it is clear that if a �classic�
macroscopic system is partitioned into two parts, energy con-
duction is realized by the interactions �work� at the interface.

Furthermore, we add a periodic variation in the tempera-
ture of the Brownian particles. This is an interesting effect
that can lead to the appearance of currents for systems pre-
senting asymmetries in the potential energy �19,20�. Periodic
oscillations of different types are capable of creating currents
�21,22� in the case of zero average forces acting on the par-
ticles. The combination of ratchet-type potential energy and
periodic time oscillation for the temperature has been exten-
sively studied �20,23�.

This paper is organized as follows: in Sec. II we define
the model. In Sec. III we explain the method of time aver-
aging and show the main contributions to the probability
distribution. In Sec. IV we calculate the time-averaged
steady-state distribution for the nonequilibrium conditions.
In Sec. V we obtain the thermal conductance and in Sec. VI
we discuss our main conclusions.

II. EXACTLY SOLVABLE MODEL

Our model consists of two massive BP coupled by a har-
monic potential and subjected to white noise at distinct tem-
peratures. This could be interpreted as two atoms in a crystal,
coupled by a harmonic potential.

Despite the reduced number of variables, the present sys-
tem contains the main ingredients of more complex models.
In it, we can define the energy transfer as the microscopical
work, which in macroscopical systems becomes the inter-
nally transferred heat. In the following, we describe the
model in detail and, using time-average techniques �14,15�,
we calculate exactly the probability distribution for the rel-
evant Brownian variables.

A. Langevin-type equation

The system composed of two coupled punctual and mas-
sive BPs is described by the equations:

ẋ��t� = v��t� , �1�

m�v̇��t� = − k�x��t� − x��t�� − k�x��t� − ��v��t� + ���t� .

�2�

Gaussian behavior is to be expected for the probability
distribution for the time-averaged stationary state, according
to previous published works �see especially Secs. 1.3.E.2 and
2.2.E.2 in Ref. �24��.

For simplicity, we make: m1=m2=m, k�=k�, and �1=�2
=�. Thus the equations can be written as

mẍ��t� = − k�x��t� − x��t�� − k�x��t� − �ẋ��t� + ���t� , �3�

where � ,�=1,2, ���, and the initial conditions are

x1�0� = x2�0� = v1�0� = v2�0� = 0.

B. Noise properties

Both white Gaussian noise terms can be defined in terms
of their two lowest two cumulants:

����t�� = 0, �4�

����t����t��� = 2�T��t������t − t�� , �5�

where the modulated temperatures above are given by

T��t� = T̄��1 + A� sin���t��2, �6�

for �=1,2 and �A��	1.
The oscillating temperatures, in other models, can induce

very interesting effects such as sending heat fluxes against
gradients of temperature �23� or directed fluxes of particles
in periodic potentials �19,20,25–27�.

C. Laplace transformations

Taking the Laplace transformations of Eqs. �1� and �2�
yields

�ms2 + �s + k + k��x̃1�s� = kx̃2�s� + �̃1�s� , �7�

ṽ1�s� = sx̃1�s� , �8�

�ms2 + �s + k + k��x̃2�s� = kx̃1�s� + �̃2�s� , �9�
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ṽ2�s� = sx̃2�s� . �10�

Defining 
�s��ms2+�s+k+k� and rearranging Eqs.
�7�–�10�, one finds that

x̃1�s� = ��s��̃1�s� + ��s��̃2�s� , �11�

ṽ1�s� = s��s��̃1�s� + s��s��̃2�s� , �12�

x̃2�s� = ��s��̃1�s� + ��s��̃2�s� , �13�

ṽ2�s� = s��s��̃1�s� + s��s��̃2�s� , �14�

where

��s� �

�s�


2�s� − k2 , �15�

��s� �
k


2�s� − k2 . �16�

The Laplace transformation for the independent noise vari-
ables is given by ��=1,2�:

��̃��iqi + 
��̃��iqj + 
��

2�T̄�

= 	 1

i�qi + qj� + 2

+

2A���

�i�qi + qj� + 2
�2 + ��
2

+
2A�

2��
2

�i�qi + qj� + 2
�
�i�qi + qj� + 2
�2 + 4��
2�� .

�17�

All integration paths are the same and shown in Fig. 1.

III. PROBABILITY DISTRIBUTION

Here we show some of the steps �more details can be
found in Refs. �14,15�� to obtain the expression for the in-
stantaneous probability distribution for the system of coupled
Brownian particles.

Time averaging, for a supposedly convergent distribution,
is defined and calculated as in Refs. �14,15�:

f̄ = lim
�→�

1

�



0

�

dtf�t� = lim
z→0+

z

0

�

dte−ztf�t� .

From the definition for the instantaneous probability dis-
tribution:

p�x1,v1,x2,v2,t�

= ���x1 − x1�t����v1 − v1�t����x2 − x2�t����v2 − v2�t��� ,

�18�

it is possible to show that �14,15� �more details to be found at
�28��:

pss�x1,v1,x2,v2� = lim
z→0

lim

→0



−�

+� dQ1

2�

dQ2

2�

dP1

2�

dP2

2�
eiQ1x1+iP1v1+iQ2x2+iP2v2

� �
l,m,n,o=0

�
�− iQ1�l

l!

�− iP1�m

m!

�− iQ2�n

n!

�− iP2�o

o!



−�

+�

�
f=1

l
dq1f

2�
�
h=1

m
dp1h

2�



−�

+�

�
j=1

n
dq2j

2�
�
k=1

o
dp2k

2�

�
zm+o+1

z − ��a=1

l
�iq1a + 
� + �b=1

m
�ip1b + 
� + �c=1

n
�iq2c + 
� + �d=1

o
�ip2d + 
��

���
f=1

l

x̃1�iq1f + 
��
h=1

m

ṽ1�ip1h + 
��
j=1

n

x̃2�iq2j + 
��
k=1

o

ṽ2�iq2k + 
�� , �19�

where the integration paths for the �q , p� variables are given in Fig. 1.

• -Σjqj+(m+l+n+o)iε -i z � (q)

� (q)

• -qj+2iε

• i(ε-s1
-) • i(ε-s2

-) • i(ε-s2
+) • i(ε-s1

+)

•i(ε+s1
+) • i(ε+s2

+) • i(ε+s2
-) •i(ε+s1

-)

FIG. 1. Integration path for the equilibrium distribution, Eq.
�19�.
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An interesting case is the study of the average �x1
2�t��. The

time periodicity of the noise �T1,2�t+T�=T1,2�t�� gets trans-
lated into a periodicity of distribution �p�x , t+T�= p�x , t��,
and by consequence also of the averages for the variables,
e.g., �x1

2�t+T��= �x1
2�t��. This is consistent with a Fokker-

Planck treatment of the distribution found in the literature
�19,20,25–27�. We now show that the instantaneous distribu-
tion described by Eq. �19� is indeed consistent with period-
icity in time.

From Ref. �20�, it is clear that �x1
2�t�� is periodic in time

with period T:

�x1
2�t + T�� =
 dx1p�x1,t + T�x1

2 =
 dx1p�x1,t�x1
2 = �x1

2�t�� ,

where the periodicity of the probability distribution directly
implies that of the average. We assume that T2=0 ,k=0 so
the present model and the one from �20� coincide.

The average �for long time, after the memory of the initial
conditions has already faded out� reads

�x1
2�t�� =
 dx1p�x1,t�x1

2

= lim

→0



−�

+� dq1

2�

dq2

2�
et�iq1+iq2+2
��x̃1�iq1 + 
�x̃1�iq2 + 
�� .

By integrating the last equation above over the poles of
��̃1�̃2�, we observe that, apart from the term of order O�A0�,
the terms carrying the contribution from the sine bring a
dependence such that iq1+ iq2+2
= � i�. By obtaining the
residue, we are left with exponential terms of the form e�i�t,
which are periodic in time with period T.

An interesting aspect of periodically varying noise is that
it modulates the time behavior of distributions and averages,
i.e., there are no stationary constant values for any of the
moments of the Brownian variables: the moments are peri-
odic functions of time. In this case, the time average we use
corresponds to averages of these quantities taken over a pe-
riod of the noise for very long observation times. In general
lines, the next steps consist of expressing the Laplace trans-
forms for the dynamical variables �x ,v� into functions of the
averages of the Laplace transforms of the noise.

IV. TIME-AVERAGED STEADY STATE DISTRIBUTION

A. Contributing terms

The main contributions for the probability shown in Eq.
�19� coming from a typical integration are of the form
�14,15,28�:

C�̃r�̃s
= 


0

� dqi

2�

dqj

2�

z

z − i�qi + qj + 2
 + ��

���̃r�iqi + 
��̃s�iqj + 
�� , �20�

where �= ��a=1,a�i
l �iqa+
�+�b=1,b�j

n �iqb+
��, � ,�=x ,v,
and r ,s=1,2.

To understand what causes a term in Eq. �19� to contribute
to the time-averaged steady-state probability distribution, it

is necessary to observe that for a typical integration, such as
the above term, there is a factor I�z�,

I�z� =
z

z − i�qi + qj + 2
 + ��
,

which, in the limit z→0, will vanish if there is a presence of
any finite terms on its denominator �due to the residue cal-
culations around the poles of the rest of the integrand�. Only
integrations that eliminate all the pairs of q’s in the denomi-
nator of I�z� will transform it into I�z�=z /z=1. This is a
necessary condition for any of the integrations done below to
contribute to the probability distribution. Each integration
brings the corresponding multiplicative factors that need to
be dealt with.

We define

Q�� =
k + k�

4��k�2 + 2kk��
+

�

4�mk2 + �k + k���2�
, �21�

Q�� =
k2�m�k + k�� + �2�

4�k��2k + k���mk2 + �k + k���2�
, �22�

Q�� = Q�� =
k

4�k��2k + k��
, �23�

R�� =
1

4
�mk2 + 2�k + k���2

mk2 + �k + k���2 � , �24�

R�� =
1

4
� mk2

mk2 + �k + k���2� , �25�

H =
k�

4�mk2 + �2�k + k���
. �26�

Thus, the contributing terms will be �28�:

Cx̃1x̃1
=

z

z − i�

�T̄1�2 + A1

2�Q�� + �T̄2�2 + A2
2�Q��,� ,

�27�

Cx̃2x̃2
=

z

z − i�

�T̄1�2 + A1

2�Q�� + �T̄2�2 + A2
2�Q��,� ,

�28�

Cx̃1x̃2
=

z

z − i�

�T̄1�2 + A1

2� + �T̄2�2 + A2
2��Q��, �29�

Cṽ1ṽ1
=

z

z − i�� T̄1

m
�2 + A1

2�R�� +
T̄2

m
�2 + A2

2�R��� ,

�30�

Cṽ2ṽ2
=

z

z − i�� T̄1

m
�2 + A1

2�R�� +
T̄2

m
�2 + A2

2�R��� ,

�31�
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Cx̃1ṽ2
=

z

z − i�
H�T̄1�2 + A1

2� − T̄2�2 + A2
2�� , �32�

Cx̃2ṽ1
=

z

z − i�
H�T̄2�2 + A2

2� − T̄1�2 + A1
2�� . �33�

The other possible terms vanish:

Cṽ1ṽ2
= Cx̃1ṽ1

= Cx̃2ṽ2
= 0, �34�

since they are integrations of products of odd functions of q’s
with even functions of q’s.

Notice that the effect of modulation is to scale the tem-
perature value by a factor of 1+A2 /2. This is exactly what is
obtained by taking the time average of T�1+A sin��t��2:

T�1 + A sin��t��2 = T�1 + A2/2� .

We notice that the coupling term k is responsible for the
nonzero values of Q��, Q��, R��, and H.

B. Exact solution for the time-averaged steady-state
distribution

Using the results obtained above, it is possible to obtain
that Eq. �19� is

pss�x1,v1,x2,v2� = 

−�

+� dQ1

2�

dQ2

2�

dP1

2�

dP2

2�

�eiQ1x1+iP1v1+iQ2x2+iP2v2W�Q1,P1,Q2,P2� ,

�35�

where �28�

W�Q1,P1,Q2,P2� = �
M=0

�

�
N=0

�

�
S=0

�

�
T=0

�
�iQ1�M

M!

�iQ2�N

N!

�iP1�S

S!

�iP2�T

T!
�x̃1

Mx̃2
Nṽ1

Sṽ2
T�

= exp
− H�T̄1�2 + A1
2� − T̄2�2 + A2

2���Q1P2 − Q2P1��exp�− �Q1
2Q�� + 2Q1Q2Q�� + Q2

2Q��

2
���T̄1�2 + A1

2��

− �Q2
2Q�� + 2Q1Q2Q�� + Q1

2Q��

2
���T̄2�2 + A2

2���exp�−
P1

2

2
	 T̄1

m
�2 + A1

2�R�� +
T̄2

m
�2 + A2

2�R����
�exp�−

P2
2

2
	 T̄1

m
�2 + A1

2�R�� +
T̄2

m
�2 + A2

2�R���� . �36�

The exact final result is given by

pss�x1,v1,x2,v2� = G0 exp
Nx1x1
x1

2 + Nx2x2
x2

2 + Nv1v1
v1

2

+ Nv2v2
v2

2 + Nx1v1
x1v1 + Nx1x2

x1x2

+ Nx1v2
x1v2 + Nx2v1

x2v1 + Nx2v2
x2v2

+ Nv1v2
v1v2� , �37�

where all the coefficients N�r�s
above depend on the tem-

peratures and mechanical constants of the system.
Due to the couplings present in Eq. �37�, it does not de-

scribe a usual Boltzmann distribution but instead a steady
state where couplings between position and moments arise.
The basic reason for this to occur is that the work done by
the coupling spring is of the form �work done on particle 1
by the spring� on an interval of time dt

dW1 = − k�x1 − x2�v1dt ,

generating, as we shall see, a correlation between x2 and v1
due to the coupling above. A similar correlation between x1
and v2 also appears.

It is straightforward to show that these correlation func-
tions are given by

�x1v2� = −
D1

D2
, �38�

�x2v1� = −
D3

D2
, �39�

where �28�

D1 = 4Nx1v2
Nx2x2

Nv1v1
− Nx1v2

Nx2v1

2 − 2Nx1x2
Nx2v2

Nv1v1

− 2Nx1v1
Nx2x2

Nv1v2
+ Nx1v1

Nx2v1
Nx2v2

+ Nv1v2
Nx1x2

Nx2v1
, �40�

D2 = 16Nv2v2
Nx1x1

Nx2x2
Nv1v1

− 4Nv1v2

2 Nx1x1
Nx2x2

− 4Nx1x1
Nx2v2

2 Nv1v1
+ 4Nv1v2

Nx1x1
Nx2v1

Nx2v2

− 4Nv2v2
Nx1x1

Nx2v1

2 − 4Nv2v2
Nx2x2

Nx1v1

2

− 4Nx1v2

2 Nx2x2
Nv1v1

+ 4Nv1v2
Nx2x2

Nx1v1
Nx1v2

+ Nv1v2

2 Nx1x2

2 + Nx2v2

2 Nx1v1

2 + 4Nx2v2
Nx1x2

Nx1v2
Nv1v1
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− 4Nv2v2
Nv1v1

Nx1x2

2 − 2Nv1v2
Nx2v2

Nx1x2
Nx1v1

+ Nx1v2

2 Nx2v1

2 − 2Nv1v2
Nx2v1

Nx1x2
Nx1v2

− 2Nx1v1
Nx1v2

Nx2v1
Nx2v2

+ 4Nv2v2
Nx2v1

Nx1x2
Nx1v1

,

�41�

D3 = 4Nx1x1
Nx2v1

Nv2v2
− Nx2v1

Nx1v2

2 − 2Nx1x2
Nx1v1

Nv2v2

− 2Nx1x1
Nx2v2

Nv1v2
+ Nx2v2

Nx1v1
Nx1v2

+ Nv1v2
Nx1x2

Nx1v2
. �42�

Observe that we can swap D1 and D3 by the transformation
1↔2.

In the equilibrium limit T1=T2=T, all the terms of the
form Nxv will vanish. In consequence, the couplings repre-
sented in Eqs. �38� and �39� will also vanish. In equilibrium
the flux of heat ceases and velocities decouple from posi-
tions, as in the following cases shown below.

C. Interesting limits

Two interesting limits arise. First, by decoupling the par-
ticles

k = 0 ⇒ Q�� = Q�� = Q�� = R�� = H = 0.

The distribution is given by the product of two independent
Boltzmann terms:

pss�x1,x2,v1,v2� =
mk�

�2��2T1T2

�exp�−
k�x1

2

2T1
−

mv1
2

2T1
−

k�x2
2

2T2
−

mv2
2

2T2
� .

�43�

Second, by taking the equilibrium �same temperature�
case T1=T2=T. The final result corresponds to the Boltz-
mann distribution:

peq�x1,x2,v1,v2� =
m�k��k� + 2k�

�2�T�2 exp�−
k�x1

2

2T
−

k�x2
2

2T

−
k�x1 − x2�2

2T
−

mv1
2

2T
−

mv2
2

2T
� . �44�

V. THERMAL CONDUCTANCE

We are going to obtain the current of energy �heat� be-
tween the two Brownian particles by two methods: the exact
direct calculation of the work rate between the particles, and
a Green-Kubo formalism appropriate for finite systems �18�.

The GK formalism �29� has applications for many prob-
lems such as fluid slab flow properties �30�, diffusion in
granular fluids �31–33�, fluctuation-dissipation theory
�34,35�, thermal conductance in condensed-matter systems
�36,37�, viscosity of trapped Bose gas �38�, triple-point bulk
and shear viscosities �39,40� or self-diffusion �41� for
Lennard-Jones fluids, among others. The GK method de-

pends crucially on the convergence of time integrations of
flux-flux correlation functions.

The convergence of the GK integral depends on the flux-
flux time-correlation functions decaying fast enough; other-
wise the time integration will diverge such as what happens
for two-dimensional hydrodynamic systems �42�. This is due
to the mode coupling between hydrodynamic modes gener-
ating a t−1-dependent tail in the velocity correlations. How-
ever, for three dimensions the tail goes as t−3/2 �42–44� and
the Green-Kubo integral converges. On the other hand, in
one dimension, nondiffusive effects can affect the validity of
Fourier’s law while a Green-Kubo approach might still be
valid �45�.

A. Energy flux

In order to proceed, we will define the energies and fluxes
for our system. The “local” energy density will be given by


1,2 =
1

2
mv1,2

2 +
1

2
k�x1,2

2 . �45�

The contact of the particles with the thermal reservoirs and
the presence of the dissipative terms imply a flux of energy
into, and out of, the system at both positions. These instan-
taneous contact fluxes are given by �17�:

jc1 = − �v1
2 + v1�1, �46�

jc2 = − �v2
2 + v2�2. �47�

As the coupling spring acts as the interaction channel be-
tween the particles, we define, for each particle, the transmit-
ted heat flux �energy/time� as

jt1 = − k�x1�t� − x2�t��v1, �48�

jt2 = − k�x2�t� − x1�t��v2. �49�

The local interparticle elastic energy is defined as

Eel =
1

2
k�x1�t� − x2�t��2. �50�

The total balance of energy requires that the excess energy
be stored in the spring potential. Thus, it is straightforward to
see that the above definitions do respect energy balance since

jt1 + jt2 = − dEel/dt .

The effective transfer flux j12 can now be defined:

j12 =
1

2
�jt1 − jt2� = − k�x1�t� − x2�t���v1�t� + v2�t�

2
� .

�51�

The definition above corresponds to sharing the elastic
energy, defined in Eq. �59�, in equal parts between the neigh-
boring particles.

B. Direct calculation of �

The thermal conductance is
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� � ��T,�T� =
�

��T
�j12��T, �52�

where A1=A2=0, T1=T, T2=T+�T, and � ��T is the average
at �T�0. The above expression for � goes beyond first-
order approximation since it contains all the information
needed to calculate the heat flux, as shown in

�j12��T � �j12��T,�T� = 

0

�T

dt��T,t� . �53�

The average heat flux is given by �j12��T and can be cal-
culated exactly:

�j12��T = − k��x1 − x2��v1 + v2

2
�� = −

k

2
��x1v2� − �x2v1�� .

�54�

Using Eqs. �38� and �39�, we write

�j12��T = −
k�D1 − D3�

2D2
, �55�

where the values of �D1 ,D2 ,D3� are given in Eqs. �40�–�42�.
After some tedious �but straightforward� algebra, the final

result is rather simple �28�:

�j12��T = 2kH�T ⇒ � =
k2�

2�mk2 + �2�k + k���
, �56�

where � is exact and independent of T and �T.
It is not unexpected to find the flux proportional to �T

since this result has been obtained for similar models before
�2,3,5�. However, Eq. �56� represents the time average over
the full dynamics of the system. We do not make any use of
approximate master-equation-type methods, such as the
Fokker-Planck equation �12�, to obtain the value of �. Our
method is equivalent to solving exactly the dynamical equa-
tions of motion given the realization of the noise, then taking
the noise average, and finally time averaging the final result.
In principle, the present approach can be generalized for any
type of noise, not only white noise. It is interesting to com-

pare Eq. �56� with the results obtained from a Green-Kubo
integration. This will be an interesting test on the validity of
the choice of the thermal current, and also of the approxima-
tions used in order to derive the Green-Kubo formalism.

C. Green-Kubo calculation of �

The exact expression for � above can be compared with
proposals in the literature where Green-Kubo formulations
for the thermal conductance are given. In the spirit of the
previous paragraph, the effective flux j̄ plays the role of the
fluctuating flux j12 for a Green-Kubo relation proposed �18�
for obtaining the thermal conductance:

� = lim
�T→0

� j̄��T

�T
=

1

T2

0

�

dt� j̄�t� j̄�0�� , �57�

where � � stands for the equilibrium average ��T=0�. We
write

� = lim
�→�

1

�



0

�

dt
1

�T�2

0

�

d��j12�t + ��j12�t���T=0,

= lim
z→0+

lim
�→0+

z

�T�2

0

�

dte−zt

0

�

d�e−���j12�t + ��j12�t���T=0.

�58�

Replacing the flux above into Eq. �58�, we obtain the Green-
Kubo expression for �:

� = lim
z→0+

lim
�→0+

z

0

�

dte−zt k
2

T2

0

�

d�e−��

��	�x1�t + �� − x2�t + ����v1�t + �� + v2�t + ��
2

��
�	�x1�t� − x2�t���v1�t� + v2�t�

2
���

�T=0
. �59�

After some algebraic manipulation the expression for the
thermal conductance becomes �28�

� = lim
z→0+

lim
�→0+

lim

→0+

k2

16T2

−�

� dq1

2�



−�

� dq2

2�



−�

� dq3

2�



−�

� dq4

2�

z

z − ��iq1 + 
� + �iq2 + 
� + �iq3 + 
� + �iq4 + 
��

�
�iq3 + 
��iq4 + 
�

� − ��iq1 + 
� + �iq3 + 
��
�
�x̃1�iq1 + 
� − x̃2�iq1 + 
���x̃1�iq3 + 
� + x̃2�iq3 + 
���

�
�x̃1�iq2 + 
� − x̃2�iq2 + 
���x̃1�iq4 + 
� + x̃2�iq4 + 
����

= lim
�→0+

lim

→0+

k2�2

4



−�

� dq1

2�



−�

� dq3

2�

�iq3 + 
��− iq3 − 
�
� − ��iq1 + 
� + �iq3 + 
��

1

�
�iq1 + 
� + k��
�− iq1 − 
� + k��
�iq3 + 
� − k��
�− iq3 − 
� − k�
,

�60�
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where the poles are given by

s1 = −
�

2m
+ i�k�

m
−

�2

4m2 ;

s3 = −
�

2m
+ i��2k + k��

m
−

�2

4m2 ,

and the integration path is shown in Fig. 2.
Equation �60� gives exactly the same result of Eq. �56�,

showing that both approaches are completely consistent.

D. Discussion

The coherence shown for the thermal conductance results
for finite systems, calculated either directly, Eq. �56�, or via
the Green-Kubo approach, Eq. �58�, seems to point to the
validity of considering the microscopic work as the correct
fluctuating flux variable to be used for coupled particle sys-
tems. In fact, for more realistic models in which the number
of particles is large, solving the same problem for nonhar-
monic potentials might be the way to obtain a rigorous dem-
onstration of Fourier’s law.

In our case, despite the somewhat involved aspects of the
algebra, the final value for � is quite simple and carries the
influence of both couplings, k and k�, the friction coefficient
�, and the inertia m. The program we followed in order to
find � is equivalent to solving the exact equations of motion
of the Brownian particles system for each realization of the
noise functions, and then taking the average over the noise.
No approximations of any sort are necessary once the basic
model is provided. The present treatment can be extended to
other distinct kinds of noise, such as colored noise �non-
Markovian�, or even distinct heat baths acting on the same
particles.

However, the present method can readily be extended to
�finite� systems composed of more than two Brownian par-

ticles, systems that may be large enough to be taken as “mac-
roscopic.” The difficulties to treat such systems are opera-
tional or numerical rather than conceptual.

VI. CONCLUSIONS

Brownian particles �BP� are an excellent laboratory for
studying nonequilibrium physics. They are simple to de-
scribe but present many of the features of more complex
models, such as the possibility of reaching stationary states
when submitted to thermal contacts at distinct temperature.
They are also good approximations for larger systems, such
as polymers, which could be modeled by chains of BP at-
tached to each other by some type of attractive potential.

Another interesting characteristic of such systems is that
they are simple enough so that we can extract exact solutions
for their long-time behavior. This allows us to obtain results
that are hard to come by using other methods. It is already
known that we can obtain exactly the equilibrium probability
distribution for Brownian particles subjected to Markovian
or non-Markovian noise, or a combination of both. This type
of external forcing allows us to keep a system formed by a
single particle constantly on an out of equilibrium steady-
state.

Furthermore, techniques based on time averaging are very
interesting since they are ensemble independent, driven only
by the dynamical relations governing the interaction Brown-
ian particle-heat bath. In fact, this corresponds to following a
system during the realization of an experiment.

In the present work, we have studied the thermal conduc-
tance for a system of coupled particles, by taking advantage
of the mechanically simple characteristics of Brownian par-
ticles and of time averaging. Our system consists of two
particles coupled by a spring potential, with the heat flux
flow j12 being due to the mechanical work done through the
spring coupling the two particles. The particles may be kept
in contact with distinct thermal baths and the flow of energy
may be obtained by means of the thermal conductance coef-
ficient �, appropriate for small systems. The latter is calcu-
lated both from first principles, and by means of a Green-
Kubo formulation, and the obtained exact results are
identical. The final form of � depends only on the variables
of the system, such as the mass of the particles, the spring
couplings and the friction coefficients. The thermal conduc-
tance can be thought as a first step for obtaining the equiva-
lent form for more sophisticated macroscopic systems such
as long polymers.

We believe that the coherence between the exact direct
calculation and the exact Green-Kubo formulation for �
shows the correctness of the basic definitions especially that
of the heat flux, used in the problem.

ACKNOWLEDGMENTS

One of us �W.A.M.M.� thanks the Brazilian funding agen-
cies Faperj and CNPq, and D.O.S.P. would like to thank the
Brazilian funding agency CNPq for financial support.

� (q)

� (q)

• -q3-i(θ−2ε)

• -q2-q3-q4+3iε -i z

• i(ε-s1) • i(ε-s1
*)• i(ε-s3) • i(ε-s3

*)

FIG. 2. Integration path over the poles for the Green-Kubo cal-
culation of the conductance.
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