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Comment on “Ising model on the scale-free network with a Cayley-tree-like structure
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A clarification is due about the paper by Hasegawa and Nemoto [Phys. Rev. E 75, 026105 (2007)], where
a clear distinction between the Zeta and Zipf power-law distributions offers an alternative interpretation of the
behavior of susceptibility of the model at hand. More precisely, their conclusion that susceptibility diverges for
this scale-free network model with power-law distribution P(k) ~ k™ for the coordination number k for all
temperatures, for values of exponent y=4 (as observed in real networks), stems from the (infinite domain)
Zeta distribution power-law assumption for the coordination number distribution. On the other hand, by
assuming the Zipf power-law distribution (with an arbitrary finite upper bound on the coordination number),
the susceptibility is well behaved, diverges in the interval 0 =7 <Ty, and is finite for 7= T, where T depends

on P(k).
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In a recent work Hasegawa and Nemoto [1] have derived
exact closed-form expressions for magnetization and zero-
field susceptibility of the Ising model on Cayley-tree-like
structures with arbitrary distribution of the tree coordination
number by generalizing the approach presented in [2] for
the regular Cayley tree. Their formulas are quite general,
expressed in terms of the first three moments of the coordi-
nation number k. They further apply these expressions
to analyze behavior of susceptibility on scale-free (SF)
networks with power-law distribution of the coordination
number P(k) ~k~?, and arrive at conclusion that, for y>4,
susceptibility diverges below temperature 7g given by
tanh?(J/kzTs)=(k)/{k(k—=1)) (where J is the nearest-
neighbor ferromagnetic interaction parameter, and kp is the
Boltzmann constant), and remains finite above T while for
vy=4 susceptibility diverges at all temperatures. In what fol-
lows we offer an alternative interpretation pertinent to scale-
free networks by assuming a finite domain of the power-law
distribution.

The general expression for zero-field susceptibility of a
Cayley-tree-like structure of radius n, derived by Hasegawa
and Nemoto [1], is given by
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and (k), {(k*), and (k*) are the first three moments of the
coordination number, following (an arbitrary) distribution
P(k). Setting P(k)=&8(k—3), where & is the Kronecker delta
function, recovers results [2] for the regular Cayley tree with
(constant) coordination number k=3 while setting P(k)
~ k™7 corresponds to scale-free networks.

The crux of the matter in the SF network case is the
choice of the domain of the probability distribution. If one
opts for the infinite domain (as done in [1] for the analysis
of the zero-field susceptibility behavior), the coordination
number is drawn from the Zeta distribution with the density
mass function f(k;y)=k™?/{(y) and infinite domain k
e{1,2,...,}, where {(7) is the Riemann zeta function. In
this case however, the first moment is defined only for y
>2, the second moment for y>3, and the third moment for
y>4, and the conclusion of Hasegawa and Nemoto [1]
about the zero-field susceptibility stems precisely from this
assumption.

On the other hand, for description of real networks it ap-
pears more reasonable to choose a finite domain by setting
an (arbitrary) upper bound K on the coordination number &,
corresponding to the choice of the Zipf distribution with the
probability mass function f(k;y,K)=k"?/Hy , and the finite
domain ke{l,2,...,K}, where H,(J:EkK:lk‘V is the Kth
generalized harmonic number of order . In this case all the
moments are finite, and Hasegawa and Nemoto [1] in fact
use this option to produce their Fig. 2 by setting maximum
degree to K=40.

Furthermore, by taking the limit n— o, it is simple to
show that susceptibility diverges due to diverging radius only
(there are no intrinsic temperature induced critical points),
and the limiting behavior is described by the formula
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where T is determined by « tanh?(J/kyzTg)=1. We demon-
strate this scaling behavior on Fig. 1, which should be com-
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FIG. 1. Scaled zero-field susceptibility for y=2.7, calculated
using formula (1), for several network sizes n=64,256,1024. The
full line represents the limiting curve In(az?).
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pared with Fig. 2 of Hasegawa and Nemoto [1] (we use
linear temperature scale as opposed to logarithmic, and we
divide the logarithm of susceptibility by radius ). It should
be noted that the observed maxima represent a finite-size
effect that fades away as the thermodynamic limit is ap-
proached but may be relevant for large finite-size networks.

In summary, this Comment is meant to clarify some con-
clusions drawn by Hasegawa and Nemoto [1] on the zero-
field susceptibility behavior of the Ising model on scale-free
networks. There is nothing special about y=4 for scale-free
networks except the fact that infinite domain power-law as-
sumption lacks the definition of the third moment. Assuming
a finite (arbitrarily large) domain removes this problem, and
the susceptibility is shown to be well behaved, with finite-
size scaling governed by the network radius.
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