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Based on the nonequilibrium Green’s function technique, a unified theory is developed that covers quantum
transport and quantum diffusion in bulk semiconductors on the same footing. This approach, which is appli-
cable to transport via extended and localized states, extends previous semiphenomenological studies and puts
them on a firm microscopic basis. The approach is sufficiently general and applies not only to well-studied
quantum-transport problems, but also to models, in which the Hamiltonian does not commute with the dipole
operator. It is shown that even for the unified treatment of quantum transport and quantum diffusion in
homogeneous systems, all quasimomenta of the carrier distribution function are present and fulfill their specific
function. Particular emphasis is put on the double-time nature of quantum kinetics. To demonstrate the exis-
tence of robust macroscopic transport effects that have a true double-time character, a phononless steady-state
current is identified that appears only beyond the generalized Kadanoff-Baym ansatz.
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I. INTRODUCTION

Quantum transport in semiconductors has attracted a great
deal of interest over the last few decades. The transport
theory of carriers in bulk semiconductors as developed on
the basis of semiclassical Boltzmann or balance equations as
well as the nonequilibrium Green’s function �GF� technique
is well documented in many review articles and textbooks
�cf., for instance, Refs. �1–3�� and has reached a high level of
sophistication. Compared with this achievement, there are
only a few studies on quantum diffusion in semiconductors.
However, this fact does not imply that the knowledge about
quantum diffusion has not contributed to the overall picture
of quantum kinetics. It is rather the unified description of
ballistic transport, diffusion, and hopping that provides valu-
able insight into the general structure of the theory. This
paper aims at the construction of a general transport theory
by focusing on common features that emerge from quantum
transport and quantum diffusion as well as from transport via
extended and localized states. A comparative analysis of
quantum transport and quantum diffusion, carried out on the
basis of a semiphenomenological approach �4,5�, clearly
stressed distinct features of the general theory that already
appeared in early studies of the current density �6�. The prob-
lem is best explained by treating the momentum representa-
tion of the one-particle transport approach. It is usually as-
sumed that due to translational invariance the carrier
transport in homogeneous systems is properly accounted for
by only one k vector. Consequently, the carrier transport
should be governed by the distribution function f��k � t�,
which is the solution of a quantum-kinetic equation. How-
ever, completely different results were obtained from a uni-
fied approach to quantum transport and quantum diffusion on
the basis of the conditional transition probability that satis-
fies a quantum-mechanical Bethe-Salpeter equation �4,5�.
The main quantity in this approach is the distribution func-
tion f��k ,� � t� that depends on both wave vectors, although

the underlying model is completely homogeneous and not
strongly affected by special initial conditions. This finding is
all the more surprising since the vector � refers to a devia-
tion from homogeneity. In fact, it is not the full � depen-
dence that is needed in the calculation of transport coeffi-
cients of homogeneous bulk semiconductors. What enters the
approach is the quantity ��f��k ,� � t� ��=0, which is inter-
preted to be a virtual disturbance of the homogeneous system
that allows to probe the drift-diffusion response. The surpris-
ing result that both wave vectors k and � appear also in the
general transport theory of homogeneous systems is con-
firmed by the unified picture of transport via extended and
localized states. In principle, hopping and band transport can
be described on the same footing so that each approach is
derivable from the other one in a straightforward manner.
This equivalence is of particular importance, when transport
in biased superlattices is treated. By tuning the electric field
applied perpendicular to the layers of the superlattice, the
character of transport can be driven from hopping to the
Ohmic regime and vice versa. From an application point of
view, however, it is natural to expect that both approaches
are not equally well adapted for numerical purposes.

To provide further arguments for the statement that also
the vector � enters the general transport theory, let us focus
on the current density j�t�, which is given by the time deriva-
tive of the dipole operator j�t�= �1 /V�dD�t� /dt �with V being
the volume of the system�. In the momentum representation,
an equivalent form applicable to the steady state is obtained
by

j = �
k

vef f�k�f��k� , �1�

where vef f�k� denotes an effective velocity. In the majority of
transport studies, vef f�k� is simply given by the drift velocity
v�k�=�k��k� /� that refers to extended states with the kinetic
energy ��k�. This result applies, whenever the interaction
Hamiltonian Hint commutes with the dipole operator, which,
however, does not always happen. For instance, in the theory
of small polarons, there is an extra current contribution j
��D ,Hint�−, which even dominates the carrier transport via*kl@pdi-berlin.de
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the effective drift velocity vef f�k�. The current density of this
kind is expressed by the � derivative of the collision integral
calculated at �=0. Another example refers to the proper defi-
nition of the spin current in semiconductors with spin-orbit
interaction that recently became a subject of a lively contro-
versial discussion �7�. In addition, the exact switching from
band to hopping transport and vice versa requires the consid-
eration of both momenta k and � in the scattering terms and
GFs �4�.

Former studies of this subject �4,5� started from a phe-
nomenological basis and introduced the quantum-mechanical
description via the conditional transition probability calcu-
lated from a Bethe-Salpeter equation. This approach pro-
vided a unified picture of quantum transport and quantum
diffusion that covers both transport via localized and ex-
tended states. Unfortunately, due to its phenomenological
origin, the former more suggestive studies cannot cope with
the full quantum statistics that is expressed by the close re-
lationship between statistical and spectral components of
double-time correlation functions. It is the aim of this paper
to generalize our former semiphenomenological results by
putting them on a firm microscopic basis and by accounting
for the double-time character of quantum statistics. This pro-
gram leads to a unified double-time description of quantum
transport and quantum diffusion.

The most attractive starting point for the derivation pro-
vides the nonequilibrium GF technique that was initiated by
Schwinger �8� and Keldysh �9� and that has been employed
by several authors �10–15� to treat quantum transport. With
respect to the time dependence, such a fundamental approach
is able to cope with the two-time nature of quantum evolu-
tion. The double-time character manifests itself in coupled
evolution equations for the spectral function and the statisti-
cal propagator. Moreover, memory effects appear due to the
integration over the full time history. Unfortunately, most
applications of the nonequilibrium GF method disregarded
the entangled time dependence by relying on a sufficient
homogeneity in time, which is exploited by first-order gradi-
ent expansions, when “center of mass” coordinates in space
and time slowly vary. This approximation has a serious dis-
advantage, namely, it rules out the full quantum-mechanical
character of transport phenomena. In contrast to these ap-
proaches, we account for the two-time dependence of GFs in
an exact manner and generalize our former unified approach
to quantum transport and quantum diffusion �4�. The basic
quantity will be the two-time distribution function
f��k ,� �T , t� that satisfies a quantum-kinetic equation. An
example, given in the last section, demonstrates the existence
of a macroscopic phononless quantum-transport mechanism
that emerges only when the double-time dependence of GFs
is properly taken into account.

II. BASIC APPROACH

A. Symmetry of the Green’s functions

We are going to focus on the basic physics of quantum
transport that is revealed by controlled approximations in a
one-particle picture that disregards the Coulomb interaction
between carriers. Consequently, the electron-phonon interac-

tion takes over the indispensable role of an inelastic-
scattering mechanism, which is needed when treating the
nonlinear high-field transport. In spite of this restriction, we
will, nevertheless, consider a rather general model that is
compatible with many studies of quantum transport in semi-
conductors.

The main issue in deriving basic quantum-kinetic equa-
tions is the full account of symmetries. Although the trans-
lational invariance with respect to the spatial ri and temporal
ti coordinates is broken, when external electric E�t� and mag-
netic B fields are applied to the sample, there remains a
symmetry of GFs that is very important for the description of
field-dependent nonequilibrium quantum transport �16�. This
symmetry expresses the fact that a translation of spatial co-
ordinates can be compensated by the vector potentials A�r�
and A�t� of the external magnetic and time-dependent elec-
tric field, respectively. For the expectation values of the one-
particle propagators G�, we have

G��r1,t1�r2,t2� = eiA�t2,t1�r+iA�r��r2−r1�G��r1 + r,t1�r2 + r,t2� ,

�2�

with the abbreviations A�t2 , t1�=A�t2�−A�t1� and dA�t� /dt
=eE�t� /�, where the vector potential of the magnetic field
A�r� is given in the symmetric gauge. The symmetry ex-
pressed by Eq. �2� favors the utilization of the so-called

Wigner-transformed GFs denoted by G̃� that are invariant
under spatial translations

G��r1,t1�r2,t2� = G̃��r1,t1�r2,t2�eiA�r2�r1−iA�t2,t1��r1+r2�/2, �3�

with

G̃��r1 + r,t1�r2 + r,t2� = G̃��r1,t1�r2,t2� . �4�

For a constant electric field, G̃� agree with gauge-invariant
GFs �cf., for instance, Refs. �17,18��. Equation �3� leads to
simplifications that are most effectively exploited in Fourier
space. Changing the coordinates according to

R =
r1 + r2

2
, r = r2 − r1, T =

t1 + t2

2
, t = t2 − t1, �5�

we perform a Fourier transformation with respect to the spa-
tial coordinates r and R to obtain

G��k,��T,t� =� d3re−i��−A�T,t��r

�G̃�	k +
�

2
−

1

2
A�T,t� − A�r��T,t
 , �6�

with

A�T,t� = A	T −
t

2

 − A	T +

t

2

 . �7�

The reduction in degrees of freedom and the separation of
the momentum � become more transparent in the absence of
a magnetic field, when Eq. �6� is converted to the form
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G��k,��T,t� = ��� − A�T,t��G̃��k�T,t� . �8�

This equation enables the formulation of the transport theory

on the basis of GFs G̃� that respect the symmetry in the
presence of electromagnetic fields. In our former quantum
approach to carrier transport �19,20�, we profited from this
transformation and from the general symmetry relation

G��k,��T,t�� = − G��k,− ��T,− t� . �9�

Note that the wave vector � refers to a possible deviation
from homogeneity and is absent in the conventional treat-
ment of transport in homogeneous systems.

B. Dyson equation

A nonequilibrium system is completely characterized by
only two independent two-point functions. From a physical
point of view, the decomposition of the full matrix of GFs
into statistical and spectral components is most attractive due
to its clear physical interpretation and due to the unambigu-
ous separation of their dynamical role. Loosely speaking,
this choice of GFs makes clear which states are available and
how often they are occupied. Having this natural decompo-
sition in mind, we derive kinetic equations for the GFs G�

and G�, which effectively yield the density of states and the
double-time density matrix, respectively. In the momentum
representation, the coupled Dyson equations have the form
�21�

�i�
�

�t
− ��k� + ieE�t��k�G��kt�k�t��

= � �� dk1
�
t�

t

dt1	��kt�k1t1�G��k1t1�k�t��

+ �
−


t�
dt1	��kt�k1t1�G��k1t1�k�t��

− �
−


t

dt1	��kt�k1t1�G��k1t1�k�t��� . �10�

All scattering contributions are included in the self-energies
	�, while the time-dependent electric field is treated in the
vector potential gauge. The derivation of kinetic equations
for the GFs proceeds by well-established steps: �i� wave vec-
tors are introduced by the replacement k→k+� /2 and k�
→k−� /2 and �ii� Dyson equations written down for
G��k ,� �T , t� and G��k ,� �T ,−t�� are subtracted from each
other. This procedure leads to exact quantum-kinetic equa-
tions. For simplicity, let us shorten the cumbersome calcula-
tion by focusing on a nondegenerate electron gas, for which
the Boltzmann statistics applies under idealized conditions.
As a consequence of this simplification, there is a strong
imbalance between G� and G� in the sense that G� is much
“smaller” than G� as the statistical propagator G� is propor-
tional to the carrier density. Adopting this approximation, we
arrive at the following non-Markovian integral equation for
the correlation function G�,

�i�
�

�T
+ �	k −

�

2

 − �	k +

�

2

 − i�

�A�T,t�
�t

�k + i�
�A�T,t�

�T
���G��k,��T,t�

= ��
�1

�
0




dt1
− 	�	k +
�1

2
,� − �1�T −

t1

2
,t − t1
G�	k −

� − �1

2
,�1�T +

t − t1

2
,t1


− 	�	k −
�1

2
,� − �1�T −

t1

2
,t + t1
G�	k +

� − �1

2
,�1�T −

t + t1

2
,− t1


+ G�	k −
�1

2
,� − �1�T −

t1

2
,t + t1
	�	k +

� − �1

2
,�1�T −

t + t1

2
,− t1


+ G�	k +
�1

2
,� − �1�T −

t1

2
,t − t1
	�	k −

� − �1

2
,�1�T +

t − t1

2
,t1
� . �11�

To proceed further, one has to specify expressions for the
self-energies, which are dictated by the underlying model
�e.g., small polarons�, the treated scattering diagrams �e.g., T
matrix approximation�, and the possible inclusion of the ini-
tial conditions �22�. As an example, let us select the self-
consistent Born approximation with coupling functions U�

�

that are local in time,

	��k,��T,t� = �
k1,�

U�
��k,k1,��T,t�G��k1,��T,t� . �12�

For the widespread Fröhlich-type electron-phonon interac-
tion, this equation reduces to

U�
��k,k�,��T,t� = D�

��k� − k�t� . �13�

The kinetic Eq. �11� together with Eq. �12� are not in the
form that is commonly used for the calculation of the current
density and the diffusion coefficient. Further transformation
steps have to be carried out without any approximation. An
obvious procedure would be the full exploitation of the sym-
metry based on the transformation in Eq. �6�, which would
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considerably simplify the approach to nonequilibrium quan-
tum transport. A consequent exploitation of the Wigner-

transformed GFs G̃�, as applied in our former approach
�19–21�, leads, however, to a complete disappearance of the
wave vector � that plays a fundamental role in the unified
quantum-transport description of both carrier drift and diffu-
sion. Therefore, we suggest another procedure, which is
more general and which discriminates between the states of
the system �G�� and their dynamical evolution �G��. The
clear distinction between the role of spectral and dynamical
GFs, which is a generic feature of nonequilibrium field
theory, is accounted for in the approach by maintaining the
GF G� in Eq. �11� in its original form and by replacing only

the GF G� by the symmetry-adapted partner G̃� defined in
Eq. �8�. Loosely speaking, the remaining � dependence in
G� is needed to simulate a virtual probe of the system that
reveals its dynamical response.

The reformulation of the kinetic Eq. �11� is facilitated by

introducing functions Ḡ� and Ū�
�

G��k,��T,t� = Ḡ��k,� − A�T,t��T,t� , �14�

U�
��k,k1,��T,t� = Ū�

��k,k1,� − A�T,t��T,t� �15�

that account for the internal order of the kinetic equations
with respect to �. By a further transformation, the kinetic
energy of carriers is separated out by replacing the basic GFs

G̃� and Ḡ� through new ones R� and R�, which are defined
by

G̃��k�T,t� = − iR��k�T,t�exp
 i

�
�

−t/2

t/2

d
�
k + A�T,t + 
�

−
1

2
�A	T +

t

2

 + A	T −

t

2

��� , �16�

Ḡ��k,��T,t� = iR��k,��T,t�

�exp
 i

2�
�

−t/2

t/2

d
��
k −
�

2
+ A�T + 
�

−
1

2
�A	T +

t

2

 + A	T −

t

2

��

+ �
k +
�

2
+ A�T + 
�

−
1

2
�A	T +

t

2

 + A	T −

t

2

���� . �17�

The reformulation of the kinetic equation, which is based on
Eqs. �16� and �17�, isolates rapidly varying phase factors and
leads to the conventional collision integral that appears in
transport theory. The final exact reconstruction of the origi-
nal kinetic Eq. �11� is carried out by introducing the physical
GFs f� and respective coupling terms U�

� via

R��k,��T,t� = f��k �
1
2A�T,t�,��T,t� for t � 0,

�18�

Ū�
��k,k�,��T,t� = U�

��k �
1
2A�T,t�,k�

�
1
2A�T,t�,��T,t� for t � 0. �19�

The execution of all transformation steps is straightforward
and leads to a final kinetic equation, in which a time-
dependent renormalization of the bare kinetic energy appears
on the left-hand side. As these single-particle corrections dis-
appear in the limit t→0, which is relevant for the calculation
of all transport coefficients, we neglect these contributions.
This approximation does not significantly affect the general
character of our approach. Inserting Eqs. �14�–�19� into ki-
netic Eq. �11�, we obtain our main general result, namely, a
quantum-kinetic equation for the carrier distribution function
f� that characterizes the statistical properties of the nonequi-
librium system


 �

�T
+

i

�
��	k +

�

2

 − �	k −

�

2

� −

�A�T,t�
�t

�k +
�A�T,t�

�T
��� f��k,��T,t�

= �
q,�

�
k1


�
0




dt1��k1,k+q+�A+
U�

�	k1 − q,k1,��T −
t1

2
,t − t1
 − �k1,k+�A+

U�
�	k1 −

�

2
,k1 − q −

�

2
,0�T +

t − t1

2
,t1
�

�f�	k1,��T −
t1

2
,t − t1
 f�	k1 − q − ��

2
�T +

t − t1

2
,t1
Pt1

�k1,q,��T,t�

− �
−


0

dt1��k1,k+�A−
U�

�	k1 +
�

2
,k1 − q +

�

2
,0�T −

t − t1

2
,t1
 − �k1,k+q+�A−

U�
�	k1 − q,k1,��T +

t1

2
,t − t1
�

�f�	k1,��T +
t1

2
,t − t1
 f�	k1 − q + ��

2
�T −

t − t1

2
,t1
Qt1

�k1,q,��T,t�� . �20�

The quantities that appear in this kinetic equation are given by
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�A+ = A	T +
t

2
− t1
 − A	T −

t

2

, �A− = A	T −

t

2
+ t1
 − A	T −

t

2

 , �21�

Pt1
�k1,q,��T,t� = Ft	k,��T −

t

2

Ft1	k1,q,��T +

t

2
− t1
Ft1−t	k1,��T +

t

2
− t1
 , �22�

Qt1
�k1,q,��T,t� = Ft	k,��T −

t

2

F−t1

� 	k1,q,− ��T −
t

2
+ t1
F−�t1−t�

� 	k1,��T −
t

2
+ t1
 , �23�

Ft1
�k,q,��t2� = exp
 i

�
�

0

t1

d
�	k − q −
�

2
+ A�t2 + 
� − A�t2�
� , �24�

Ft1
�k,��t2� = exp
−

i

2�
�

0

t1

d
��	k −
�

2
+ A�t2 + 
� − A�t2�
 + �	k +

�

2
+ A�t2 + 
� − A�t2�
�� . �25�

The general result in Eq. �20� has a number of intriguing
features. First of all, we mention its two-time character. All
quantities that enter kinetic Eq. �20� depend on two time
variables that are responsible for the evolution on different
time scales. This generic double-time nature of the nonequi-
librium dynamics manifests itself in memory effects �23�,
which are revealed by the non-Markovian time dependence
in the collision integral. In general, the time convolution oc-
curs in both time domains, but it is assumed that the most
prominent effect primarily happens on the microscopic time
scale. For the calculation of transport coefficients, only the
special one-time distribution function f��k ,� �T , t=0� is
needed. However, its determination from Eq. �20� is still
confronted with the double-time nature of the problem that
resides in the right-hand-side �RHS� of this equation. A so-
lution of this reconstruction problem is offered by the gener-
alized Kadanoff-Baym ansatz �24,25�. But in this approxima-
tion, the two-time dependence is notoriously discarded. The
physics that emerges beyond this approximation is captured
by maintaining the general double-time quantum-kinetic Eq.
�20�.

Let us add a general remark concerning the interpretation
of the double-time kinetics. As shown in the next subsection,
the distribution function f��k ,� �T , t=0� fully determines the
temporal order of macroscopic transport phenomena. How-
ever, this quantity is only given by a strict reference to its
two-time extension. Moreover, the self-energy is generally
constructed from many-particle GFs that depend on several
time variables. Therefore, on a fundamental level, the change
of events cannot be brought into a sequence that can be
mapped on a one-parameter flow of time extending from the
past to the future. In quantum statistics, the changeability of
things seems to be a more general concept than the temporal
evolution based on an absolute time in the sense of classical
physics.

Most essential for the construction of a unified kinetic
theory that covers both the carrier drift and diffusion is the
presence of the second wave vector � in Eq. �20�, which,
generally speaking, refers to a spatial inhomogeneity. Similar

to the role played by the time variable t, the full � depen-
dence does not enter the expressions for the transport quan-
tities, but only � gradients at �=0 �for instance, the basic
quantity for quantum diffusion �4� is given by the vector
��f��k ,� �T ,0� ��=0�. Besides the doubling of spatial and
time variables, we mention an additional peculiarity of
quantum-kinetic Eq. �20�, namely, the shift of momentum
variables in Eqs. �24� and �25� by the vector potential of the
electric field. This explicit field dependence of scattering
gives rise to intracollisional field effects and nonlinear trans-
port.

At the end of this subsection, we will show that the gen-
eral two-time quantum-kinetic Eq. �20� reproduces a number
of established results that appear when further assumptions
are adopted. The most familiar form of kinetic equations is
obtained when the macroscopic time scale is inert to micro-
scopic fluctuations �T+�t→T in f� and U��. In this case,
we obtain

� �

�T
+

i

�
	�	k +

�

2

 − �	k −

�

2




−
�A�T,t�

�t
�k +

�A�T,t�
�T

��� f��k,��T,t�

= �
k1

�
−





dt1f��k1,��T,t − t1�W�k1,k,��T,t,t1� , �26�

where the scattering probability W is easily read off from
Eqs. �20�–�24�. For a better readability, the result is presented
in the Appendix. This kinetic equation still preserves the
double-time nature of GFs, but restricts to locality in time
with respect to the macroscopic time scale T. From Eq. �26�,
an important sum rule for �=0 follows. Calculating the sum
over k, we immediately obtain from the left-hand side of Eq.
�26� the equality

�
k

W�k1,k,� = 0�T,t,t1� = 0, �27�
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which is confirmed from Eqs. �20�–�24� by taking into ac-
count the symmetry relation

U�
��k,k�,��T,t� = U�

��k�,k,− ��T,− t� . �28�

The sum rule in Eq. �27� �and its multiband extension� plays
an important role in the kinetic transport theory.

The kinetic description further simplifies, when the
double-time character of the problem is completely ne-
glected: f��T , t�→ f��T�. Specializing to electron-phonon in-
teraction of the Fröhlich type and restricting to �=0, we
obtain for the scattering probability

W�k�,k�T� = 2 Re �
q,�
�

0




dt1e−st1D�
��q�t1�f��k� + q�T�

��P	k� +
q

2
,k −

q

2
,q�T,t1


− P	k� +
q

2
,k +

q

2
,q�T,t1
� , �29�

with the following field-dependent phase factor

P�k�,k,q�T,t1�

= exp
 i

�
�

0

t1

d
��	k� +
q

2
+ �

T−t1

T−t1+


d
�F�
��

− �	k� −

q

2
+ �

T−t1

T−t1+


d
�F�
��
���k�,k+�
T
T−t1d
F�
�.

�30�

Here, s denotes the Laplace variable of the rudimental mi-
croscopic time variation that regularizes the t1 integral, and
F�
� is an abbreviation for eE�
� /�. From Eq. �29�, the sum
rule in Eq. �27� is again easily verified. Finally, we obtain the
kinetic equation for the transport under the influence of a
constant electric field �E�t�→E� in a form that was pub-
lished many years ago �26� �cf., also Ref. �2��.

C. Current density

An expression for the current density is naturally derived
from the general conservation law for the particle number. To
illustrate the procedure, let us treat the kinetic equation for
particles with kinetic energy ��k� that are scattered via the
Coulomb interaction. The conservation law is easily ex-
pressed by nonequilibrium GFs �cf., for instance Ref. �27��,
and a straightforward calculation leads to the following re-
sult expressed in the momentum representation:

j�t� = en�
k

1

�
�k��k�f��k,� = 0�t,0� . �31�

Scattering does not explicitly enter this equation, in which n
denotes the carrier density. It is sufficient to calculate the
distribution function f��k �T , t=0�= f��k ,�=0 �T , t=0�,
which does not depend on the momentum �. How general is
this conclusion? Obviously, hopping transport is not captured
by Eq. �31� as localized states have no dispersion. In fact,
Eq. �31� is a special result applicable to the well-studied

models that can be integrated into a more general definition
of the current density, which covers more complex systems
with higher-order scattering. According to this definition, the
current density is expressed by the time derivative of the
dipole operator j�t�= �1 /V�dD /dt. This physically appealing
approach is indeed more general than Eq. �31�. In the mo-
mentum representation, we have

j�T� = ien�
k

��

�

�T
f��k,��T,t = 0���=0, �32�

which is converted into another equivalent form by taking
into account the kinetic Eq. �26�,

j�T� = en�
k

vef f�k�f��k�T,0� , �33�

with an effective velocity given by

vef f�k� = v�k� + i�
−





dt1
f��k�T,− t1�
f��k�T,0� �

k�

W1�k,k��T,t1� .

�34�

The drift velocity is denoted by v�k�=�k��k� /� and
the vector W1�k ,k� �T , t1� is an abbreviation for
��W�k ,k� ,� �T , t1� ��=0. Whenever the sum rule for this vec-
tor field �kW1�k ,k� �T , t1�=0 is satisfied, Eqs. �33� and �34�
reproduce the conventional result given in Eq. �31�. This
fortunate situation happens, for instance, for the Fröhlich
electron-phonon coupling and the Coulomb interaction. In
general, Eq. �31� is applicable, when the interaction Hamil-
tonian commutes with the dipole operator. However, this
condition is not always fulfilled. For instance, for the trans-
port of small polarons, the W1 contribution in Eq. �34� is
most essential so that only Eq. �32� �or the equivalent Eqs.
�33� and �34�� provides meaningful results. The definition of
the current density in Eq. �32� includes the � gradient of the
full distribution function f��k ,� �T , t=0� at �=0. This � de-
pendence reappears in Eq. �34� via the vector W1. Conse-
quently, it is not sufficient to deal with a distribution function
that depends only on one quasimomentum k. In fact, the
general basis for treating carrier transport is provided by the
kinetic Eq. �20�, from which the � dependence can be deter-
mined.

In summary, we conclude that Eqs. �33� and �34� put our
former semiphenomenological approach �4� on a firm micro-
scopic basis and lead to a general expression for the current
density that takes into account the two-time character of
quantum transport.

To illustrate the additional ability of the approach to si-
multaneously cover transport via localized and extended
states, let us, for simplicity, treat the steady-state transport in
a one-time approximation under the influence of an applied
electric field Edc. The momentum representation in Eqs. �33�
and �34� is adapted to the description of low-field transport,
when the states remain essentially extended. With increasing
field strength due to Wannier-Stark �WS� localization, nega-
tive differential conductivity can appear. To describe this
transport regime in a more appropriate fashion, the expres-
sion for the current density in Eqs. �33� and �34� is rewritten
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in an exact manner �4�. Up to intracollisional field effects,
the result for the current density along the direction of the
electric field

j = −
n

Edc
�
k,k�

���k� − ��k���f��k��W�k�,k� �35�

is compatible with negative differential conductivity j
�1 /Edc. Moreover, Eq. �35� proves that there is no current in
the absence of any inelastic scattering. A strong electric field
generates Bloch oscillations that localize carriers so that
there is no current as long as only elastic scattering is
present. By switching to the Houston representation, one ar-
rives at another equivalent expression �4�

j = en �
k�,k��

�
l=−





�ld�f��k�� �W0l
0l�k�� ,k�� , �36�

which clearly reveals the hopping character of the transport.
d denotes the periodicity of the lattice �ld is the hopping
length� and k� is the momentum perpendicular to the field.
The l-sum extends over the whole WS ladder. The potential
of the approach is illustrated by its ability to unify the band
and hopping picture by an exact reformulation that mediates
between them.

D. Diffusion coefficient

What favors our approach to quantum diffusion is its
close relationship to the carrier drift treated in the previous
subsection. Let us follow the same line of reasoning by first
focusing on the regular part of the diffusion coefficient �4�
defined by

D0�t� =
1

2
� d3rr2 �

�t
��†�x���x�� , �37�

with x= �r , t� �the spin variable is not indicated�. The equiva-
lent expression in the momentum representation has a form
that is similar to Eq. �32�,

D0�T� =
i

2�
k

��
2 �

�T
G��k,��T,t = 0���=0. �38�

Again, we mention that both wave vectors k and � appear in
this definition. Therefore, the basic kinetic equation that de-
scribes quantum diffusion has to be formulated for the GF
f��k ,� �T , t�, which comprises not only k but also �. Intro-
ducing the vector field

g�k�T,t� = if1
��k�T,t� � i��f��k,��T,t���=0, �39�

we obtain the equivalent form

D0�T� = �
k

v�k� · g�k�T,0�

+ i�
−





dt1g�k�T,− t1� · �
k�

W1�k,k��T,t1��
−

1

2�
k
�

−





dt1f��k�T,− t1��
k�

W2�k,k��T,t1� ,

�40�

in which W2 denotes the second derivative ��
2W ��=0. The

explicit scattering contributions in Eq. �40� indicated by W1
and W2 vanish for widespread models such as the Fröhlich
electron-phonon coupling and the Coulomb interaction. In
contrast to the current density, which is governed by the
distribution function f�, diffusion phenomena are described
by means of the vector g, which satisfies its own kinetic
equation that is easily obtained from Eqs. �26� and �39�. This
procedure unambiguously determines the contribution D0�T�,
in which, however, the irregular part is still missing. To com-
plete the calculation of the total diffusion coefficient, the
vector g in Eq. �40� is replaced by a new quantity � that
solves the same kinetic equation as g, but with a modified
inhomogeneity that is compatible with the constraint

�
k

��k�T,t� = 0. �41�

Accordingly, the basic quantity �, which determines quan-
tum diffusion via the diffusion coefficient D�T�, satisfies the
quantum-kinetic equation

� �

�T
−

�A�T,t�
�t

�k���k�T,t�

= �
k1

�
−





dt1��k1�T,t − t1�W�k1,k�T,t,t1� + v�k�f��k�T,t�

− �
k1

v�k1�f��k1�T,t� + i�
k1

�
−





dt1f��k1�T,t − t1�

��W1�k1,k�T,t,t1� − �
k2

W1�k1,k2�T,t,t1�� , �42�

which is clearly in line with the sum rule in Eq. �41�.
To familiarize oneself with the derivation of basic results

concerning quantum diffusion, let us work with the Carson-
Heaviside transformation of the kinetic equation with respect
to the time variable T �f�s�=s�0


dT exp�−sT�f�T�� in the
treatment of a constant electric field. From the kinetic equa-
tion for g and the sum rule in Eq. �41�, we obtain

g�k�s,t� = ��k�s,t� +
1

s
B�s,t�f��k�s,t� , �43�

in which the following quantities appear:

B�s,t� = �
k

vef f�k�s,t�f��k�s,t� , �44�
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vef f�k�s,t� = v�k� + i�
−





dt1
f��k�s,t − t1�

f��k�s,t� �
k�

W1�k,k��t,t1� .

�45�

Replacing the vector g in Eq. �40� by the new vector field �
according to Eq. �43�, we obtain

D0�s� = �
k

v�k� · ��k�s,0� + i�

−





dt1��k�s,− t1�

��
k�

W1�k,k��0,t1��
−

1

2�
k
�

−





dt1f��k�s,− t1��
k�

W2�k,k��0,t1�

+
1

s 
�k
vef f�k�s,0�f��k�s,0��2

. �46�

The last term on the RHS of this equation is nothing but the
irregular contribution, which is subtracted out according to
the proper definition of the diffusion coefficient �4�. Conse-
quently, only the first three terms on the RHS of Eq. �46�
survive and define the total diffusion coefficient D�s�. These
results provide a rigorous theory of quantum diffusion, in
which the double-time character is accounted for by a vector
field � that is the solution of the specific quantum-kinetic Eq.
�42�. At this stage, the theories of quantum transport and
quantum diffusion have reached the same level of sophisti-
cation.

The above theory of quantum diffusion is formulated in
the momentum representation, which is adapted to extended
states. By exact manipulations, other equations for the diffu-
sion coefficient are obtained that are more appropriate in the
WS regime, when carriers execute Bloch oscillations. Within
perturbation theory with respect to scattering, for which the
Hamiltonian commutes with the dipole operator, we obtain
for the steady state

Dzz = �
k

vz�k���k� =
1

2�eEdc�2 �
k,k�

���kz�

− ��kz���
2f��k��W�k�,k� , �47�

which has the same structure as Eq. �35� derived in the pre-
vious subsection. In the targeted regime of field-induced lo-
calization, there is no diffusion without inelastic scattering.

A more general expression for the diffusion coefficient
applicable to the WS regime is derived within the outlined
approach by exploiting the WS representation �4�. The final
result

D =
1

2 �
k�,k��

�
l=−





�ld�2f��k�� �W̃0,l
0,l�k�� ,k�� , �48�

with W̃ being an effective scattering probability, allows an
interpretation within the hopping picture that relates carrier
diffusion to the square of the hopping length �ld�2, the lateral

carrier distribution function f��k��, and the scattering prob-
ability in the site representation.

III. EXAMPLE: PHONONLESS TRANSPORT

Based on the nonequilibrium GF technique, a unified ap-
proach has been developed that covers both quantum trans-
port and quantum diffusion and that is likewise applicable to
transport via extended and localized states. A salient feature
of this theory is the double-time character of quantum trans-
port. A natural question arises: What is the significance of
this double-time dependence? An answer is gained only be-
yond the generalized Kadanoff-Baym ansatz. Generally
speaking, it is difficult to draw an overall conclusion regard-
ing the physical potential of the two-time quantum kinetics.
Summarizing the bulk of conventional transport studies, it is
tempting to assume that the double-time approach resolves
only minor corrections that are more or less unimportant.
That this assessment cannot be the whole truth will be illus-
trated by a macroscopic transport phenomenon that has no
analogy in the conventional approach because of its strict
double-time character. To be more specific, a steady-state
current will be identified in the WS regime that is driven by
dc and ac electric fields without the participation of any in-
elastic scattering. This phononless current appears only be-
yond the Kadanoff-Baym ansatz and is due to the double-
time dependence of the GFs.

A. Solution of the kinetic equation

The double-time dependence is studied by a model calcu-
lation that is simple enough to allow for an analytical solu-
tion. Some results obtained by a �-independent approach
have already been published previously �20�. The model re-
fers to a one-dimensional semiconductor superlattice, which
is biased by dc and ac electric fields

E�t� = Edc + Eac cos��act� , �49�

that are sufficiently strong so that WS localization occurs
��dc
�1 and �ac
�1, with 
 being an effective scattering
time and �ac,dc=eEac,dcd /��. Bloch oscillations that appear
in this transport regime are accounted for by a discrete Fou-
rier transformation of the GFs

f��k�T,t� = �
l=−





f l
��T,t�eilkd. �50�

To calculate the Fourier components of the double-time dis-
tribution function f l

��T , t�, we treat scattering on polar-
optical phonons with energy ��0 and neglect the smooth q
dependence of the coupling �D�

��q � t�→D��t��. Within the
WS regime, only the l=0 component of the GFs f l

� enter the
collision integral so that Eq. �20� takes the form


 �

�T
+ il�dc + il�ac cos��acT�cos	�act

2

� f l

��T,t�

= �
k,q

e−ilkd�
0




dt1
�D��t − t1��t,t1
�k,q�

− D��t1��t,t1
� �k,q��f0

�	T −
t1

2
,t − t1
 f0

�	T +
t − t1

2
,t1
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− �D��− t1��t1,0
� �k,q� − D��t + t1��t1,0�k,q��

�f0
�	T −

t1

2
,t + t1
 f0

�	T −
t + t1

2
,− t1
� , �51�

with the following field-dependent phase factor:

�t,t1
�k,q� = exp
 i

�
�

t1

t

d

��k + q + A	
 + T −
t

2
− t1


− A	T −
t

2

� − ��k + A	
 + T −

t

2
− t1


− A	T −
t

2

��� . �52�

The double-time character of the approach is still present in
Eq. �51�. The non-Markovian behavior extends both over the
macroscopic �T� and microscopic �t� time scale. The main
source of the T dependence is the ac electric field that ap-
pears directly on the left-hand side of Eq. �51�. In most ap-
proaches, the double-time dependence is neglected by omit-
ting the t dependence in f l

��T , t�, which results from
microscopic scattering processes described by the RHS of
Eq. �51�. However, both different lines of time evolution are
generally coupled to each other by a convolution integral, the
field-dependent kernel of which determines the role played
by the kinetic history. An analytic solution of Eq. �51� is
found for weakly coupled superlattices with the dispersion
relation

��k� =
�

2
�1 − cos�kd�� . �53�

Considering the periodicity with respect to the T dependence

f l
��T + 2�/�ac,t� = f l

��T,t�, f l
��T,t� = �

m=−





f l
��m,t�eim�acT,

�54�

the main Fourier component f0
��m=0, t� of the WS regime

��ac�1� is calculated from the homogeneous integral equa-
tion

�
−





dt1�D��t1�f0
��0,t1�f0

��0,t − t1�

− D��t1�f0
��0,t1�f0

��0,t − t1�� = 0. �55�

This equation, derived under the condition of narrow mini-
bands � /��ac,dc�1, determines the time dependence of the
distribution function that appears beyond the generalized
Kadanoff-Baym ansatz and that was ignored in most previ-
ous approaches. A solution is searched for in Fourier space
by adopting the ansatz

f0
��0,�� = f0

��0,��f��� , �56�

and by considering the normalization condition

�
−



 d�

2�
f0

��0,��f��� = 1. �57�

Inserting the expressions

D���� =
�0�

sinh��/2�
���� + �0�e��/2 + ��� − �0�e��/2�

�58�

for the electron-phonon coupling �with �0 being the electron-
phonon coupling constant and �=��0 /kBT encloses the fre-
quency �0 of polar-optical phonons and the temperature T�,
it is easily verified that an exponential function in � solves
the Fourier-transformed version of Eq. �55�. To determine
the prefactor from Eq. �57�, the function f0

��0,�� is needed.
In our previous studies �19,20�, we obtained for weakly
coupled superlattices ��→0�

f0
��0,�� = � 1

2�U
�4U − �2, ��� � 2�U

0, otherwise,
� �59�

with U denoting the coupling strength of white-noise elastic
scattering on impurities. The most remarkable features of
this density-of-states function are its nonanalytic character
with respect to the coupling U and the absence of tails at the
band edges. From Eqs. �57� and �59�, we obtain the final
result for the distribution function

f��� =
�u

I1��u�
exp���/�0�, �u = 2�

�U

�0
, �60�

which applies whenever carriers thermalize more quickly in
a given quantum well than they need to escape by tunneling.
I1 denotes the modified Bessel function. With increasing
miniband width �, this quasiuniversal result is no longer
adequate and the details of the electron-phonon interaction,
as the frequency �0 of polar-optical phonons and the cou-
pling strengths of different vibrational branches, enter the
expression for the distribution function. In this case, only a
numerical solution of Eq. �55� is available that accounts for a
non-Markovian time evolution.

B. Current density and diffusion coefficient

Despite previous results concerning the hopping transport
in the WS regime, let us look for a phononless transport
mechanism by exploiting the more general two-time ap-
proach. The amazing result will be that there is in fact a
phononless transport when the double-time dependence of
the GFs is properly accounted for.

Let us first focus on the constant steady-state current that
is driven by external dc and ac electric fields under the ex-
clusive influence of short-range elastic scattering on impuri-
ties. The steady-state current density,
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j = en�
k

1

�

d��k�
dk

�ac

2�
�

0

2�/�ac

dTf��k�T,t = 0�

= en
�d

2�

1

2i
�f l=−1

� �m = 0,t = 0� − f l=1
� �m = 0,t = 0�� ,

�61�

is expressed by the components f l=�1
� �0,0� of the distribution

function that according to Eq. �20� obey the kinetic equation


 �

�T
+ il�dc + il�ac cos��acT�� f l

��T,0�

= U�
k,q

e−ilkd�
0




dt1��0t1
�k,q� − �0t1

� �k,q��

�
 f0
�	T −

t1

2
,− t1
 f0

�	T −
t1

2
,t1


− f0
�	T −

t1

2
,t1
 f0

�	T −
t1

2
,− t1
� � Pl�T� . �62�

It is a consequence of this equation that no current can flow
through the superlattice when the variations in the micro-
scopic time scale disappear: f0

��T , t�→ f0
��T�. This fact con-

firms the general conclusion mentioned in previous sections
that within the one-time picture only inelastic scattering en-
ables carrier transport in the WS regime. However, the
double-time nature of the kinetic evolution opens up a chan-
nel, which enables phononless transport of Bloch oscillating
carriers. This specific transport mechanism appears only be-
yond the generalized Kadanoff-Baym ansatz.

The formal solution of Eq. �62� has the form

f l
��0,0� = �

m=−




Pl,mSl,m

il�dc
,

Sl,m = �
k=−





Jk−m	l
�ac

�ac

Jk	l

�ac

�ac

 l�dc

l�dc + k�ac
, �63�

where Pl,m are the Fourier components of Pl�T�, the calcula-
tion of which follows the same steps as outlined in the pre-
vious section. A straightforward procedure applicable to
weakly coupled superlattices ��→0� leads to the final result
for the current density in steady state

j = envd,

vd =
�U�2d

8�2

J�����J−�����
�ac

2 sin���� �
k

Jk
2����
k + �

� �
−



 d�

2�
f0

��0,��f0
��0,� + �ac�k + ���

��f�� + �ac�k + ��� − f���� , �64�

with the abbreviations �=�dc /�ac and ��=�ac /�ac. This
result again confirms that there is no phononless current
when the trivial solution f���=1 is accepted, which is sug-
gested by the Kadanoff-Baym ansatz within a strict one-time

approach. The specific constant current contribution in Eq.
�64� disappears also when the ac field is switched off ��ac
=0� because the combined density of states vanishes for
2�dc��U. Consequently, the assertion that there is no cur-
rent in the hopping regime without any inelastic scattering
remains valid also in the two-time approach when only a
constant electric field is applied.

The calculated drift velocity is shown in Fig. 1 as a func-
tion of the dc electric field. Photon replicas centered around
�dc=k�ac are separated by gaps that result from the edge
structure of the combined density of states. As a drawback of
the simplified treatment of scattering, sharp singularities ap-
pear in the current-voltage characteristics at �dc=k�ac �indi-
cated by arrows, singularities at odd integer values of k are
hidden by the gaps�. A damping of these resonances is easily
accounted for in more refined and realistic approaches,
which unlikely alter the qualitative physics discussed in this
section.

The diffusion coefficient is obtained by a similar calcula-
tion. According to Eq. �46�, D is expressed by the function �

D = �
k

1

�

d��k�
dk

�ac

2�
�

0

2�/�ac

dT��k�T,t = 0� , �65�

which satisfies the following quantum-kinetic equation:

� �

�T
+ il�dc + il�ac cos��acT�cos	�act

2

��l�T,t�

= i
�d

4�
�f l+1

� �T,t� − f l−1
� �T,t� − �f1

��T,t� − f−1
� �T,t���

+
d

2�
�

0

2�/d

dke−ilkd�
k1

�
−





dt1��k1�T,t − t1�

�W�k1,k�T,t,t1� � Pl�T� . �66�
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FIG. 1. The normalized drift velocity vd calculated from Eq.
�64� as a function of �dc
ef f for �u=3, �ac
ef f =2, �ac
ef f =1, and
U
ef f

2 =0.05. The quantity vd0 is given by �2
ef fd / �35��2�, and 
ef f

denotes an effective scattering time, which does not enter the final
result in Eq. �64�, but is used to define the frequency scale.
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This equation differs from Eq. �62� for f l
��T , t� by the ap-

pearance of a inhomogeneous term. The formal solution has
the form of Eq. �63�. Restricting the calculation of Pl,m�t
=0� to its lowest-order contribution, we obtain the final result
for the diffusion coefficient applicable to the WS regime,

D =
�

�
�

k=−




Jk

2��ac/�ac�
�dc + k�ac

vdd

2
, �67�

which can be formally interpreted in terms of a relationship
suggested for the current density more than 40 years ago
�28�,

D��dc,�ac� = �
k=−





Jk
2	�ac

�ac

D��dc + k�ac� . �68�

Accordingly, the diffusion coefficient under the combined
influence of ac and dc electric fields is easily obtained from
the quantity

D��dc� =
vdd

2
coth	��dc

�

 . �69�

However, this interpretation has only a formal character and
heavily depends on the approximations made in the deriva-
tion. The main conclusion is the same as for the current
density, namely that this kind of high-field quantum diffusion
appears only beyond the Kadanoff-Baym ansatz by a strict
treatment of the double-time dependence. The paradigmatic
aspect of this example consists in the identification of a spe-
cific quantum-transport mechanism that is expressible nei-
ther by the one-time approximation nor by a sophisticated
effective one-time approach based on the generalized
Kadanoff-Baym ansatz. This fact serves as a principle self-
justification of the developed double-time theory having its
unique field of applicability. Drawing a strict borderline
around this area seems to be a difficult task that warrants
further study.

The relatively crude approximation of a one-dimensional
superlattice has been adopted to derive analytical results for
the predicted phononless quantum transport and quantum
diffusion. The effect itself should be sufficiently robust to
appear both in more realistic calculations as well as in ex-
perimental studies. The quantization of the in-plane carrier
motion can be achieved by a strong perpendicular magnetic
field, whereas the broad exclusion of inelastic scattering on
phonons requires low temperatures. By applying quantizing
dc and ac electric fields along the superlattice axis, the
double-time quantum effect could be experimentally demon-
strated by measuring the predicted phononless current con-
tribution in weakly coupled superlattices.

IV. SUMMARY

Starting from a semiphenomenological kinetic approach,
a unified one-electron theory of quantum transport and quan-
tum diffusion was developed in previous works �4,5� that
applies both to the band picture applicable to extended states

at low electric fields and to the hopping picture for transport
under quantizing electric field. Both approaches are com-
pletely equivalent and can be mutually derived from each
other. For the current density, this equivalence was already
demonstrated in Ref. �26�. Furthermore, a comparative treat-
ment of carrier drift and diffusion �4,5� revealed the particu-
lar nature of quantum diffusion. Whereas the drift velocity
goes back to the nonequilibrium distribution function, the
diffusion coefficient turns out to be constructed from a de-
rived quantity that does not solve the Boltzmann equation or
its quantum-kinetic extension. Most disturbing was the ne-
cessity to deal with the total GF f��k ,� �T , t� that depends on
two wave vectors k and �. The � dependence seems to be
dispensable for the description of transport in homogeneous
systems, which are translational invariant. However, to probe
carrier diffusion, at least an initial inhomogeneity of the car-
rier ensemble is necessary so that the � dependence must be
preserved in the unified description of drift and diffusion.

In this paper, we put the former semiphenomenological
approach on a firm microscopic basis by applying nonequi-
librium GF techniques. The unified theory of quantum trans-
port and quantum diffusion has been constructed from the
quantum-kinetic equation for the full distribution function
f��k ,� �T , t�. The most salient feature of this extension are
the appearance of the double-time nature of quantum kinetics
and the related non-Markovian evolution in two-time chan-
nels, namely, the microscopic and macroscopic time regimes.
On the fundamental microscopic level, quantum evolution
seems to be more general than the classical schema that dic-
tates a strictly one-dimensional progression from the past to
the future. An interesting question concerns the relevance of
the two-time quantum kinetics, namely, whether it is possible
that new physics appears in this domain. A preliminary an-
swer provides the treatment of a one-dimensional superlat-
tice subject to dc and ac electric fields. The existence of
phononless carrier transport and diffusion is demonstrated,
the origin of which is the two-time dependence of the GFs.
This distinct steady-state transport mechanism appears only
beyond the generalized Kadanoff-Baym ansatz. Its experi-
mental verification seems to be feasible by studying
quantum-box superlattices.

The rigorous two-time quantum-kinetic approach pre-
sented in this paper is likewise applicable to quantum trans-
port and quantum diffusion and covers both transport via
extended states and hopping between localized carriers.
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APPENDIX: SCATTERING PROBABILITY IN EQ. (26)

Assuming strict locality in time T, we obtain from the
kinetic Eq. �20� and the definitions in Eqs. �22�–�24�,
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W�k1,k,��T,t,t1� = �
q,�

��t1�f�	k1 − q − ��

2
�T,t1
Pt1

�k1,q,��T,t�

���k1,k+q+A�T+t/2−t1�−A�T−t/2�U�
��k1 − q,k1,��T,t − t1� − �k1,k+A�T+t/2−t1�−A�T−t/2�U�
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− ��− t1�f�	k1 − q + ��

2
�T,t1
Qt1

�k1,q,��T,t���k1,k+A�T−t/2+t1�−A�T−t/2�U�
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�

2
,k1 − q +

�

2
,0�T,t1


− �k1,k+q+A�T−t/2+t1�−A�T−t/2�U�
��k1 − q,k1,��T,t − t1��� . �A1�

This equation completes the two-time quantum kinetic Eq. �26�.
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