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All-or-none proteinlike folding transition of a flexible homopolymer chain
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Here we report a first-order all-or-none transition from an expanded coil to a compact crystallite for a
flexible polymer chain. Wang-Landau sampling is used to construct the complete density of states for square-
well chains up to length 256. Analysis within both the microcanonical and canonical ensembles shows a direct
freezing transition for finite length chains with sufficiently short-range interactions. This type of transition is a
distinctive feature of “one-step” protein folding and our findings demonstrate that a simple homopolymer

model can exhibit protein-folding thermodynamics.
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Simple model systems have long played a key role in
statistical physics in elucidating complex physical phenom-
ena (consider the Ising model as a rich example); however,
this standard reductionist approach seems to be severely lim-
ited in the realm of biological systems and processes. The
core of this difficulty is the highly specialized and nonequi-
librium nature of the biological world. However, some bio-
logical phenomena do seem amenable to analysis via simpli-
fied or “reduced” models. The problem of protein folding is
one of these [1-4]. This physical process in which a protein
chain undergoes a transition from an expanded disordered
state to a compact ordered state is ubiquitous across the di-
verse range of biological systems and can in many cases be
considered an equilibrium process [5,6].

In seeking a simple framework from which to view pro-
tein folding it is common to draw an analogy with the col-
lapse transition observed in many simple homopolymers
[6-8]. However, while these two transitions are superficially
similar, such a comparison does not capture the essence of
protein folding, which is a symmetry-breaking transition re-
sulting in a compact ordered rigid final state [6]. In contrast,
polymer collapse is a continuous transition resulting in a
compact disordered liquidlike state [7] and thus resembles
the formation of a molten globule that is observed for some
proteins [6]. Such proteins undergo a multistep folding pro-
cess, and the final transition from molten globule to native
state can be compared to the freezing transition of a col-
lapsed homopolymer chain [9-11]. Thus a flexible ho-
mopolymer chain provides a simple model for studying mul-
tistep protein folding [12].

However, a large number of small proteins fold in a
single-step process with a very distinctive all-or-none char-
acter in which an unfolded protein chain undergoes a first-
order transition directly to its native (i.e., ground) state con-
formation [13]. Although such a first-order transition is
found in a number of simple lattice models (and this feature
has made such minimalist models popular in the study of
protein folding) [3,4,14,15], it has previously been argued
that an “all-or-none” folding transition is not possible in a
flexible continuum chain model [6,14,15]. In this Rapid
Communication we report such a transition for an
interaction-site polymer chain of finite length with suffi-
ciently short-range interactions. While a direct freezing tran-
sition is known to exist in colloids with short-range interac-
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tions [16], it is not obvious that such a transition should
occur in a simple polymer chain. Chain connectivity greatly
reduces the entropy of any “expanded phase” thereby reduc-
ing the entropic driving force needed to produce a discon-
tinuous expanded-to-compact transition [6].

Here we consider a simple off-lattice homopolymer chain
comprised of N square-well-sphere monomers connected by
“universal joints” of fixed length L. The square-well (SW)
potential is given by

o 0<r;<o
u(ry)=1-¢& o<r;<\o (1)
0 rij> Ao,
where r;; is the distance between nonbonded monomers i and
j and o and Ao are the hard-core and square-well diameters,
respectively. We use the well depth € to define a dimension-
less temperature T"=kzT/ e, where kg is the Boltzmann con-
stant, and we take the bond length to be L=0. Since we
analyze a single chain, the above potential is to be consid-
ered an effective potential that includes the effect of solvent
(although here we do not consider any temperature depen-
dence of this potential). The square-well chain has a discrete
energy spectrum E,=—ne, where n is the number of square-
well overlaps in the chain configuration.

To study the phase behavior of this single chain we use
the Wang-Landau (WL) algorithm [17] to construct the den-
sity of states g(E,), from which all thermodynamic proper-
ties can be obtained. In the WL approach one generates a
sequence of chain configurations via a set of Monte Carlo
(MC) moves; however, rather than accepting new configura-
tions with the standard Metropolis criteria, one uses

Pacc(a - b) = min[lvwbg(Ea)/Wag(Eb)], (2)

where w, and w,, are weight factors insuring detailed balance
of the particular underlying MC move. If the density-of-
states function g(E,) were known, this procedure would
yield a random walk through all accessible energy states of
the system. In the WL method g(E,) is constructed in an
iterative fashion where after each MC move the g(E,,) for the
current configuration is updated by a modification factor
fu>1 via g(E,)— f,g(E,) and a state-visitation histogram
H(E,) is simultaneously updated via H(E,) — H(E,)+1. One
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periodically checks this histogram for “flatness” (i.e., all en-
tries are within p percent of the average value), indicating an
approximate equal visitation to all energy states. When flat-
ness is achieved, the modification factor is reduced to f,,,,
=v\f,» H(E,) is reset to zero for all states, and the (m+1)st
level of the iteration is begun. Due to bottlenecks in configu-
ration space the WL method occasionally leads to a highly
asymmetric H(E,) which would require a prohibitively large
amount of time to relax. To overcome this problem, we also
periodically check for uniform growth of H(E,) (i.e., the
increase in all entries is within p percent of the average in-
crease since the last check) and use this as an alternate con-
vergence criterion for a WL level. In the present work we
assume an initial g(E,)=1 for all states, take
fo=e' and p=20, check for flatness and uniform growth ev-
ery 10* and 5X 107 MC cycles, respectively, and continue
the iterative process until m=26 (f,,—1=107%).

A single MC cycle consists of, on average, the following
set of randomly selected move attempts: N single-bead
crankshaft moves, two reptation moves, one pivot move, and
N end-bridging moves [18]. For this latter move, which is
found to be essential for sampling compact low-energy states
for longer chains, we attempt to connect end-site 1 (N) to a
nearby interior site i via deletion and reinsertion of site
i—1 (i+1). The weight factor for this bond-bridging move is
w,=b,J,, where b, is the number of possible bridging sites i
present in state a and J,=1/r;; (1/r;y) is a Jacobian factor
arising from the fixed bond-length restriction [18]. Weight
factors for the other MC moves are all unity. We have veri-
fied the WL algorithm with this MC move set by direct com-
parison with exact g(E,) results for short (N=6) SW chains
for a range of \ [19] and by comparison with the Metropolis
MC results of Zhou et al. [10] for N=<64 SW chains with
A=1.5. For longer chains we use overlapping energy win-
dows [20], and in all cases we carry out a preliminary WL
sampling without a low-energy cutoff to estimate the ground-
state energy and determine a lower E, bound to ensure com-
putational feasibility. For longer chains this lower bound is
typically within a few percent of the ground-state energy. We
have carried out a minimum of three independent WL runs
for all cases and find g(E,) to be highly reproducible except
in a small energy range where crystal nucleation occurs. This
slight difference has minimal effect on thermodynamic prop-
erties and resulting transition temperatures agree to within
6T =0.003.

In Fig. 1 we show density-of-states results, plotted as the
microcanonical entropy S(E)/kz=In g(E), for SW chains of
length N=256 with square-well diameters A=1.05, 1.10, and
1.15. The approximate ground-state energies (and minimum
energy used in the WL sampling) are —E/e=968 (950), 975
(956), 991 (965), respectively. Note that g(E) for A=1.05
covers approximately 840 orders of magnitude. The curva-
ture of the microcanonical entropy function can be used to
directly determine the phase behavior of a finite-size system
[21,22]. The signature of a discontinuous (first order) phase
transition is a “convex intruder” in S(E) (which produces a
Maxwell-type “loop” in the microcanonical temperature
T(E)=(3S(E)/ JE)~") while a continuous (second-order) tran-
sition is signaled by the presence of an isolated inflection
point in T(E) (which becomes a saddle point in the thermo-
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FIG. 1. (Color online) Derivative of the microcanonical entropy
dS(E)/dE vs energy E for a SW chain of length N=256 and SW
diameter Ao as indicated. The Maxwell-type “loops” indicate dis-
continuous phase transitions and the dashed tie-lines, obtained via
an equal areas construction, give the transition temperatures and
energies of the coexisting states. The filled circles locate the posi-
tions of isolated inflection points in T(E) which signal the presence
of a continuous phase transition. For A=1.05 we show results from
the two WL runs with the largest disparity. Here the transition tem-
peratures differ by AT*=0.003. Inset: Microcanonical entropy S(E)
vs energy E.

dynamic limit). Features of both types of transitions are seen
in Fig. 1 for all three well diameters. However, for A=1.05
the continuous phase transition is located within the coexist-
ence region of the first-order transition and therefore will not
occur (except under metastable conditions) [16]. Thus the
N=256, A=1.05 SW chain undergoes a direct freezing tran-
sition without an initial collapse transition. A similar result is
found for the AN=1.05 chain with N=128, whereas for
N=064 two distinct transitions are found.

To further characterize this direct freezing transition we
show in Fig. 2 the average chain size, given by the mean-
square radius of gyration (R;)E=$E§V< j<rizj>E, VErsus energy
E. For the short-range interaction potential (A=1.05), the co-
existence bounds of the first-order freezing transition are
seen to connect a high-energy state populated by expanded
chain conformations with a low-energy state of very compact
chains (which visual analysis shows to be crystallites with
hexagonal order). In contrast, for the longer-range interaction
potentials the coexisting high- and low-energy states at freez-
ing are both comprised of compact chain conformations
(with liquidlike and crystallite structure, respectively).

To make a more direct link with experimental results we
also analyze these single chain phase transitions within the
canonical ensemble. In this case the energy probability dis-
tribution, at canonical temperature 7, is given by

P(E,T) = g(E)e E/ksT / > g(E)e kT 3)
E

and canonical ensemble results are obtained by averages over
this probability function. Thus, for example, in the Fig. 2
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FIG. 2. (Color online) Microcanonical mean-square radius of
gyration (R;)E vs energy E for a SW chain of length N=256 and
SW diameter Ao as indicated. The symbols mark the coexisting
energies for the discontinuous (freezing) transition. The steps in
these functions correspond to the formation of partially crystalline
transition state structures. Inset: canonical mean-square radius of
gyration <R§(T)) vs temperature 7. Symbols locate the continuous
(coil-globule) transition and vertical sections locate the freezing
transition.

inset we show the canonical mean-square radius of gyration
(R;(T)>=2E<R§>EP(E ,T) versus temperature 7. With de-
creasing temperature these curves all show a smooth reduc-
tion in chain dimensions interrupted by a fairly abrupt de-
crease in chain size at the freezing transition. As is evident
from these curves, chain-size itself does not provide a clear
experimental signature for the presence or absence of a coil-
globule transition.

To locate phase transitions in the canonical ensemble one
typically examines the heat capacity C(T)=d{E)/dT, where
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FIG. 3. (Color online) Specific heat per monomer C/Nkg vs
temperature 7* for a SW chain of length N=256 and SW diameter
Ao as indicated and, in the inset, for A=1.05 and N as indicated.
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FIG. 4. (Color online) Potential-energy probability distribution
P(E,T) (solid line, left scale) and free energy F(E,T)=E-TS(E)
(dashed line, right scale) vs energy E for a SW chain with N=256
and N=1.05 at freezing. The bimodal distribution is equally
weighted at the transition. The simulation snapshots show represen-
tative chain conformations for the most probable energies
—E/e=891 and 126.

(Ey=2gEP(E,T). In Fig. 3 we show C(T) for N=256 SW
chains with a range of N\ and for SW chains with A=1.05 for
a range of N. The sharp low-temperature spike, seen in all of
these curves, locates the chain freezing transition, while the
high-temperature peak/shoulder, found for larger N and
smaller N, locates the polymer collapse (i.e., coil-globule)
transition [9,10]. This latter feature is absent for N=128 and
256 with A=1.05, consistent with our microcanonical analy-
sis. Similarly, transition temperatures obtained from the lo-
cations of the maxima in C(7) all agree with the microca-
nonical results. Note, however, that it is only through the
microcanonical analysis that we can definitively confirm the
absence of a coil-globule transition since in the canonical
analysis this latter transition may be present but masked by
the nearby C(T) freezing peak.

A distinguishing feature of a first-order phase transition in
the canonical ensemble is a bimodal P(E,T) distribution near
the transition. As seen in Fig. 4, the N=256, A=1.05 chain
exhibits such a bimodal distribution at the freezing transition
(T*=0.477 £0.002). The simulation snapshots in Fig. 4 illus-
trate the coexistence of an expanded coil state with a com-
pact crystallite of hexagonal structure. A free-energy barrier
separates these coexisting states and the peak of this barrier,
shown in Fig. 4, coincides with the step in (Ri)E seen in Fig.
2. Both of these features are associated with the formation of
a “folding nucleus” (i.e., a small crystallite attached to one or
more unfolded chain segments).

A direct first-order transition from an ensemble of ex-
panded coil states to a compact ordered state is a distinguish-
ing feature of single-step protein folding [6]. To make some
contact with the protein folding problem we compare our
results for the direct freezing of the N=128, A=1.05 SW
chain with typical experimental results for the folding of a
small (~100 amino acid) protein. We assume an equilibrium
folding temperature of 333 K (60 °C) which sets the
SW depth to e=kzT/T*=1.5 kcal/mol (where T"=0.446).
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This is roughly equivalent (same integrated well area) to a
Lennard-Jones potential with a well depth of 0.17 kcal/mol,
similar to values used in atomistic modeling of proteins [23].
The equilibrium energy (enthalpy) difference between
denatured and native states for a small protein is
~1 kcal/mol/residue  [6] compared with AE/N
~300e/128=3.5 kcal/mol/site for the N=128 SW chain.
The thermal folding of a small protein typically spans
~10-20 K [6,15] compared with AT*~0.01 or ~8 K
for the SW chain (see Fig. 3) and C(T) for this model satis-
fies the experimental calorimetric two-state criterion of
AH, =~ AH_, [15]. A typical equilibrium free-energy barrier
for a single-step folder is in the range 5-15 kcal/mol [6,8]
comparable with the SW chain value of AF,,,,~8¢
~12 kcal/mol. An Arrhenius analysis of this barrier height
for the SW chain (i.e., a plot of AF}, e/ kgT vs 1/T) shows
linear behavior for both folding and unfolding resulting in a
Chevron plot characteristic of proteins [6,15]. The “stability”
or room-temperature free-energy difference between native
and denatured states for a small protein is typically 2—18
kcal/mol [1,6,13] compared to 24e=36 kcal/mol for the SW
chain. This limited set of comparisons shows that our ho-
mopolymer model has proteinlike thermodynamics. Of
course a SW chain is far from being a realistic model for a
protein. However, the fact that we find close correspondence
between the freezing of a flexible homopolymer chain and
the folding of a small protein suggests that a chain with

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 79, 050801(R) (2009)

sufficiently short-range interactions may serve as a good
starting point for the development of simple continuum mod-
els (perhaps analogous to the widely studied HP lattice mod-
els [14]) for single-step protein folding. The short-range po-
tential provides a model with a very low-entropy ground
state (see Fig. 1) analogous to the low-entropy native state of
a protein.

Finally, the results presented here have more general im-
plications for the phase behavior of polymer solutions. In
particular, we confirm the recent prediction based on a lattice
polymer model of the disappearance of a collapsed globule
phase for a chain with sufficiently short-ranged interactions
[20,24]. A finite-size scaling analysis of the present model
shows that the (7-\)-phase diagram for a long SW chain
exhibits a tricritical point near A=1.15 where the continuous
coil-globule and the first-order globule-crystal transitions
merge into a single first-order coil-crystal transition. This
behavior is analogous to the disappearance of the liquid
phase for a SW fluid with A =1.25 [25].
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