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We study the minimum-energy configuration of a d-dimensional elastic interface in a random potential tied
to a harmonic spring. As a function of the spring position, the center of mass of the interface changes in
discrete jumps, also called shocks or “static avalanches.” We obtain analytically the distribution of avalanche
sizes and its cumulants within an �=4−d expansion from a tree and one-loop resummation using functional
renormalization. This is compared with exact numerical minimizations of interface energies for random-field
disorder in d=2,3. Connections to dynamic avalanches are mentioned.
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In numerous systems, the equilibrium or nonequilibrium
response to perturbations is not smooth and involves jumps,
avalanches, or bursts. In systems at the brink of instability,
with many metastable states, it is often self-organized and
critical with power-law tails for the probability of large
events. This is observed ubiquitously in systems with hetero-
geneities, such as Barkhausen noise and hysteresis in mag-
nets, field response of superconductors, contact line of fluids,
cracks, granular matter, dry friction, and earthquakes. Sand-
pile automata �1� and elastic media pinned by quenched dis-
order �2� have been studied as simple models for these phe-
nomena. Relations between sandpiles and interface
depinning �3,4� and between sandpile models and loop-
erased walks �5–7� have proved fruitful, especially in d=2,
where conformal field theory can be used �8�. Despite much
effort it has proven difficult to obtain analytical results, e.g.,
for the distribution of the size s of avalanches �defined be-
low�, except in mean-field models for sandpiles �9� and for
random-field Ising magnets �10� as well as for a toy model
for avalanches at depinning �2�, which all yield P�s��s−�,
with �=3 /2. Scaling arguments for sandpiles �1,7� and for
depinning �11,12� were developed together with numerical
analysis �3,13,14�. The functional renormalization-group
�RG� �FRG� theory for pinned systems has led to detailed
predictions for, e.g., the roughness of interfaces but, until
now, has failed to describe discontinuous jump processes
�11,15–17�. Hence it remains an outstanding issue to find a
limit where mean-field theory is valid, prove this, and de-
velop a controlled field-theoretic expansion around it. Such
results should allow for a clarification of the differences be-
tween equilibrium and nonequilibrium avalanches, which
distinction has been questioned in a model for magnetic hys-
teresis �18�.

The aim of this Rapid Communication is to provide a first
analytical calculation of the distribution of avalanche sizes in
a static equilibrium setting using FRG and to make compari-
sons with numerical calculations. It opens the way to a
closely related calculation for depinning �19�. As demon-
strated in our previous work �20�, a model which allows a
precise FRG treatment and comparison with numerics, both
in statics and dynamics, consists of an elastic interface in a
random potential parameterized by a �scalar� height field
u�x� and submitted to an external parabolic well, i.e., a
spring, centered at u=w,

H�u;w� =� ddx
1

2
��u�x��2 + V„x,u�x�… +

m2

2
�u�x� − w�2.

�1�

This model is realized in experiments, e.g., in contact-
line depinning, where m2 relates to the capillary length set
by gravity, or in magnetic interfaces, where m2 is pro-
portional to an external field gradient. We are interested
in energy minimization as w is varied in a given realiza-
tion of the random potential V�x ,u�. We denote V̂�w�
=min�u�x�� H�u ;w� as the optimal energy and u�x ;w� as the
optimal interface position. The force per unit volume
exerted by the spring is V̂��w�=m2�w−u�w��, where
u�w�ªL−d	ddxu�x ;w� is the center-of-mass position and
Ld is the volume of the system. We study the three main
universality classes by choosing the disorder correlator
V�x ,u�V�x� ,0� either short range in u �random bond �RB�
class�, periodic in u �random periodic �RP� class�, or long
range, i.e., �V�x ,u�−V�x� ,0��2�
u
 �the random-field �RF�
class �11,15–17,20,21��.

Although we often use the language of dynamics, one
should emphasize the difference between the static problem
studied here, where the interface finds the global energy
minimum for each w, and the dynamic one, where w�t�
grows very slowly, and the interface visits a deterministic
sequence of metastable states.�22� In the scaling limit
m→0, on which we focus here, the first case is about inter-
face configurations of zero-temperature equilibrium �20�,
whereas the latter one is about critical depinning �23,24�.
Despite these differences, depinning and statics are close
cousins, and some differences within the FRG are found only
beyond one loop �17�.

As shown previously �15,20,21,25,26�, the optimal inter-
face is statistically self-affine with �u�x�−u�0��2�
x
2�,
where the roughness exponent � depends on the class of
disorder and has a known �=4−d expansion �17�: �=� /3 for
RF, �=0 for RP, and �=0.2083�+0.00686�2 for RB �and �
=2 /3 in d=1�. This holds for scales Lc�L�Lm, where Lc is
the Larkin length �here of the order of the microscopic cut-
off� and Lm�1 /m is the large scale cutoff induced by the
harmonic well. It is useful to picture the interface as a col-
lection of �L /Lm�d regions pinned almost independently.
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We confirm that u�x ;w� is an increasing function of w
which can be decomposed into smooth parts, negligible in
the scaling limit m→0, and jumps �alias “shocks” or static
avalanches� occurring at position wi as

u�x;w� = �
i

Si
x��w − wi�, Si ª� ddxSi

x, �2�

where Si
x is the size of the shock or avalanche labeled i at

position x and ��w� is the step function. The avalanche-size
distribution defined from an average over samples,

�
i

��S − Si���w − wi� = ��S� = �0P�S� , �3�

can equivalently be defined from a translational average in a
given sample. Here P�S� is the normalized size distribution
and �0dw is the average number of shocks in an interval dw.
The scaling ansatz,

��S� = Ldm�S−��̃�Smd+�� , �4�

is shown below to hold within the � expansion and verified
by our numerics. The center of mass follows on average the
spring, i.e., u�w�−w is bounded, thus u��w�=1. This allows
us to relate the shock rate and the first moment L−d�0�S
=1,
where �Sn
ª	dS SnP�S� denotes the normalized moments. It
implies for ��2 the exponent relation �= �2−���d+��. The
distribution is qualitatively different for �i� ��1 when a
unique scale Sm�m−�d+�� exists, i.e., P�S�=Sm

−1p̃�S /Sm�, and
�ii� 1���2, where

P�S� = C�S0
−1�S/S0�−�f�S/Sm� , �5�

and typical avalanches are of the order of the microscopic
�UV� cutoff S0, while moments �Sp
 with p��−1 are con-
trolled by rare avalanches of size �Sm, the large-scale cutoff.
As seen from Eq. �2�, the function u�w�−w exhibits jumps
Si at position wi, thus �u�w�−w�n has jumps of size Si

n.
More precisely, the nth Kolmogorov cumulant �27,28� is �for
w�0�

K�n��w� ª m2nL�n−1�d�u�w� − w − u�0��n c
=

�Sn

�S


w + O�w2� ,

�6�

understood as the probability �w that there is a shock, times
its magnitude Si

n, normalized due to the constraint u��w�=1.
For n=2, K�2� relates to the renormalized disorder correlator
	�w�, computed to O��2� in Ref. �17�. It is famous for de-
veloping a cusp, here nicely interpreted in terms of the sec-
ond moment of avalanche sizes, i.e., −2	��0+�=m4�S2
 / �S
.
We now compute the avalanche-size distribution using the
generating function

L−d�e
Ld�u�w�−w−u�0�� − 1� = Z�
�w + O�w2� ,

Z�
� =
1

�S

��e
S
 − 1 − 
�S
� , �7�

for w�0. We have computed the leading nonanalyticity of
Eq. �7� from �i� a Legendre transform of the replicated effec-

tive action � computed order by order in � and �ii� a direct
perturbative expansion without using replicas. The calcula-
tion is more involved than usually for the FRG: the size
distribution already at order O��0� requires a summation of
all tree diagrams. The latter could be termed mean field but
with the proviso that the scale of S involves 	��0+� computed
to O���. Here we compute to order O���, which amounts to
summing all trees and single loops; for details see �29�. The
main result is that Z�
� satisfies a remarkable self-consistent
equation to one loop order,

Z̃�
� = 
 + Z̃�
�2 + ��
n
3

�n + 1�2n−2inZ̃�
�n, �8�

where Z�
�= m4


	��0+�
 Z̃(
m−4
	��0+�
)−
, in= Ĩn / ��Ĩ2�, Ĩn

=	k�k2+1�−n, and �=−�Ĩ2m−�	��0+�. It can graphically be
written as

... ... ......
...λ

... ...

.

The type of resummed diagrams is presented in Fig. 1.
Since �=O���, to leading order one solves Eq. �8� setting

�=0. This yields Z̃MF�
�= 1
2 �1−�1−4
�, identical to the

generating function of the number of rooted binary planar
trees with n leaves �30�, and a size distribution, with
�=3 /2,

PMF�S� =
�S


2��
Sm

−1/2S−3/2e−S/�4Sm�. �9�

This is valid for S�S0, such that the moments with p�
1
2

are independent of the nonuniversal small-scale cutoff S0.
Hence the rigorous summation of tree diagrams in the FRG
yields the same PMF�S� as that of a mean-field toy model
for dynamic avalanches �2� and that of mean-field sandpiles
�9�. In addition, since the FRG is a first-principles method,

it predicts Sm=cm−d−�, where c= ��Ĩ2�
	̃��0+�
 is obtained

from the FRG fixed point for the rescaled correlator 	̃�u�
= ��Ĩ2�m−�+2�	�um−�� and depends on the universality class
�29�. Since ��1 the scale �S
�S0

�−1Sm
2−� remains undeter-

mined and UV cut-off dependent. Equation �8�, seen as a
convolution equation for P�S�, may allow one to put the
physical picture in �2� on a more rigorous footing.

FIG. 1. In mean field, diagrams generated by Eq. �8� at �=0
�one example shown here� have a tree structure, up to simple one-
loop corrections to disorder, i.e., 	��0+� �shaded in gray�. As in
�17�, the solid lines are propagators and the dashed lines are disor-
der correlators. Intuitively, solid lines represent successive local
events �e.g., spin flips� in the avalanche and the dashed lines repre-
sent correlations between them due to disorder.
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To next order in � we solve Eq. �8�, which includes higher
branchings with a universal dimensionless rate

� = −
1

3
�1 − �1�� �10�

at the fixed point, where �=�1�+O��2� and in
=1 /2�n−1��n−2� in d=4. It yields

Z̃�
� =
1

2
�1 − �1 − 4
� +

�

4�1 − 4

�log�1 − 4
�

��3
 + �1 − 4
 − 1� − 2�2
 + �1 − 4
 − 1�� + O��2� ,

�11�

from which one can calculate the universal ratios,

rn ª �Sn+1
�Sn−1
�Sn
−2

=
2n − 1

2n − 3
−

�

3
�1 − �1�

n��n −
3

2
� + ����n − 1�

�2n − 3�2��n −
3

2
� + O���2� ,

�12�

for any real n�3 /2, with �1=1 /3 for RF, �1=0 for RP, and

�1=0.283 for RB. Upon inversion of the Laplace transform
one finds

P�S� =
�S


2��
Sm

�−2AS−� exp�C� S

Sm
−

B

4
� S

Sm
��� �13�

for S�S0, with C=− 1
2
���, B=1−��1+

�E

4 �,
A=1+ 1

8 �2−3�E��, �E=0.577216, and exponents

� =
3

2
+

3

8
� =

3

2
−

1

8
�1 − �1�� + O��2� , �14�

� = 1 −
�

4
= 1 +

1

12
�1 − �1�� . �15�

Note that the decay of large avalanches becomes stretched
�sub�exponential �in d=0 for RF, �=3�. We note that our
result for � agrees to O��� with the conjecture

� = 2 −
2

d + �
, �16�

TABLE I. Universal amplitude ratios with statistical and systematic errors �in this order� for numerics; there is a systematic error since
the measured ratios decrease with decreasing mass. For d=2, the decrease which we take as systematic error was measured from masses
m2=0.025, m2=0.00125, and m2=0.000625 �whose values are given�. For d=3, the corresponding one is measured for the two smallest
masses m2=0.0025 and m2=0.00125 �with values from the latter�.

RF r2 r3 r4

Mean field 3 1.67 1.4
d=3, Eq. �12� 2.33 1.54 1.34
d=3, numerics 2.25�0.05�0.2 1.48�0.04�0.14 1.27�0.02�0.13
d=2, Eq. �12� 1.66 1.42 1.28
d=2, numerics 1.95�0.02�0.06 1.38�0.02�0.06 1.21�0.02�0.06

MF

MF

numerics �dots�
1 loop �solid line�

1
lo

op

�3.0 �2.5 �2.0 �1.5 �1.0 �0.5
Λ

�1.0

�0.5

0.5

Z
�
�Λ�

FIG. 2. �Color online� Z̃�
� for RF, d=2. The MF and one-loop
analytical curves are given in the text and 
 being rescaled to re-
produce the numerically measured second moment. While the MF
result differs substantially from the numerical measurement, the
one-loop curve, i.e., Eq. �11� with � given by Eq. �10� setting
�=2 and �1=1 /3, coincides for all negative 
, and almost up to the
singularity for 
�0. Changing � from 2 to 2.1 or 1.9 already results
in a visible disagreement for 
�0.

1 2 3 4 5
Log10�S�
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Log10�S
1.25 P�S��

0 1 2 3 4
Log10�S�4.5
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Log10�S
1.25 P�S��

FIG. 3. �Color online� Numerically computed normalized ava-
lanche distribution P�S�, for random-field disorder and d=2 ��
=2 /3�, multiplied by S� with �=1.25 �from Eq. �16�� to emphasize
deviations from the power law P�S��S−1.25. Error bars are 3� er-
rors for P�S� and the size of the box for S. The solid curve is a
one-parameter fit to Eq. �13�, with Sm=3500, �=1.25, � given by
Eq. �10� with �1=1 /3,�=2, and the corresponding values for B ,C
given in the text. We use the measured value for �S
 in Eq. �13�
hence there is no additional free parameter. The dashed line is a
constant �guide to the eyes�. Inset: blowup of main plot. The best fit
to a pure power law would give �=1.23 and to a power law times
exponential �=1.2.
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equivalent to �=2. It was presented for depinning �11,12�
and for the �s=4 /3 exponent of the number of topplings in a
sandpile model in d=3 �7�, which may be compared to the
RP class. Since assumptions leading to Eq. �16� are not rig-
orous, our first-principles calculation confirms this to one
loop and leaves open the possibility of higher-loop correc-
tions. Our results are straightforwardly extended to the case
of nonlocal elasticity �29� and dynamics �19�.

Exact numerical calculation of minimum-energy inter-
faces has been performed for a RF Ising model using the
very efficient �polynomial� max-flow algorithms, as in �20�.
We first measured the generating function Z̃�
� displayed on
Fig. 2 for RF disorder in three dimensions �d=2�. It is easier
to measure numerically than the avalanche-size distribution

since it does not require binning. We see that the O��� result
is in excellent agreement with the numerics up to 
� 1

2 . The
�corrected� avalanche distribution is presented on Fig. 3. We
measure �also see Table I� for values of the universal ampli-
tude ratios

� = 1.25 � 0.02�RF,d = 2�, � = 1.37 � 0.03�RF,d = 3� .

�17�

This is compatible with Eq. �16�. Note that the extra
stretched-exponential term C in Eq. �13� �which could not be
interpreted as summation of a pre-exponential power� leads
to a bump which can clearly be seen in the numerics on Fig.
3. Finally we have measured �see Fig. 4� the distribution of
the intervals between successive jumps �occurring at posi-
tions w=wi� and found it to be very close to a pure exponen-
tial.

To conclude, using functional RG we have performed an
expansion around the upper critical dimension to obtain the
avalanche or shock distribution in the statics. It compares
well with the numerics. Preliminary results �19� indicate that
the above mean-field and one-loop results also hold for de-
pinning �with the corresponding values for ��; two-loop cal-
culations are in progress to further check conjecture �16� and
quantify the difference between static and dynamic ava-
lanches.
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