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Theory of the lattice Boltzmann equation: Lattice Boltzmann model for axisymmetric flows
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A lattice Boltzmann equation (LBE) for axisymmetric flows is proposed. The model has some distinct
features that distinguish it from existing axisymmetric LBE models. First, it is derived from the Boltzmann
equation so that it has a solid physics base and is easy for generalization; second, the model can describe the
axial, radial, and azimuthal velocity components in the same fashion; and third, the source terms of the model
contain no velocity gradients and are much simpler than other LBE models. Numerical tests, including steady
and unsteady internal and external flows, demonstrate that the proposed LBE can serve as a viable and efficient

method for low speed axisymmetric flows.
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I. INTRODUCTION

Axisymmetric flows of incompressible fluids are fre-
quently encountered in fundamental researches in fluid dy-
namics. Such flows can be treated as a two-dimensional (2D)
problem in the meridian plane so that computational costs
can be significantly reduced compared with fully three-
dimensional (3D) computations. The lattice Boltzmann equa-
tion (LBE), which appeared as an effective mesoscopical
method for modeling and simulating fluid flows about two
decades ago [1-5], has also been applied to axisymmetric
flows recently. The most natural way for LBE to simulate an
axisymmetric flow is the direct application of certain 3D
LBE models with suitable curved boundary conditions [6—8].
However, such approaches do not take any advantages of the
axisymmetric properties of the flow and usually need large
computational costs.

Alternatively, some researchers have attempted to develop
more effective quasi-2D LBE models for solving the hydro-
dynamic equations in axisymmetric formulations. The first
axisymmetric LBE model was attributed to Halliday et al.
[9], who introduced some source terms into the LBE so that
it could match the axisymmetric Navier-Stokes equations in
the Chapman-Enskog analysis. The method was also ex-
tended to multiphase flows by considering intermolecular in-
teractions among fluids [10,11]. Unfortunately, the method
by Halliday et al. [9] fails to reproduce the correct hydrody-
namic momentum equation due to some missing terms relat-
ing to the radial velocity. This mismatch was pointed out by
Lee et al. [12]. After considering these missing terms, Lee er
al. [12] were able to develop a more accurate axisymmetric
LBE model. Reis and Phillips [13,14] proposed a similar
model soon after. Zhou [15] recently proposed another sim-
plified version where the forcing terms are similar to those in
the hydrodynamic equations. The above LBE models are
constructed based on the Navier-Stokes equations with
primitive variables, while Chen et al. [16] recently showed
that it was also possible to obtain a LBE model for the
vorticity-stream equations.
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Compared with the full 3D models, the main advantage of
the 2D axisymmetric LBE models mentioned above lies in
their high efficiency in computations. Actually, these models
have been successfully applied to various flows, ranging
from continuous single phase flows to microscale and two
phase flows [17-25]. However, these models still have some
limitations. First of all, all of the available models are de-
signed in a “top-down” fashion, i.e., they are all constructed
based on the axisymmetric hydrodynamic equations, and ac-
tually have no relevance to the kinetic theory (Boltzmann
equation). In this regard, these LBE models are nothing but
numerical solvers for the axisymmetric Navier-Stokes equa-
tions. Consequently, some of important advantages of LBE,
such as the easy in describing microscopical interactions in
multicomponent/multiphase systems, applicability for com-
plex fluid systems without suitable governing equations, and
flows that cannot be described by continuum models, may be
lost. Second, in all of the existing axisymmetric LBE models
the azimuthal velocity is neglected although some hybrid
methods, where the equation for the azimuthal velocity is
solved by finite-difference method, were used in some appli-
cations [17,18,21]. Such models are suitable for axisymmet-
ric flows with a negligible azimuthal component of velocity.
But in general cases, particularly for rotating and/or swirling
flows, the azimuthal velocity must be considered. From this
viewpoint, these LBE models are incomplete and their appli-
cability is limited. Finally, almost all of the available models
(except for the one in [16]) contain some complicated source
terms including many velocity gradients. The discretization
of these terms not only makes the implementations rather
cumbersome but also may introduce additional errors and
lead to numerical instability. The source terms in the method
by Zhou [15] are simple relatively, but they still contain ve-
locity gradients and are implicit in the evolution equation; on
the other hand, the method in [16] simplified the source
terms by invoking the vorticity-stream formulation, but it
will become very inefficient for unsteady flows because a
Poisson equation must be solved at every time step.

In this paper, we aim to develop a simple and consistent
axisymmetric LBE based on the continuous Boltzmann equa-
tion. The model can describe the velocities in all directions
and therefore is complete. The rest of the paper is organized
as follows. In Sec. II a simple kinetic model is proposed for
axisymmetric flows, and in Sec. III a LBE model is devel-
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oped based on the kinetic model. Boundary conditions and
force evaluation methods are discussed in Sec. IV, and some
numerical simulations are carried out in Sec. V to test the
performance of the LBE model. Finally a brief summary is
presented in Sec. VL.

I1. SIMPLIFIED AXISYMMETRIC
BHATNAGAR-GROSS-KROOK MODEL

In a system of cylindrical coordinates (x,r, 6), where x, r,
and 6 are the axial, radial, and azimuthal coordinates, respec-
tively, the Boltzmann equation with the Bhatnagar-Gross-
Krook (BGK) collision model reads

af of I & &0f &€& df L e
TEo G A e o0t T[f flea,

(1)

where f(xy,&),0)=f(x,r,0,&,.,&.,€p,1) is the distribution
function of fluid molecules moving with velocity &,
=(&,,&.,&p) at position xy=(x,r,6) and time 7 in the cylin-
drical coordinates; 7 is the relaxation time characterizing the
relaxation process from f toward the local Maxwellian equi-
librium distribution £ defined by

2
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where R is the gas constant and p, ug=(u,,u,,uy), and T are
the fluid density, velocity, and temperature defined, respec-
tively, by

P=ffd§o, Puo=f§fd§o, 3PRT=J |& — uo|*fdé&,.
(2)

For symmetric flows f does not depend on the #-coordinate
and the flow becomes quasi-two-dimensional [26]. In order
to reduce the number of independent variables, we introduce
two reduced distribution functions,

f(x’§)=ffd§a’ J?(x’f):f‘fafdfe’ (3)

where x=(x,r) and £=(&,, &) are the corresponding position
and molecular velocity in a meridian plane. From Eq. (1), we

can obtain two model equations for f and f,

Db 10 gy
§r
2 1 1 - -
Toevie 5 122 g ) )
rdé, T
where V=(4,,d,) is the spatial gradient operator in terms of

x, and

P(x,8) = f &fdéy  dx.6) = f Eifdé,.

The corresponding reduced equilibrium distribution func-
tions are given, respectively, by
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|§_u|2:|’ ]7(6‘1) _ uﬂf(eq)’

2RT

f(eq) __P exp[—

27RT

where u=(u,,u,) is the corresponding velocity in the merid-
ian plane. From Eq. (2), the fluid variables can be readily
computed from the reduced distribution functions as

p= f fdg,  pu= f EfdE,  pu,y= f fdé,

kT pluf = [ 1gFag+ | da ©)

The last two terms relevant to ¢ and ¢ on the left-hand
sides of Egs. (4) and (5) cannot be expressed explicitly. Now
we propose some approximations to them without affecting
the corresponding hydrodynamic equations. To this end, we
first perform a Chapman-Enskog analysis for both equations
to find out necessary constraints for such approximations.
For simplicity, we consider isothermal flows only (RT
=const).

In the Chapman-Enskog analysis, we introduce the fol-
lowing expansions,

=27, f=2 " (7)
n=0 n=0

The expansion of f leads to

f=2 7", f=2 7f". (8)
n=0 n=0

Substituting these expansions into Egs. (1), (4), and (5), we
can obtain the following set of successive equations in the
order of 7

- f<0)=f<eq)’ ]7(0)=J7<eq),
505f<

fO=f90, )
grfﬁﬂ — —f“),

D S+ T (10)
D,fou%ﬁou}%:_;ﬂn an
D, fO+ Zg’ﬂ‘” i&j«g =—1, (12)
PN ML LS

D, fV+ 25’%“ iaj; =-/2 (14

where D, =4, + £V and ¢ and ¢ are the corresponding

expansion terms of ¢ and ¢, respectively,
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¢ = f & dgy = J &
Particularly,

AV =i+ RDFY,  $O0=wi+3RDFY.  (15)

It is also obvious that
7(n) (n
J ¢ LAy f ap™ _0,
&, 8§r
aa;(”) )
f §aa_§rd§: - 5&}*[ ¢ dg (16)

Therefore, based on the definitions of the fluid variables and
the original and reduced equilibrium distribution functions,
we can obtain that

J frdg= J fdg=o, f gag=0 (17

for n>0. With the aids of Egs. (16) and (17), the first-order
hydrodynamic equations can be obtained by taking zeroth
and first velocity moments of Egs. (11) and (12),

=0, (18a)
pu’ PUGU,
ato(pua) + a,B(P”a“,B + péaﬁ) 05 (18b)
2pugu,
d;,(pug) + dg(pugity) = — , (18¢)

where p=pRT is the pressure. Note that in the derivation of
Eqgs. (18b) and (18c) we have made use of Eq. (15).

Similarly, by taking velocity moments of Egs. (13) and
(14) we can obtain the following equations at O(7):

3,p=0, (19a)

1
0, (pug) + 5Py P = 2 f FVdE=0, (19b)
r

2
3 (pug) + 9504 + ;Qi”: (19¢)

where

Pos= f Eubal Vg, Of f &/ dE.

These two integrals can be evaluated by making use of Egs.
(I1) and (12) and the first-order hydrodynamic equations
[Eq. (18)]. After some tedious but standard algebra we get
that
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DPUg
P(al[)3= —p((?auﬁ+ (?Bua), Q(l) = Téﬁr_paﬁuﬁ’ (20)

where terms of O(Mi) have been neglected (M, is the Mach
number of the flow).

Now we evaluate the last term on the left-hand side of Eq.
(19b). First, from Egs. (10) and (18) we can obtain that

- J PVdé=- f &fVdgag,

= %f $dé+ 33[ EpdVdé+ EJ £ Vdg
r
= &,O(pué + pRT) + &ﬂ[puﬁ(u%,+ RT)]

, 3o
P2 4 RT)

:RT[& p+ &B(pu3)+ ]+3 (pu3)

+ 8B(pu,3u2

2pu
- (21)
’
Therefore, combining the first- and second-order equations
[Egs. (18) and (19)], we can obtain the final axisymmetric
hydrodynamic equations,

u
atp + aa(pua) + h = 0, (223)
r
d(puy) + dg(puitg)
m
== dop + dg u(daug+ dguy) ] + 7(,9rua+ d,1,)
Pu2 puu, 2w
+ 6 = T = U6, (22b)
r r r
d(pug) + dg(pugu )
2pu gu u
:aﬁ(ﬂaﬁua)_w_ﬁ(uoar lnp_arua_'__ﬂ)’
r r r

(22¢)

where pu=7p is the dynamic viscosity. In the incompressible
limit with p=const, the above equations can be rearranged
as

du, 13d(ru,)
e [ Z2T)

=0, 23
Jx r OJr (23a)

du, dap 10 ( aux> Fu, (23b)
—=——4pu|l——\r—|+— |
P dt ox K radr\ oJr ax*
du, ap d ( 1 &(ru,)) Fu, |
=——+ul —|——"|+— |+—, (23¢
P dt ar ,u,[ ar\r OJr ax? r (230)
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dt r &r x>

where

dp 3¢  dud) 13(ru,d)
dt_&t+ ox +r ar

for any variable ¢. Equations (23) are just the incompress-
ible Navier-Stokes equations for axisymmetric flows [27].

We can see that in the above analysis the exact expres-
sions of ¢! and V) are not required. However, they must
satisfy some necessary properties, i.e., Egs. (16) and (21),
which are critical for obtaining the final hydrodynamic equa-
tions. This fact indicates that if we can approximate them
with some simple formulations satisfying both properties, the
final hydrodynamic equations will not change. One such
choice is

- 2RTu, ~ - - -
§=-= Lfe gh=0, FO=gW=0 (k>1).
(24)
As such, ¢ and ¢ can be written explicitly as
B=39 1 73V = (u§+RT— M)f(eq),
r
b= = (uy+3RT)F0. (25)

With these expressions we obtain the following BGK model
for axisymmetric flow from Egs. (4) and (5):

T e VT Sab=m -9, (0)

T eV B b= 9L Q)
where
= 1o [ u zﬂ)§_>
q)_ro"fr__( Tkt ) fe,@8)
- _1lip & = Ur =)
=0T (3+RT> , T (29)

It should be emphasized that other approximations to ¢
and ¢ are also possible. For instance, another choice for o
that satisfies Eq. (21) is ¢V=—(2RT¢,/ r)f9. With such an
approximation, ® can be expressed as

2
éz‘(”ﬂ 27&)5 & trgen . 22T (30)
RT r r

,
which is a little more complicated than that given by Eq.

(28). Furthermore, as can be seen later, ® given by Eq. (28)
can be combined with the forcing term due to external
forces, and the final LBE model has a simple structure. On
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the other hand, the approximation given by Eq. (30) cannot
be combined with the forcing term so easily and would make
the final LBE more complicated. From this viewpoint, the
approximation given by Eq. (24) may be one of the simplest
formulations (if not the only one).

In the above discussions the external force is not consid-
ered. If the fluid is also exposed to a force field F=pa,
=pla,,a,,ay), the Boltzmann equation [Eq. (1)] should be
modified to include a forcing term F on the left-hand side,
where F is defined by

Jo L O
=ap- a, +ag
§0f agr (960
Here we assume that the force does not depend on the mo-
lecular velocity &,. As suggested in [28], the forcing term can
be approximated as

~a,- M]&eq) (31)

p Of(eq)
This formulation can ensure that the hydrodynamic equations
at the Navier-Stokes order are the same as the original
Boltzmann equation. It is noted that other consistent formu-
lations, such as that proposed in Ref. [29], can also be used
to approximate the forcing term. However, as can be seen in
Sec. III, the use of Eq. (31) can make the final LBE model
more concise. Based on Eq. (31), we can obtain easily the
corresponding forcing terms in Egs. (4) and (5) for the two
reduced distribution functions,

= f Fdg,=~ %ﬁ@,

P f dgy=- E e g e,

where a=(a,,a,). Therefore, the kinetic model with the body
force can be expressed as

é{f 7 §r

E+§~Vf+ f_——D‘ FeD 4 F, (32a)

af fr

+§ Vi+ [f fed 4+ F, (32b)

where

= (é‘:_u)'ﬁﬁeq)’ F’=(§_Rl;).af<eq)+a&}7<eq),

RT
and
T w2
a.=a, ﬁ,:ar+—<1+—a mr), (33)
RT
RT u>
a.=a, a,:a,+—(3+—9> (34)
r RT
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III. LATTICE BOLTZMANN MODEL FOR
AXISYMMETRIC FLOWS

The two kinetic equations in Eq. (32) cannot be used to
derive an efficient LBE model due to the last terms (§,]7/r

and 2&,f/r) on the right-hand sides of them. In order to over-
come the difficulties arising from these two terms, we rewrite
Eq. (32) in more concise forms by multiplying them with r
and 7? on both sides, respectively,

d 1
TAEVg=-[g-¢+G, (%)
ot T

oh 1

—+& - Vh=——[h-h]+H, (35b)
ot T

where g= rf, gt =rf<eq), G=rF', h= P2f, heD=p2fd and
H=r?F'. The fluid density and velocity are then computed as

1 1 1
p= -j gd§, pu= -f £gd,  puy= —J hd&. (36)
r r I

Equations (35a) and (35b) are standard two-dimensional
BGK models with a body force. Following the standard dis-
cretization procedure proposed in Refs. [30-33], we can ob-
tain the following BGK models with nine discrete velocities:

g 1
_g"'ci'Vgi:—_[gi_g,('eq)]"‘Gia (37a)
ot T
dh; 1
—4e¢;- Vhy=——[h;— K9]+ H;, (37b)
ot T

where the discrete velocities {¢;=(c;,,c;,):i=0,1,...,8} are

specified as ¢y=0, ¢;=—c3=c¢(1,0), c,=—c4=¢(0,1), c5
=—c¢,=c(1,1), and cg=—cg=c(~1, 1), with c=\3RT. The dis-
crete equilibrium distribution functions are obtained from the
low Mach expansions of g? and A°? [30,32],

(Ci‘u)z w

26? - 202

N

c;-u
gl(-eq) =rpw;| 1+ -5+
s

], (38a)

hgeq) =ru gg,(-eq), (38b)

where cx=v’ﬁ" is the sound speed and the weights w; are
given by wy=4/9, w;_4=1/9, and ws_g=1/36; the discrete
forcing terms are given by

(¢c;—u)-a (c;—u)-a
l—ggeq), H;= —hgeq)+ra,9gl(<eq).

Gi=
RT RT

(39)
The fluid density and velocity are determined as follows:

1 1 1
p=—g, pU=-208» pug=—72h. (40)
ro ro r

Integrating Eq. (35) along the characteristic line from
time ¢ to ¢+ &, leads to
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gix +¢;0,t+ 8) — gi(x,1)

6t
=f|ﬂﬂmwf¢+ﬂ+6ﬂ+qﬂm#ﬂmZ
0

hi(x +c¢;8,t+ 8) — hi(x,1)

(st
h
=I[Q@+WU+H+%@+WU+”Mﬂ
0

where sz—[gi—gl(-eq)]/r and Qf‘:—[h,-—hf.eq)]/r. As argued
in [34], the integral on the right-hand side must be evaluated
using a quadrature with at least second-order accuracy in
order to obtain the correct hydrodynamic equations. The
trapezoidal rule can serve this purpose and leads to the fol-
lowing implicit discrete schemes:

gi(x +¢;6,t+ 3) — gix,1)
o, p o, ¢
= E[Q’ (x,0) + Gi(x,0)] + E[Q' (x+¢;0,t+6,)

+Gix +¢;6,t+ 65,)], (41)

hi(x +¢;0,t+ &) — hy(x,1)
= 20w+ H 2+ ¢80+ 6
=51 x,1) + H(x,t)] + 2[ H(x+¢;6,t+5)
+H(x +¢;6,t+ 6,)]. (42)

The implicitness in the above schemes can be eliminated by
introducing the following distribution functions as suggested
in [34]:

S A 5,
gAi:gi—E[(Q‘ig-l-Gi), hizhi—gt(ﬂ?"'Hi)- (43)

Equations (41) and (42) can then be rewritten as explicit
schemes,

8ix+¢;6,1+ 8) - g{x,1)

= — o[ g(x,1) - gV, 0] + @(1 - §>Gi(x,t), (44)
/;,-(x + ciﬁt’t-'- 51) - ﬁi(x,t)
= — w[h(x.1) = B (x.0)] + 5,(1 - g)Hi(x,t), (45)

where w=26,/(27+ 8,). From Eqgs. (43) and (40), it is can be
easily shown that the fluid density and velocity can be deter-
mined from the new distribution functions as

lw . lw - &
p=—28n pug=—52 hi+- pay.
ro r; 2
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pua T e E Clagl

r a, + RT+u
r +7'5RT5M ; Pila p( ﬁ) ]

(46)

Equations (44) and (45) together with Eqgs. (38) and (46)
constitute our LBE model for axisymmetric flows when the
physical space is discretized with a regular lattice with spac-
ing d,=c9,

Now some comments on the present model are in order.
First, the present LBE model is derived from the kinetic
model proposed in Sec. II which is based on the continuous
Boltzmann equation and thus has a solid foundation. The
advantage of this starting point also makes it easy to extend
the present LBE model to other complicated fluid systems
that can be described by kinetic models but may be difficult
by macroscopical models. For instances, the model can be
extended to nonideal fluids where intermolecular interactions
are important and to microscale flows for which the Boltz-
mann equation is valid but the Navier-Stokes would fail.
Second, in the present LBE model the velocities in the axial,
radial, and azimuthal directions are all solved within the
same LBE framework. This feature makes the implementa-
tion of the present LBE easier than the hybrid methods and is
particularly useful for parallel computing. Third, unlike other
existing axisymmetric LBE models, the forcing terms, G;
and H; given by Eq. (39), are much simpler and contain no
velocity gradients. Finally, the discrete lattice effects on the
fluid velocity are considered in the present model, which is
consistent with the analysis in Ref. [29].

We would also like to emphasize that the second equation
of the proposed model [Eq. (45)] is for the azimuthal veloc-
ity, which has been neglected in most of previous axisym-
metric LBE models. For flows with a negligible azimuthal
velocity, Eq. (45) can be safely dropped, and the present
LBE model contains only Eq. (44), which is similar to most
of previous ones. On the other hand, if the azimuthal velocity
must be considered, Eq. (45) should be invoked. In previous
studies (e.g., Ref. [17]), some hybrid methods have been
proposed where the macroscopic governing equation for the
azimuthal velocity was solved using certain finite-difference
schemes, which would lead to some additional computa-
tional effort comparable to that of Eq. (45). Furthermore, the
different computation frameworks for the three velocity
components in such hybrid methods may not only bring
some difficulties in programming (particularly for parallel
computations) but also may bring some inconsistency in ac-
curacy because of the use of different computational stencils
[35].

IV. BOUNDARY CONDITIONS AND FORCE EVALUATION

Specifying suitable boundary conditions for the distribu-
tion function(s) is an important topic in the study of LBE
method in that it will not only influence the accuracy of the
solution but also affect numerical stability of the algorithm
significantly. Many different boundary conditions have been
proposed for the standard LBE in the Cartesian coordinate,
such as the simple bounce-back scheme [36], interpolation/
extrapolation schemes [37-40], and hydrodynamic schemes

PHYSICAL REVIEW E 79, 046708 (2009)
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FIG. 1. (Color online) Nonequilibrium extrapolation method for
a curved boundary. Solid square: ghost node in the body; solid
circle: fluid node; solid diamond: intersection of the link along c¢;
with the boundary; dashed-dotted line: symmetry axis; and dashed
line: ghost boundary along symmetry axis.

[41-43]. In this work we will extend the nonequilibrium ex-
trapolation scheme (NEES) proposed in Ref. [38] to the
present axisymmetric LBE model due to its simplicity, capa-
bility for different boundary conditions, second-order accu-
racy, and good numerical stability.

As depicted in Fig. 1, the distribution functions g; and #;
at the fluid node x; near the boundary need to be determined
by certain boundary conditions. In the NEES this is achieved
by specifying the postcollision distribution functions g; and

ﬁl’ at the ghost node x,, located in the wall, where

Al A A € w
¢ =¢i— o[- ‘P,( 9+ 5z<1 - E)Sh (47)

with ¢;=g; or h; and S;=G; or H;. Once ¢ is known,
@i(x,t+ 5, can be obtained by performing a simple stream-
ing operation, i.e., &;(x|,t+ &)= (x,,,7). The basic ideas of
NEES are to decompose the distribution function at x,, into
its equilibrium and nonequilibrium parts, ¢;= (pleq)+(pl“°q)
and then approximate the first part with a ghost equilibrium
with extrapolated velocity and density, while the second part
is approximated with extrapolations directly [38]. NEES has
been proved to be of second-order accuracy and have good
numerical stability for LBE models in the Cartesian coordi-
nate. With the same idea, the NEES can be generalized for
the present axisymmetric LBE model, in which the postcol-
lision distribution function at x,, is constructed as

2-
2

3 (x,) = Egilpyotty) + (1 - @)™ (x,) + —=25,3,

(48)

where E (eq) p,,=p(x,,1), and
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(3= A)u(x,) + (A* - Dulx;) - (1 - A)’u(x,)

PHYSICAL REVIEW E 79, 046708 (2009)

1+A

u(xy) + (A= Du(x,)
A ,

AV )) + (1 - A)!"(x,), A<0.75,
" (x)), A=0.75.
(50)

Here, A=|x;—x,|/|x,—x,| is the fraction of the intersected
link in the fluid region along ¢;, and the nonequilibrium dis-
tribution function of @; at x, or x, is given by ¢"¥=¢,
_ (pl(eq).

Boundary conditions at a wall reflect the interactions be-
tween fluid and the boundary. Momentum exchange between
the fluid and the wall will occur during the interaction pro-
cess. After collision at time ¢, the quantity ¢;g;/(x;)/r; rep-
resents the total momentum of the particles moving with
¢y =—c; in the x=(x,r) plane at x;. During one time step,
these particles interact with the wall at x;, and the momentum
they carry becomes c¢;g;(x,,7+6,)/r,. This means that these
particles exert a force on the wall at point x,,

b (x,) = {

cigilxp,t+ ) —cygi(xy,1)
16,
N o
ﬁlgl (xw’t) n gi’(xl’t):|

5[ Iy r

F(xb,t) ==

(51)

For an axisymmetric body where the axis lies along the x
direction, the total drag force exerted by the fluid is therefore

Fo=2m f SrF ()l =27 S, F(x,) 87
r x,el’
52
~ = [/ + (e, 2, (52
1

where I' is the body surface in the meridian half-plane.
Another important boundary condition for axisymmetric
flow is the treatment of the axis of symmetry. In order to
avoid the singularity at =0, we set the first lattice line at r
=0.568, and apply the following symmetry boundary condi-
tion to a ghost lattice line located at r=-0.58, (see Fig. 1):

$2(A)=¢y(B),  @5(A)=¢4(B), 6(A) = ¢3(B),

(53)
where A is the symmetric ghost node of B located at the first
fluid line.

V. NUMERICAL RESULTS

In this section we shall validate the proposed LBE model
by some well-studied axisymmetric flows, including steady
and unsteady tube flows, the flows around a sphere, and the

, A<0.75,
(49)
A=0.75,

swirling flows in a cylindrical cavity. In our simulations, the
symmetry boundary condition described in Sec. IV will be
used for the symmetry axis in each case, and the NEES will
be employed to treat different boundary conditions for other
boundaries.

A. Flow in a pipe

The first test case is the Hagen-Poiseuille flow through a
straight pipe of radius R=1.0 driven by a constant external
force a=(a,,0,0). The computational domain is 0=x=0.1
and 0=r=R, where r=0 is the symmetric axis and the solid
wall is located at r=R. The boundary conditions for the fluid
variables are as follows:

d

r=0: —¢=0, v ¢;
ar

r=R: u,=u,=uy=0.

In the streamwise direction, periodic boundary conditions are
applied to both the entrance and outlet. With these condi-
tions, the steady axial velocity reads

72
u,(r) = uo(l - ]?>, (54)
where uy=a,R?>/4v is the maximum velocity. The radial and
azimuthal velocities are both zero for this problem.

Since the azimuthal component of the velocity is vanish-
ing, we can use Eq. (44) solely in simulations. However, in
order to test the performance of the proposed LBE model as
a whole, here we still apply the complete version of the
model [Egs. (44) and (45)] to the Hagen-Poiseuille with dif-
ferent lattice sizes and relaxation times. Periodic boundary
conditions are applied to the entrance and exit, and the NEES
is applied to the solid wall. Figure 2 compares the velocity
predicted by the present LBE with the analytical solutions
for Re=2Ruy/v=40. The results are obtained based on a
lattice with resolution 6,=R/16, and two values of the relax-
ation time, 7=0.75 and 1.25, are used. It is seen that the
numerical results agree excellently with the analytical one. In
Fig. 3 the relative global errors in velocity with different
mesh resolutions are presented. Here the relative global error
is defined as

”uc — ux||2
e[l

where u, is axial velocity predicted by the LBE and u, is the
analytical solution. The slops of the fittings to the errors in
the cases of 7=1.25 and 0.75 are 2.006 and 1.973, respec-

E(u) = ; (55)
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FIG. 2. (Color online) Velocity of the Poiseuille flow (Re=40,
8,=R/16).

tively, which show that the LBE is of second-order accuracy
in space. The radial and azimuthal velocities are also mea-
sured. It is found that u, is exactly zero everywhere, while
u,/ug is in the order of 10717,

In the Hagen-Poiseuille flow the driven force is a con-
stant. If the force oscillates with a period T=2m/(), i.e., a,
=G cos({)r), the flow will become the pulsatile Womersley
flow and admits an analytical solution

_ G ~ Jo(rs/R) | .o,
u(r,t) = Re{ Q [1 —Jo(s) }e },

(56)
where s=a(i—1)/ \5, a=R\Q/vis the Womersley number, i
is the imaginary unit, and J; is the zeroth-order Bessel func-
tion of the first type, and “Re” means the real part of a
complex variable.

In simulations the boundary conditions are the same as
used in the Poiseuille flow. Initially the velocity is set to be
zero everywhere, and numerical results are measured after
running ten periods. A set of simulations for different Wom-
ersley number and Reynolds number is performed. Here the
Reynolds number is defined as Re=2Ruy/v with u,
=GR?/4v. In Fig. 4 the numerical solutions as well as the

0.08

0.04

wa ()0
o

-0.04

T T —
(a) r/R
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=t g
&#t:
" 2
107 N
8:::
10' 51 10°

T

FIG. 3. (Color online) Relative global errors against lattice spac-
ing 8, at Re=40. O: 7=1.25; X: 7=0.75. Dashed lines are the two
least-squares fittings and the slopes are 2.006 and 1.973,
respectively.

analytical ones are shown at four different times for =8 and
16 at Re=1200. It can be seen that the numerical solutions
are in excellent agreement with the analytical ones. The
mesh resolution is set to be 6,=R/20 for =8, and the re-
laxation time is taken to be 0.6. With these parameters, G
~6.667X 1073 and T~ 1178. As « increases to 16, the res-
olution is insufficient and we choose 6,=R/80. Correspond-
ingly, in this case G=4.167 X 107+ and T~4712. These pa-
rameters can ensure that the Mach number of the flow is
sufficiently small so that the LBE is consistent with the in-
compressible Navier-Stokes equations.

B. Flow over a sphere

The external flow over a sphere has been well studied
both experimentally and numerically [44-50] and can serve
as a good benchmark problem for numerical schemes. Previ-
ous studies show that as the Reynolds number (Re) is less
than 200, the flow developed a steady axisymmetric wake.
Here Re is based on the free-stream velocity u, and the di-
ameter of the sphere. In this work we will simulate this flow
as Re ranges from 5 to 120, The simulation domain is O

0.02

0.01r

Ug (r, 1) /ug

-0.01r

0 0.2 0.4 0.6 0.8 1

FIG. 4. (Color online) Velocity of the Womersley flow (Re=1200, 7=0.6). (a) =8, 5,=R/20; (b) a=16, 5,=R/80.
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FIG. 5. (Color online) Drag coefficient against the Reynolds

number (8,=R/16).

=x=40R and 0=r=10R, where R=0.05 is the radius of
the sphere, and the center of the sphere is placed at (20R,0).

No slip boundary condition is assumed at the surface of
the sphere, and the free-stream boundary conditions u,=u,

u,=uy=0 are applied at the inflow boundary.

1.5

FIG. 6. (Color online) Schematic of the cylindrical cavity

flow.

boundary conditions, d,¢+1uyd,¢=0 (¢=p,u,,u,, i), are ap-

d,¢=0.

The convection

e

z/R

4

plied to the outflow boundary; at the side boundary, we set

The flow can be assumed to be nonswirling as done in
many of previous studies. As such, in our simulations we
will drop Eq. (45) from the LBE model and use Eq. (44) for

T

-

z/R

0.

()]

|

-1 0
() /R

z/R

&

-1

=
' (

b)

I

%
©

@
@ v

0 0.5
r/R

1

=

r/R

FIG. 7. (Color online) Streamline of the cylindrical cavity flow in the meridianal plane. (a) Case A (R4=1.5, Re=990), (b) case B

(Ry=1.5, Re=1290), and (c) case C (R4=2.5, Re=

1010).
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FIG. 8. (Color online) Axial velocity on the axis (uy=QR). (a) Case A (R4=1.5, Re=990), (b) case B (R4=1.5, Re=1290), and (c) case
C (R4=2.5, Re=1010). Circle: experimental [56], solid line: Navier-Stokes [57], dashed-dotted line: 3D LBE [57], and dashed line: present

LBE.

the axial and radial velocities. The boundary conditions in
terms of macroscopical variables mentioned above are
implemented in the proposed LBE through the NEES as fol-
lows. The inflow free-stream velocity boundary conditions
and the no slip boundary condition at the sphere are treated
directly by the NEES as described in Sec. IV; at the outflow
boundary, we first obtain the velocity and density at the
boundary by solving the differential equation using an im-
plicit first-order upwind finite-difference scheme and then
transfer them to the distribution function g; via the NEES.
The side boundary is treated similarly.

A mesh with size N, X N,=641X162 is used in the simu-
lations. The resolution is enough for the Reynolds numbers
considered here. The free-stream velocity u,, is set to be 0.1,
and the relaxation time is given by 7= 2Ru0/Recf5,. At each
Re, a steady state is reached after a number of iterations,
where the steady criterion is

e (1) — w(r = 10008
e (1)

<107,

namely, it is based on the relative error of the velocity field
between two successive 1000 time steps. Here the norm is
defined as |Ju||=[=, u2(x,r)+u’(x,r)]"%, where the summa-
tion is taken over the whole computation domain.

At the steady state, the drag force exerted on the sphere is
measured according to Eq. (52). In Fig. 5 the drag coeffi-
cients, C,=4F,/ puéRz, are shown and compared with pub-
lished data in previous studies for 5=Re=120. Clearly the

LBE results are in quantitative agreement with existing ex-
perimental and numerical data.

C. Cylindrical cavity flow

The azimuthal velocity vanishes in both the tube flow and
the flow over a sphere. In this section we will validate the
proposed LBE model by the swirling flow in a closed cylin-
drical cavity where u, plays a dominant role. The schematic
of the problem is shown in Fig. 6. The radius of the cavity is
R and the height is H. The bottom of the cavity is closed and
kept stationary, while the top lid rotates around the cylindri-
cal axis with a constant angular velocity ().

Previous studies (e.g., [51-56]) have shown that the flow
structure depends on two key dimensionless parameters, i.e.,
the aspect ratio R, =H/R and the rotational Reynolds number
Re=QR?/v. With different combinations of these two pa-
rameters, distinct breakdown bubbles may occur. Owing to
the simple geometry and the ease in establishing boundary
conditions, the cylindrical cavity flow has been the subject of
a large number of numerical studies based on the Navier-
Stokes equations. A recent fully three-dimensional lattice
Boltzmann simulation was also carried out to determine the
interior flow structure [57].

We shall validate the present axisymmetric LBE model by
the cylindrical cavity flow with three sets of (R4,Re),
namely (A) (1.5, 990), (B) (1.5, 1290), and (C) (2.5,1010),
which correspond to the cases in the experimental study [56]
and lattice Boltzmann simulation [57]. The computations are
based on a lattice with ,=R/100. The boundary conditions
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are set as follows: u,=u,=uy=0 for the bottom and outer
walls and u,=u,=0 and us=Qr for the top rotating wall. The
NEES is employed to realize these velocity boundary condi-
tions, and the symmetry boundary condition is applied to the
axis.

In Fig. 7 the streamlines of the swirling flow are shown
for the three cases considered. It is seen that in the cases of
(A) and (C), no breakdown bubbles are seen; in case (B),
however, a single bubble appears. The flow structures in
these cases are consistent with previous experimental and
numerical results [56,57]. To quantify the comparison, the
axial velocity u, on the axis predicted by the present LBE is
shown in Fig. 8 where the experimental data [56], the
Navier-Stokes solutions [57], and the three-dimensional (3D)
LBE results are also presented. Here u, on the axis is ob-
tained by extrapolating the values on the two nearest neigh-
boring nodes, i.e., u(x,0)=[9u,(x,0.58,)-u,(x,1.55,)]/8,
where we have made use of the symmetric property of u,.
Clearly the present LBE results are in good agreement with
the experimental and numerical ones. It is also noticeable
that the present results just lie between the Navier-Stokes
and the full 3D LBE solutions.

VI. SUMMARY

In this work a LBE model for axisymmetric flows is de-
veloped starting from the continuous Boltzmann-BGK equa-
tion. By introducing two reduced distributions, a simplified
kinetic model is first proposed which can lead to the same
hydrodynamic equations as the original one. Then, after
some standard discretizations and a variable transformation,
an explicit LBE model is obtained. Compared with existing
axisymmetric LBE models, the present one has the following
advantages: (i) it is based on the kinetic equation and thus

PHYSICAL REVIEW E 79, 046708 (2009)

has a solid foundation and can be extended to other fluid
systems following similar approaches; (ii) it can solve the
axial, radial, and azimuthal velocity within the same frame-
work and is more easy for practical applications; (iii) it has a
much simpler structure and contains no velocity gradients
that exist in most of other axisymmetric LBE models. These
advantages enable the present model an ideal tool for simu-
lating axisymmetric flows.

A set of numerical simulations are carried out to test the
performance of the proposed LBE model. The test problems
include steady/unsteady tube flows, external flow around a
sphere, and internal swirling flow in a cylindrical cavity. Nu-
merical results are compared with analytical, numerical,
and/or experimental results in previous studies, and the com-
parisons show the reliability of the present model.

In the present work the LBE model utilizes a BGK opera-
tor with a unique single relaxation time; more advanced col-
lision model with multiple relaxation times (MRT) [35,58]
can also be employed and a MRT model is expected to have
better numerical stability. The nonequilibrium extrapolation
boundary condition is employed here, but this does not pre-
vent the model from using other boundary conditions. It is
also interesting to make some performance comparisons be-

tween LBE models with different approximations to ¢ and
¢. We will study these issues in our future work.
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