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Structural crossover of polymers in disordered media
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We present a unified scaling theory for the structural behavior of polymers embedded in a disordered energy
substrate. An optimal polymer configuration is defined as the polymer configuration that minimizes the sum of
interacting energies between the monomers and the substrate. The fractal dimension of the optimal polymer in
the limit of strong disorder (SD) was found earlier to be larger than the fractal dimension in weak disorder
(WD). We introduce a scaling theory for the crossover between the WD and SD limits. For polymers of various
sizes in the same disordered substrate we show that polymers with a small number of monomers N <<N* will
behave as in SD, while large polymers with length N> N* will behave as in WD. This implies that small
polymers will be relatively more compact compared to large polymers even in the same substrate. The cross-
over length N* is a function of v and @, where v is the percolation correlation length exponent and a is the
parameter which controls the broadness of the disorder. Furthermore, our results show that the crossover
between the strong and weak disorder limits can be seen even within the same polymer configuration. If one
focuses on a segment of size n<<N* within a long polymer (N> N") that segment will have a higher fractal

dimension compared to a segment of size n> N".
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The study of polymers [1-8] in the presence of disordered
media is of broad scientific interest and is relevant to many
fields such as protein folding [1], polymers in porous media
[2], and spin glasses [3]. It also has many important applica-
tions such as in enhanced oil recovery, drug delivery, and
DNA sorting [6]. A polymer embedded in a disordered en-
ergy substrate, at low temperatures, will settle down in the
optimal configuration, i.e., the configuration with the mini-
mum energy.

In this Rapid Communication we study the scaling of the
structural properties of such an optimal configuration. A lin-
ear polymer of N monomers, under disorder, can be modeled
by an N step self-avoiding walk (SAW) on a lattice where
each site (or bond) in the lattice is assigned an energy e taken
from a given distribution. The optimal configuration in such
a model is the SAW of length N for which the sum of the
energies along its path is minimal. For generating a broad
disorder, it is common to use the distribution P(€)=1/(ae)
(€< e”) where the parameter a controls the broadness of the
disorder [9—12]. Such a distribution generates an exponential
disorder where the energy value of each site i on the lattice is
given by €=exp(ar;) where r; is a random number taken
from a uniform distribution between [0, 1]. For a—, we
obtain the strong disorder (SD) limit and for small values of
a the weak disorder (WD) limit. In the WD limit, essentially
all sites contribute to the total sum of ¢, while in the SD
limit the total sum is dominated by a single site with the
maximum energy [9,13].

Smailer er al. [8] studied the properties of a linear poly-
mer in the WD limit using both a uniform and a Gaussian
energy distribution. They found that for two-dimensional
(2D) the end-to-end distance of the polymer R scales with N

as N ~Rd<’>pt, where the fractal dimension is d(') (= 1.25. This
result is different from that found by Braunstein ef al. [11]
for the SD limit. Braunstein et al. used the exponential dis-
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order e=exp(ar;) and obtained N~ R%p with d,,=1.5.
Thus, the polymer is more compact in the presence of strong
disorder compared to weak disorder.

In this Rapid Communication we present a unified scaling
theory for the crossover between WD and SD limits. We
claim that the crossover between strong and weak disorders
for the optimal polymer problem depends on the character-
istic size a”, where v is the correlation length exponent from
percolation theory [14-16].

This claim can be explained as follows. Consider an infi-
nite lattice where each site i has a value p; where p;
€[0,1]. In a percolation process, an increasing fraction p of
the sites with the lowest values is occupied (the others are
removed) until the point p=p, is reached where the lattice
undergoes a phase transition. For p>p_, an infinite number
of the lattice sites are connected, while for p <p, the lattice
is separated into small finite clusters.

Now assume each site is associated with an energy ¢;
=exp(ap;) and an infinite polymer is observed on the lattice.
In SD the highest energy €,,,, along a polymer configuration
dominates the total energy. The energy €., which is the
highest energy along the optimal polymer configuration, can-
not be smaller than exp(ap.) and cannot be larger than
exp(ap,.) and therefore must be equal to exp(ap.). If €,
<exp(ap,) then according to the percolation theory, only a
cluster with a finite number of sites exists and an infinite
polymer cannot be embedded inside this cluster. If €,
>exp(ap,) then according to percolation theory the polymer
is not optimal since there exists a polymer with a lower-
energy configuration for which €,, =exp(ap.). Thus, the
optimal configuration is achieved for €., =exp(ap,) since
p. is the lowest value for which an infinite cluster that all its
sites have energies lower than €,,, exists.

For a finite lattice of size R, the value p. for which the
percolation transition occurs is distributed as a narrow distri-
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FIG. 1. Simulation results for the scaling of Ry(a)/Ry(®) as
function of N/a” for different values of a. The dashed lines repre-
sent the asymptotic expected value of the slope x!/@op=!/dopt [Eq.

(D]

bution with a mean p, and a standard deviation of o=R"
[17]. Let €;=exp(ap;) be the largest energy and e,
=exp(ap,) the second largest energy on the lattice. Since
log(ﬂ)~a(pl —-p,) and p, and p, are both from the same

narrow distribution, it follows that log( ) a(p;—p,) ~ac
~aR™""". Therefore, the SD limit (e, / 62> 1) is obtained for
R <a” while the WD limit is obtained for R>a".

Similar considerations were presented by Buldyrev et al.
[17] for the crossover from SD to WD in the optimal path
problem. Yet, the optimal polymer problem is significantly
different from the optimal path problem. The optimal path
problem explores the optimal path between two fixed points
(fixed R) where the path length varies. In the optimal poly-
mer problem, the polymer length is fixed and one tries to
minimize the sum of the interaction energies between the
monomers and the substrate, while the end-to-end distance
varies. While the complexity of the optimal path problem is
O(N?), finding the optimal polymer is a nondeterministic
polynomial [(NP) time] problem since nearly all the possible
configurations need to be explored in order to find the opti-
mal configuration. To reduce the computational time of our
simulations we have used the following optimizations. (a)
During the calculation of the optimal polymer of length N,
the optimal polymers of length 1 to N are also calculated. (b)
A new site in the lattice is explored only if the path until that
point does not exceed the optimal total energy of length N
obtained until that point. The second optimization is only
useful for the SD limit, where one energy dominates the total
sum [18]. On the other hand, for the SD limit the accuracy of
the floating point (double) variable in conventional comput-
ers is limited to @ ~36. We have overcome this limitation by
using the external software that enables unlimited floating
point accuracy but demands significantly more computa-
tional time. These computational problems are the reasons
why our simulation results are limited to polymer configura-
tions of length N=50.

Next, we propose a single scaling function for the depen-
dence of R=Ry(a) on N that includes both the SD and WD
regions. We expect that the scaling function will depend on
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FIG. 2. Simulation results of Ry(a)/Ry(e) as function of N for
several values of a. For small values of N, all the polymers behave
as in the SD limit and independent of the disorder have the same
fractal dimension. For larger values of N, Ry(a)/Ry(®) increases
toward the WD region. The results are limited to N=50 because
calculating R(a) for large a slows down the calculations
significantly.

the ratio R/a” which represents the relative strength of the
disorder. Since the polymers are of length N, we use instead

of R/a” the scaling parameter N/a v = N/q"opt which is re-

lated to R/a” by 5—%—( Vdop()”dovl. Thus, we propose
that
N
Ry(a) ~RN<oo)f(7), (1)
a
with f(x) a scaling function given by
const, x<1
Jx) = (2)

lldnpl—l/dom’ x> 1,

where d,,=1.5 (SD), dopt~ 1.25 (WD), and Rp(®)
Nl/dopl

Indeed from Egs. (1) and (2) follows that for N << a” (SD)
Ry~N"on, while for N>a” (WD) limit, we obtain Ry
~ NVop the known result for the WD limit. Figure 1 presents
simulation results supporting the scaling function of Egs. (1)
and (2). The SD region can be seen clearly in the flat area for
N/a*' <1, while the sharp increase in the slope indicates the
crossover to WD until the point where the slope fits the
asymptotic expected value 1/d,—1/d,, (dashed line) [see
Eq. (2)].

Until now, we have been relating to SD and WD as if the
polymers were in different substrates. But actually the cross-
over between the SD and WD is present even on the same
energy substrate as can be seen from the scaling function of
Egs. (1) and (2). In other words, for a given a, a small
enough polymer (N << a",) will behave as in SD, while a large
enough polymer (N> a”’) will behave as in WD. This prop-
erty is demonstrated in Fig. 2 where we plot the ratio
Ry(a)/Ry() as a function of N for different values of a. For
small values of N, the polymers behave as in SD since
Ry(a)/Ry(0) =1 [recall that Ry() is the SD limit]. In con-
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FIG. 3. (a) Ilustration for the crossover between WD and SD
inside the same polymer. Inside a segment of length n<a", the
polymer is more compact (has a higher fractal dimension) com-
pared to a larger segment or the full polymer.

trast, for N> 1, a crossover towards WD occurs represented
by the larger R values. Note that the crossover value N*(a)
increases for larger a.

Next we show that such a crossover also exists within the
same polymer configuration. We argue that a segment of
monomers of length n<a", within a polymer of length N
>a"', will behave as in SD and will be more compact com-
pared to a segment of size n’ > "' that will behave as in the
WD limit. An illustration of this property is shown in Fig. 3.
In Fig. 4 we present simulation results showing that the same
scaling relations describing the crossover between SD and
WD for polymers of different sizes is also correct within the
same polymer. Here the simulations were performed for dif-
ferent segments of size n of the same polymer and R,(a) is
the end-to-end distance of these segments.

When studying the probability density function of poly-
mers p=p(R,N,a), we obtain an interesting result. The
width of the distribution does not depend on the crossover
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FIG. 4. Simulation results for the scaling of R,(a)/R,(*) as
function of n/a” for different values of a. The different values of n
represent different segments within the same polymer.
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FIG. 5. Simulation results for the cumulative probability density
function, p(R,N,a) as function of R for different values of N and a
in the region 0.075 =N/a"' =2.

parameter of the disorder N/ a”/, only on the normalization
parameter R/(R). This is different from the results obtained
in optimal path where the probability density function de-
pends on the disorder crossover parameter [17]. This differ-
ence can be understood by the fact that the polymer configu-
ration is of fixed length N. While the length of an optimal
path between any two nodes within a distance R may be very
long, enabling a broader distribution of the path lengths in
SD, the end-to-end distance R in the optimal polymer con-
figuration is limited from above by the fixed length N (in the
optimal path, one measures the distribution of the length N,
while in polymers we measure the distribution of R). There-
fore, the scaling relation for the probability density function
of the optimal polymer depends only on the normalization
parameter R/(R) while the dependence of N and a are deter-
mined by (R)

R
p(R,N,a) =f(®>- 3)

Indeed, Fig. 5 shows the simulation results for the cumu-
lative distribution of p(R,N,a) for different values of R,N,a
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FIG. 6. Simulation results for the cumulative probability density
function, p(R/{R),N,a) as a function of R/(R). When normalizing
by R/(R), the different curves collapse into a single curve.
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that correspond to both the strong and weak disorder regions.
In Fig. 6 the scaling of these lines is presented, showing that
all the different distributions both for SD and WD collapse
into a single curve.

Summarizing, we have presented a unified scaling theory
for the optimal polymer configuration embedded in a disor-
dered energy substrate. The structure of the polymer at the
minimal energy depends on the strength of the disorder. We
find that the crossover between the SD limit and the WD
limit occurs at N*(a)=N/a”. For N/a’ >1 the WD is ob-
tained, while for N/ a”' <1 the SD limit is obtained. We
present the simulation results showing that this transition oc-
curs even inside the same polymer. Therefore, a segment of n

monomers where n/a’ <1 (the SD limit region) will be

more compact compared to the full polymer where N/a”
>1 (the WD region).
Our results of the crossover between the SD limit and the
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WD limit may be observed in neutron-scattering experi-
ments. Since the structure factor decays with a power (equal
to the fractal dimension) of the wave vector, we expect to see
a crossover in the structure factor at the wavelength for
which the transition between the SD and WD occurs. For 3D,
the crossover would occur from d,,=1.82 in SD limit [11]
to dy,=1.4 in the WD limit [8]. Recently, experimental
studies of the scaling properties of the linear-chain configu-
ration of DNA knots adsorbed onto a mica surface under
weak trapping [19] have shown that R scales with N with a
fractal dimension of 1.51. This value is significantly different
from the classical Flory result dy=4/3. The fractal dimension
d;=1.51 found in 2D might be explained by Eq. (1) in the
limit of strong disorder.
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