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Geometry and stability of dynamical systems
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We reconsider both the global and local stability of solutions of continuously evolving dynamical systems
from a geometric perspective. We clarify that an unambiguous definition of stability generally requires the
choice of additional geometric structure that is not intrinsic to the dynamical system itself. While we explain
that global Lyapunov stability is based on the choice of seminorms on the vector bundle of perturbations, we
propose a definition of local stability based on the choice of a linear connection. We show how this definition
reproduces known stability criteria for second-order dynamical systems. In contrast to the general case, we
show that the special geometry of Lagrangian systems provides completely intrinsic notions of global and local
stability. We demonstrate that these do not suffer from the limitations occurring in the analysis of the
Maupertuis-Jacobi geodesics associated to natural Lagrangian systems.
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I. INTRODUCTION

Continuously evolving dynamical systems universally ap-
pear as models in every branch of natural science. Their
usefulness is determined by their predictivity which in turn
hinges on the stability of their solutions. Given some uncer-
tainty in the measured initial conditions, a physically mean-
ingful system should offer control on the possible evolution
of deviations from a given reference trajectory. Global con-
trol of late-time deviations is as important as a local under-
standing of stability. An extensive mathematical theory exists
for the global stability of solutions of dynamical systems; the
fundamental quantities in this theory are the Lyapunov expo-
nents that measure exponential deviations [1,2]. These expo-
nents are often very hard to determine analytically, and vari-
ous approaches for their calculation are used in the literature
[3-9]. Sometimes the stability of the same dynamical system
is considered from different points of view, and the corre-
sponding Lyapunov exponents are compared; this leads to
some debate on the question of which point of view is pref-
erable [10-14]. The local stability of solutions of dynamical
systems on the other hand seems less well understood. To our
knowledge, the existing mathematical theory is applicable
only to second-order differential systems. It was developed
by Kosambi, Cartan, and Chern (KCC) [15-17] and covers
as a special case the local stability analysis of geodesics on a
Riemannian manifold via the Jacobi equation.

In this paper we describe dynamical systems and their
perturbations in a unified geometric language which is re-
viewed in Sec. II. This language has the advantage to specify
very precisely the intrinsic geometric ingredients that define
the dynamical system. It is worth emphasizing that the trans-
lation of dynamical systems into geometry is unambiguous.
However, we will show that this is not true for the definition
of stability. We will clarify in Sec. III that stability in general
is not an intrinsic notion but requires geometric structure not
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included in the definition of the dynamical system. We will
see that global Lyapunov stability entails the choice of semi-
norms on the vector bundle of perturbations. In Sec. IV we
will then propose a general definition of local stability appli-
cable to any dynamical system. This notion of local stability
requires the choice of a linear connection and is shown to
reduce to standard stability criteria for second-order systems.
In contrast to the general case, we will demonstrate in Sec. V
that Lagrangian systems offer intrinsic geometric structures
that can be used to define global and local stability. We will
apply these results to the particularly important class of natu-
ral Lagrangian systems. For these systems also independent
notions of stability exist, which are based on the translation
of solutions into geodesics via the Maupertuis-Jacobi prin-
ciple, as we will discuss in Sec. VI. We will point out that
this detour suffers from a number of limitations which are
nicely resolved in the proposed direct intrinsic approach
valid for all Lagrangian systems. We conclude in Sec. VIIL.
The geometric constructions in this paper are illustrated
throughout by many appropriate examples.

II. PERTURBATIONS OF DYNAMICAL SYSTEMS

In this section we review the basic geometric structure
common to all dynamical systems and their perturbations.
The geometric language used here will form the basis for the
discussion of our results on the stability of solutions in the
following sections.

Fundamentally, deterministic dynamical systems can be
introduced as formal rules that describe the evolution of
points in some set S with respect to an external, discrete, or
continuous time parameter running in another set 7. More
precisely, a dynamical system is a map;

(t,x) = ¢(1,%), (1)

which satisfies ¢(z,-)o p(s,-)=p(t+s,-) for all times z,s € T.
This bare definition must be enriched with additional struc-
ture if we want to model realistic dynamical systems.

In the following we will therefore concentrate on the im-
portant class of continuously evolving dynamical systems for
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FIG. 1.
perturbations.

Trajectories

of dynamical systems and their

which T=R. Geometrically, we focus on point sets S that are
differentiable manifolds and assume that a vector field X
over S is given by

X:§—TS, p—X,eT,S. (2)

The integral curves v, of the vector field X through a point
p € S are defined by two conditions: that their tangent vector
¥,(1)=X[y,(1)] agrees with the vector field at each point, and
that ,(0)=p. For simplicity we assume that these integral
curves are defined for all times. Then a dynamical system in
the sense of Eq. (1) is defined by the flow of the vector field
X, i.e., by setting ¢(t,p)=7,(t).

Any integral curve 7y, of the flow vector field X provides
a solution trajectory of the dynamical system with initial
condition p. Perturbations of v, are studied by varying this
initial condition. Any curve p(o) with p(0)=p provides a
continuous family of initial conditions which evolve under
the dynamical system as @[t,p(0)]=7,(,)(7). All curves so
obtained are continuous variations of Yp: as a function of the
two parameters ¢ and o we thus obtain a two-dimensional
surface @[7,p(o)] in S, see Fig. 1. In consequence the two
tangent vectors X and &(t,0)=0,] 4 (0 commute, [X,£]
=0. Along the reference solution 7, which lies in this surface
at 0=0 we can now study the evolution of the tangent vector
&1)=0,!, (- Precisely this vector governs the linear stability
of the solution Y¥p» 1.€., its stability with respect to infinitesi-
mal perturbations. Globally the perturbation vector field &(z)
along v, is determined as the push-forward of an initial per-
turbation vector §, € T,S via

&) =[(1,-)].&. 3)

To summarize, the dynamical systems (S,X) that we will
study in this paper have a very simple geometric structure:

(i) they are defined in terms of a flow vector field X over
some differentiable manifold S;
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(ii) their solutions are integral curves of X; and

(iii) the linear perturbations of a solution v, are vector
fields ¢ along v, for which [X,£]=0.

Choosing local coordinates x' on S, the dynamical system
thus becomes a system of first-order differential equations
over § for the integral curves of the vector field X,

() = X[x(0)]. 4)

Expanding the commutator condition [X, £€]=0 for the linear
perturbation gives
ax'

gn= —

el ] (5)

(We remark that the last two equations can be simultaneously
obtained as the equations for an integral curve of the com-
plete lift X of X to the tangent bundle [18].)

These local expressions seem to suggest that the above
framework for dynamical systems would only allow for first-
order differential equations on a configuration space. How-
ever, this crucially depends on the choice of manifold S, its
relation to the configuration space and the type of flow vec-
tor field X. To see this we now discuss in the same geometric
framework the case of second-order dynamical systems
which will play a major role in this paper (higher than
second-order systems require higher order tangent or jet
bundles, see [19]).

Hence consider a system whose configuration space is
modeled by a smooth manifold M. Initial conditions for a
second-order system consist of an initial position ¢ € M and
an initial velocity u e T,M. Combining these into pairs
(g,u), one realizes that a natural geometric arena for second-
order systems is the tangent bundle 7M. It is clear that not all
vector fields over TM can produce second-order dynamics on
M. Indeed, a second-order system is defined by a vector field
X on S=TM with the additional condition

T.X=U (6)

for all (¢,u) € TM, where T, is the push-forward of the pro-
jection map m:TM — M, (q,u)—¢q. This condition defines
X as a so-called semispray; in local coordinates (x“,u“) on
TM one finds X= u“fd +X§a—ia. This ensures that the integral
curves of X, which satisfy

() =u(r), u(r) = X3[x(1),u(r)] = x(r) = X5[x(1),x(1)],
(7)

represent a second-order differential evolution on the con-
figuration space M. In geometrical terms, the integral curves

v of X become natural lifts y(r)=[%(r), %(t)] to TM of curves
yin M.

Once second-order systems on M have been rewritten as
(special cases of) first-order systems on S=TM, perturbations
of solutions can be analyzed as before. The perturbation

d

Ju

E=6- 8 ®
X

along a given solution y will now be a vector field over TM
with [X,&]=0. It is instructive to expand this condition in
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local coordinates (x%,u®) on TM, which yields

x5 x5
2§b+ 2 §b+

axg X3

&=6 &= b= = Sl

)

As expected, the perturbation equation can be read as a
second-order differential equation. Hence we see that the
simple geometric framework for dynamical systems and per-
turbations of solutions can be easily applied to higher-order
dynamics.

III. GLOBAL STABILITY

In Sec. IT we have defined dynamical systems (S,X) via
vector fields X and their associated flow on some differen-
tiable manifold S. We have rephrased linear perturbations of
specific solutions in the geometric language of connecting
vector fields that commute with X. In this section and in Sec.
IV we will discuss the issue of the stability of solutions un-
der such linear perturbations, both globally and locally. Us-
ing the geometric language we will be able to prove that
stability generally is not intrinsic to a dynamical system but
requires additional geometric structure beyond S and X to be
well-defined. This is an unavoidable freedom of choice. For
the usual notion of global stability in terms of Lyapunov
exponents, we show in this section that this choice amounts
to the specification of seminorms on 7'S to measure the size
of a perturbation. We will provide a number of simple ex-
amples to clarify how specific choices may be motivated.

A. Geometry of Lyapunov exponents

Consider a solution 7, of a dynamical system (S, X). The
linear perturbations of such a solution are described by tan-
gent vector fields £ along y and satisfy [X, £]=0. Given an
initial perturbation &, e T,,S. the dynamical system com-
pletely determines the evolution of ¢ along the solution vy via
the push-forward as in Eq. (3).

Intuitively, & points to a neighboring solution, so we wish
to call y unstable, if some choice of &, results in exponential
deviations of & for late times. This idea is usually imple-
mented by the definition of the Lyapunov exponent [1,2]

. 1
N(po. &) = llftn sup;ln||(¢(t, '))*§0||¢(t,po)

) 1
=1lim sup—ln”f(t)”y 6] (10)
t—w I Po

for a given initial point p, € S and initial perturbation vector
&e TPOS . Exponential growth of a perturbation will result in
positive Lyapunov exponent \; therefore, a given trajectory
identified by p, is defined as stable if and only if N(pg, &)
=0 is nonpositive for all initial perturbations &,. This is a
definition of global stability because the Lyapunov exponents
are evaluated for late times.

The definition above is geometrically meaningful only if a
way of measuring the size of the perturbation is provided.
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Mathematically, the tangent bundle 7S must be equipped
with a family of (semi)norms:

Il 7,8 = R™, - &g, (11)

for each point p of S. This is additional structure not pro-
vided in the original definition of the dynamical system
(S,X). This is an unavoidable freedom of choice resulting in
different notions of stability for the same dynamical system.
We will see this at work in the examples below.

We note that the Lyapunov exponents and the notion of
global Lyapunov stability can be straightforwardly applied to
any dynamical system formulated as a vector flow. For in-
stance, in the case of a second-order system over a configu-
ration space M, which we have seen is a vector flow over
S=TM, the additional geometric structure needed to define
global stability is a family of seminorms on the bundle 7S
=TTM. We will see this construction at work below.

Even though a family of seminorms is sufficient to define
Eq. (10), many general results in the theory of Lyapunov
exponents have been achieved by equipping S with a Rie-
mannian metric and considering the associated family of
norms on 7S. In this case, it can be shown that for a given
point p the Lyapunov exponent A(p, &) can assume at most n
distinct values, )\‘f,l)< e Moreover, there exists a so
called filtration E; C ... CE,;=T,S such that A(p,f):xg) for
£e E\\E;_;. So initial perturbations from this subset of 7,S
result at late times in exponential deviations controlled by
the corresponding Lyapunov exponent. Stability theory based
on Lyapunov exponents is a vast subject; we will not detail
its major achievements here but refer the interested reader,
e.g., to [3,4]. We only remark the following notable result: on
a compact Riemannian manifold S, the supremum limit in
Eq. (10) can be replaced by the ordinary limit which, more-
over, is finite and independent of the particular Riemannian
metric defined on S.

We emphasize that the key point behind the Lyapunov
notion of global stability of the trajectories of a dynamical
system (S,X) is the necessity for additional geometric struc-
ture: seminorms on 7S that can measure the size of the per-
turbation.

B. Examples

One could suspect that even though the Lyapunov expo-
nent quantitatively depends on the specific choice of semi-
norms on 7S, the qualitative notion of stability would not.
However, the following simple example immediately reveals
that this is not the case. Consider the inverted harmonic os-
cillator over M =R with Lagrangian

1
L= E(u2 + u*x?) (12)

for ©>0. It is easy to see that the associated flow vector
field on TM is given by X=(u,u’x). A generic perturbation
of the solution x=Ae*+Be ™™ is given by ¢&()=(ae*
+be™#)4,, where a and b are arbitrary constants parametriz-
ing the possible choices for the initial perturbation vector &
e T,TM. The point p at =0 has coordinates (x,u)=[A
+B,u(A-B)]. The simple choice of seminorms induced on
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TM by the Euclidean metric g=dx ® dx gives the Lyapunov
exponents

1
MA,B,a,b) = lim—In(ae* + be™™). (13)

t—o I

The Lyapunov spectrum is then given by {—u, u}, where —u
is associated to the subspace a=0 of T,TM and w to its
complement. Therefore the solution is classified as unstable.
However, why should we not consider the metric g=(x’
+1)7'dx® dx? Then the Lyapunov exponent

aet + be ™

o1
NA,B.,a,b) = hm—ln(Aew T B 1

t—o I

(14)

vanishes (excluding the fixed-point case A=B=0). The solu-
tion is now classified as stable in contradiction to the previ-
ous result.

So different choices of seminorms indeed result in differ-
ent notions of stability. How then does one choose these
seminorms? One possibility is that of additional physical in-
terpretation. Consider a particle in three dimensions and the
two possible choices of seminorms,

I8P =¢&. 3=&+&+E=E+rE+rsin® 08,
(15)

in Cartesian coordinates (x,y,z) and spherical coordinates
(r,6, ). Clearly, the seminorm |-||, only asks for radial sta-
bility, while the norm ||-||; asks for stability with respect to
all Cartesian directions. Whether one or the other norm
should be chosen depends on the physical question one
wants to answer.

However, some dynamical systems provide sufficient geo-
metric structure to construct the seminorms entering the defi-
nition of the Lyapunov exponents. In a later section we will
show that this is the case for all Lagrangian systems. It is
also true for geodesics on a Riemannian manifold (M,g),
which can be seen as a second-order dynamical system (S
=TM ,X). Here, seminorms on TTM can be constructed from
any one of the well-known lifts of the metric g to the tangent
bundle which are discussed in detail in [22]. As an example
we may choose

Il = (g"),(£&.9) (16)

by employing the vertical lift of g to TM which is defined by
g'(X,Y)=g(m.X,mY) for vector fields X,Y on TM. This
construction relates instability to the exponential divergence
of trajectories purely in the configuration space, which again
could be a physically motivated choice. In the notation of
Eq. (8) we have m.£=£{d/dx“ so that the degenerate bilinear
form g" projects out the components &. Indeed, for a geo-
desic ¥: R — M with initial condition (¢,v)=p € TM and ini-
tial perturbation (§;,&,)=¢ e T,TM, the Lyapunov exponents
then follow as

1
Ap.§) = }inizln g5l &1(0), & 0] (17)

PHYSICAL REVIEW E 79, 046606 (2009)

IV. LOCAL STABILITY

In this section we discuss the local stability of solutions of
dynamical systems under linear perturbations. We propose a
geometric method to determine local stability. As was the
case for global stability, local stability generally will be de-
fined with respect to additional geometric structure that is not
provided by the original definition of the dynamical system,
in this case a linear connection. Again, this is an unavoidable
freedom of choice. We show how a specific choice of con-
nection recovers as a special case the known stability theory
of Kosambi [15], Cartan [16], and Chern [17] for second-
order systems. The construction is illustrated by simple ex-
amples.

A. Geometric proposal

We now turn to a very intuitive proposal for the local
stability of solutions of any dynamical system (S,X). We
wish to classify a solution Yp, as locally stable if the accel-
eration between Yoo and a neighboring solution is negative,
i.e., if the curves are forced together. To implement this tech-
nically, we need to be able to calculate the second derivative
of the perturbation vector field ¢ that points to the neighbor-
ing solutions. The only derivative that is available without
introducing further structure is the Lie derivative, but already
the first derivative £y£=[X, £]=0 vanishes. Recall that this is
a property of any perturbation vector field. So the discussion
of local stability requires the introduction of another deriva-
tive.

The definition of local stability proceeds in two steps.
First, we introduce a linear connection VY that sends a pair
of vector fields X,Y over S to another vector field over S.
Using the connection, one finds that the second covariant
derivative of & along the flow X is a linear operator on TS
which can be written as

Vi Vié=[V(TX, )+ V. X)+(T(X,)+V .X)*]- &

=R(X) - ¢, (18)

where T(X,Y)=V,Y-V,X-[X,Y] is the torsion tensor of V
and both 7T(X,-) and V.X are linear operators on TS. Second,
we define a solution Yoo of the dynamical system as locally

stable if all eigenvalues of the linear operator R evaluated
along Yp, Are nonpositive.

To our knowledge this definition of local stability, which
can be applied to dynamical systems of any order, has not
appeared in the literature. We emphasize that the key point
behind the notion of local stability of the trajectories of a
dynamical system (S,X) here proposed is the necessity for
additional geometric structure: a connection V on 7§ that
allows us to measure the acceleration between nearby curves.

B. Special case: KCC stability theory

We will now show that our proposal has a very nice rela-
tion to KCC stability theory as developed by Kosambi, Car-
tan, and Chern [15-17] for second-order dynamical systems
over a configuration space manifold M. We have already
seen that these systems are defined as vector flows over the
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tangent bundle S=7M in terms of a semispray X. Without
loss of generality we may use local coordinates x*=(x",u%)
on S to write

Jd
X= uaﬁ - 2G*(x,u) (19)
X

d
u’
To discuss the geometry of the dynamical system so de-
fined, KCC introduce a nonlinear connection N on M with
coefficients NZ:?—;. This can be understood in terms of a

dynamical covariant derivative V¥ for two vector fields v,w
over M,

J
axP’

N, a b a
Vyw=[v 3,(W?) + N2 (x,0)w"] (20)
[In the special case of a linear connection one simply has
Nj(x,v)=T% (x)v.] Using V¥ one can rewrite the second-
order equation in Eq. (9), which governs the evolution of a
perturbation vector & over M, in the form

VIVYE = P(3) - & (21)

for a linear operator P on TM the components of which may
be found, e.g., in [20]:

96" Ny N
- —4u -
axP Ju® ox¢

Py==2 + NIN;,. (22)
A solution Yro of the dynamical system is called KCC-stable
if all eigenvalues of P evaluated along Vp, are nonpositive.
Now to define local stability of the system (S=TM,X),
with X provided by Eq. (19) according to our proposal, we
need to specify a linear connection V over S=TM instead of
a nonlinear connection over M. For this purpose we note that
for every nonlinear connection N on M exists an associated
compatible linear connection V on TM, which is said to be of
Berwald type. Technical details and the global form of this
linear connection are given in [21]. The components of V are
defined by V,E B:FgAEC with respect to a basis (E,) of
TTM. Choosing the basis (EA)=(£0—N}’i 2} adapted to

agub’ gut
N, the only nonvanishing connection components are
c _ c
Za= &;G a’ % = a:G a’ (23)
ou’ du ¢ Jdu’du

In the same basis, we now calculate the linear operator E(X)
on TS=TTM defined in Eq. (18), the eigenvalues of which
are relevant for our proposal for local stability. The result has
the form

_ | R, +P; -2(0e);
Ry = . o (24)
» Rk,
in terms of the deviation tensor P that appears in the stability
Eq. (21) of KCC theory, of €/=2G*~Nju’, of (5€)Z=376:, and
of two more tensors R; and R,. We only need to know that
de=0 implies R,;=0; in this case the eigenvalues of R are
precisely those of P, so our definition of local stability re-
duces to the KCC definition. Note that de=0 is solved by
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G“(x,u) = G5)(x,u) + %ea(x), (25)

where G{y(x,u) is homogeneous in u of degree 2. We will
see that semisprays with such G arise from natural Lagrang-
ian systems. So our criterion for local stability reduces to the
KCC criterion for all natural Lagrangian systems.

The fact that local stability of a second-order system can
be equivalently understood in terms of a nonlinear connec-
tion on M or in terms of a linear connection on 7M as we
propose was already shown for €=0 in [21] but in a different
way. This is in fact the only case where the KCC stability
treatment seems to be natural because the second-order sys-
tem then takes the autoparallel form V;VX=0. But also the
Berwald-type connection satisfies VyX=0. For all other cases
we do not consider a nonlinear connection a particularly
natural structure. Another point in favor of our linear con-
nection proposal is the fact that it is naturally defined for any
dynamical system (S,X), not only for those related to
second-order dynamics.

C. Examples

We have seen that the definition of local stability of the
solutions of dynamical systems (S,X) generally requires the
choice of additional geometric structure: a connection on 7.S
to measure local accelerations. However, some dynamical
systems feature sufficient geometric information to construct
such a connection. We will show below that this is the case
for all Lagrangian systems. As we will show now, it is also
true for geodesics on a Riemannian manifold (M, g).

Affinely parametrized geodesics with tangent vector field
X over M obey the equation V;%:O, where VL€ is the Levi-
Civita linear connection over M determined by the metric g.
The semispray [Eq. (19)] associated to the geodesics is de-
fined by 2G*=T"%%, u’u¢; so comparison to Eq. (25) yields
€’=0. As discussed above, there is a linear connection V
over TM naturally associated to V'€ (which now plays the
role of N). This connection V of Berwald type is nothing else
but the horizontal lift V=V of V'€ to TM; see [22] for
details. According to our proposal, local stability of a geode-

sic now requires that the eigenvalues of R(X) as defined in
Eq. (18) should be nonpositive. From the calculation made
above in the comparison to KCC theory, using €‘=0, we
hence deduce that local stability becomes equivalent to the
eigenvalues of P(x);=-R}, %! being nonpositive. Consid-
ering the geodesic deviation equation,

(VEOVECE) = - RS, 0098, (26)

for a simple perturbation [x,&,]=0 on M then tells us that
our notion for the local stability of geodesics naturally re-
duces to the standard definition of geodesic stability.

To see this more explicitly, consider (M,g) to be
a Riemannian space of constant curvature. Then R,
=2kga1c8a415» and so we need to find the eigenvalues of

P()" = — kg(,5) 8 + ki, 27)

which are 0 and —kg(x,x). Local stability is given if and only
if these values are nonpositive, namely, if k=0. This means
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geodesics are locally stable on flat and spherical geometries,
as one would expect intuitively.

V. STABILITY ANALYSIS OF LAGRANGIAN SYSTEMS

We will demonstrate in this section the existence of intrin-
sic notions of global and local stability for solutions of arbi-
trary Lagrangian systems. Geometric structure apart from
that given by the Lagrangian system itself will not be re-
quired. The derivation of these new results is based on our
geometric discussion of stability in the previous sections. To
apply our geometric machinery, we will first need to formu-
late Lagrangian systems as vector flows. This done we will
construct the seminorms required for global stability and the
connection needed for local stability. As an example we ap-
ply these general results to the important class of natural
Lagrangian systems which are quadratic in the velocities. For
these the intrinsic notions of stability recover those physi-
cally motivated.

A. Geometric formulation

A Lagrangian system is a pair (M,L) of a configuration
space manifold M and a Lagrangian function L:TM — R.
Locally this is a function L(x,u) of coordinates x* on M and
coordinates u“ on 7, M that give the components of a vector
u in the coordinate-induced basis Eﬁa. The trajectories of the
Lagrangian system are the curves y:R— M with tangent
vectors y for which the variation of the action integral van-
ishes,

0=65[y]= 5 f LI, 90 dr. (28)

1

In the variation the curve’s end-points y(¢,)=p, and y(,)
=p, are held fixed. Once coordinates have been chosen, so-
lutions x“(f) must satisfy the Euler-Lagrange equations
dJdL L
dtgi®  ox*

(29)

As any second-order dynamical system, a Lagrangian sys-
tem can be described as a vector flow X on S=TM. Since this
formulation is not so well known, we present the relevant
steps following [23]. First, one defines the Liouville vector
field A=u" 5 - on TM. This produces the energy function
E:TM —M by E=A(L)-L. Now recall that a vector field ¥
on TM is said to be vertical if it is tangent to the fiber,
. Y=0. Moreover a vector w=w —a on M, has an associ-
ated vertical lift w¥=w* o 0 TM. Comblmng the vertical lift
and 7, defines a (1,1) tensor field S on TM by S(Y)
=(a.Y)V; in coordinates, S= —;@dx With these ingredients,
we can construct the two-form w=d(dL°S) on TM. As a final
step, the vector field X generating the Lagrangian flow is the

unique vector field X solving
iyw=-dE. (30)

This construction is easily understood in a local chart (x,u)
of TM. Simple algebra shows that
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JE ( FL ﬂ)du PL b
= u —— |dx“ + u’du”,
ax* oub Ax? ou® dub

= dx® A dx” + du® A dx”. 31
ax® 9 u® u® gu® (31
Writing X=X{-% pwe +X§ (,'a, condition (30) is equivalent to
P L aL
X{=u", X5+ X{——=0. 32
: e au’ T axaut” ! axb (32)

This shows that the vector field X on TM is a semispray, as
needed for a second-order dynamical system. The integral
curves of X indeed solve the Euler-Lagrange equations.

B. Intrinsic notions of stability

Within the geometric picture of Lagrangian systems
(M ,L) as dynamical systems (S=TM,X) we are now in the
position to ask for the stability of solutions. We will discuss
global and local stability in turn and show that Lagrangian
systems provide sufficient geometric information to con-
struct the relevant seminorms and connection.

The definition of global stability via Lyapunov exponents
requires the specification of a family of seminorms on the
tangent bundle 7S. We observe that a Lagrangian system
provides us with an intrinsic object that can be used for this
purpose:

g= de“ ® dx’. (33)
Although the coefficients of g depend on the fiber coordi-
nates u for generic Lagrangians L, this so-called generalized
Lagrange metric [24] transforms under coordinate transfor-
mations of S=TM as a (0,2) tensor on M. Regularity of the
Lagrangian corresponds to rank g=dim M. The situation for
the Lagrangian system is now very similar to that of geode-
sics on a Riemannian manifold. Instead of lifting the Rie-
mannian metric to TM, we simply need to extend the gener-
alized Lagrange metric g to TM. As for lifts, there are several
possibilities. As an example we consider the case, where g as
displayed above is simply read as a tensor over 7M. For a
reference solution %:R— M with initial condition (g,v)=p
€TM and initial perturbation (&,6,)=6eT,TM, the
Lyapunov exponents are then simply calculated as

1
Mp.§) = }imwjln 870l €10, & (1)]. (34)

Even though one could have made a different choice for the
seminorms, we wish to emphasize two important points. Our
choice here does not require geometric structure beyond the
data given by the Lagrangian system. Moreover, we will see
in our application to natural Lagrangian systems below that it
is physically reasonable: since the formula above is of the
same form as that for geodesics where we used the vertical
lift of the Riemannian metric, this choice of seminorms mea-
sures the exponential deviation of perturbations purely
within the configuration space M.

046606-6



GEOMETRY AND STABILITY OF DYNAMICAL SYSTEMS

To define the local stability of solutions of (M ,L) we need
to specify a linear connection acting on vector fields on S
=TM. Again the Lagrangian system provides us with an in-
trinsic choice. We may simply use the Berwald-type linear
connection V on TM which is associated to any given semi-

spray. The relevant quantities G* and N,“,:% needed to de-

termine this connection follow by combining Egs. (19) and
(32) and the definition of the generalized Lagrange metric:

G 1 ab &2L
=-g

1, 0L
-u — .
2° gub 9x° Zg axb

(35)

In the basis (EA)z(Eﬁ“_NZ&_Z’“ az“) of TS the connection V is
then provided by the connection coefficients Eq. (23).

So we have shown that both the global and local stability
of solutions of a Lagrangian system (M,L) can be defined
intrinsically without the introduction of further geometric
structure. This makes essential use of the fact that the La-
grangian system can be rewritten in the dynamical system
language as a vector flow X over S=TM. We will now apply
these general results to the important class of natural La-
grangian systems.

C. Application to natural Lagrangian systems

We specialize the intrinsic notions of stability developed
for general Lagrangian systems to natural Lagrangian sys-
tems. These are defined by Lagrangian functions L:TM
— M which are quadratic in the velocities:

1
L(x,u) = Ekab(x)u“ub - V(x). (36)

This corresponds to a dynamical system (S=7TM,X) for
which the flow vector field X over TM is determined accord-
ing to the general expression (32), and in terms of the Levi-
Civita connection of the kinetic-energy metric k, as
X{=u", X5=-2G"=-T{,u'u" -V V. (37)
The intrinsic notion of global stability proposed above is
based on the generalized Lagrange metric g of Eq. (33)
which here agrees with the kinetic-energy metric, g=k. As-
suming a regular Lagrangian and positive energy amounts to
the requirement of positive definiteness of k. The second-
order evolution equation of perturbations &; can be rewritten
as

(VIVIE) == (Riy "5+ Vi ViPVIE. (38)

The calculation of Lyapunov exponents follows Eq. (34)
with g=k. The formula tells us that global stability is mea-
sured purely within the configuration space of the system.

In the physical example of a set of particles moving in
some potential, this recovers precisely the concept of global
stability standardly used. The norm squared k(&;,&,) then
simply is the sum of squares of all Cartesian coordinate per-
turbations.

The intrinsic notion of local stability proposed above is
linked to the Berwald-type connection on S=7TM. Note that
the natural Lagrangian system has a flow vector field X9
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=-2G“ of the type Eq. (25), so our general calculation above
shows that local stability becomes equivalent to the KCC
definition. In practice, therefore, local stability means non-
positive eigenvalues of the endomorphism P defined in Eq.
(22). Specializing to the case here we therefore find

Pj= = Ry pu"u? = Vi VOV, (39)

where u has to be evaluated for the tangent vectors X along a
reference solution. This is the same operator as the one we
found governing the evolution of perturbations.

We may again consider a system of particles moving in
some potential. In this case the Levi-Civita connection of k
has zero curvature. In a Cartesian coordinate system the en-
domorphism P hence essentially reduces to the Hessian of
the potential. So also the intrinsic notion of local stability
reduces to the standard criterion of non-negative effective
mass of all particles. To make this even more specific recon-
sider the example of the single particle in the inverted har-
monic oscillator potential of Eq. (12). The generalized
Lagrange metric now gives a preferred intrinsic choice of
seminorms in terms of g=dx®dx, thus leading to the ex-
pected global Lyapunov instability of the system. For local
stability we indeed find the positive mass criterion P=u?
<0.

It is now clear that our choices above of seminorms and
connection which define the intrinsic notions of global and
local stability for Lagrangian systems precisely agree with
the physically natural stability concepts.

VI. ADVANTAGES OF THE INTRINSIC
STABILITY THEORY

The solutions of natural Lagrangian systems can be trans-
lated using the Maupertuis-Jacobi principle to geodesics on
an associated Riemannian manifold. We have seen that both
global and local stability can be easily defined for geodesics,
and this fact is often used in the literature to analyze the
stability of natural Lagrangian systems. The main purpose of
this section is to clarify the differences between the intrinsic
notions of stability discussed in Sec. V and the notions of
stability obtained from the translation principle. It will turn
out that the intrinsic notions of stability have considerable
advantages.

A. Riemannian translation

Geodesics on a Riemannian manifold with fixed affine
parametrization can be viewed as a Lagrangian system. The
converse is also true for natural Lagrangian systems. We now
state a version of the Jacobi-Maupertuis principle, including
indefinite kinetic-energy metrics which occur, e.g., in scalar
field cosmology [25-27]; then we will use this translation
principle to investigate how the geodesic stability [28] and
our definition of intrinsic stability of natural Lagrangian sys-
tems compare.

Let (M,L) be a natural Lagrangian system Eq. (36) with
nondegenerate quadratic form k. Then the solution trajecto-
ries of fixed energy
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E= %kub(x)xaxb +V(x) (40)

of the Lagrangian system coincide with the geodesics of the
metric manifold (M,g) with

8ab= C|E_ V(x)|kub (41)

for constant C>0 (the conventional choice is C=2). The
time parameter ¢ of the Lagrangian system is related to the

affine parameter 7 of the geodesics, which we define by
dx® dx”
|gahﬁﬁ =1 as

dr
dr

1
\20E- V()|

(42)

To see why the Jacobi-Maupertuis principle holds, we
write the Euler-Lagrange equations of motion of the La-
grangian system as

X4 T, X% + k™0, V = 0. (43)

Now consider geodesics on a metric manifold (M,g) with
the conformally rescaled metric g,,=0"k,, parametrized in
terms of an arbitrary nonaffine parameter also called ¢. These
geodesics satisfy the equation

R .
X4 Tl %7 = > d—tln|g[,qx”xq| =0, (44)

now using the Christoffel symbols I'(,) of the rescaled metric
g, and may be rewritten in terms of the original kinetic-
energy metric k and the conformal factor o as

X+ Tl p %’ = (K, P%1)k* 3, n| o +x"ilnL =0.
(k)b P b dt |kpqxpxq|]/2
(45)
This equation is equivalent to the Euler-Lagrange Eq. (43)
provided that
B
a2 =0
[kt 511
(46)

d
k3, V + (k3P 3)k ), In| o] — x“;tm

The contraction of this condition with x°k,, is easily inte-
grated with integration constant E, yielding the Hamiltonian
constraint Eq. (40). We solve this for k,, %9 and substitute
back into the above condition for the equivalence of the geo-
desic and Euler-Lagrange equations. Rearranging the terms
we obtain

M d. o
— —In =
|E - V| 2(E-V)dt |E - V|

kg, In 0. (47)
This is satisfied for all possible trajectories only if o?=C|E
— V| for positive constant C, which demonstrates the first part

of the claim. Finally, ga,,%dd—{) =1 defines an affine param-
eter 7 along the geodesics of (M,g). We may now use the
Hamiltonian constraint and our result for ¢” to show that
(dt/d7)*>=07%/2 relates the affine parameter to the Lagrang-

ian time.

PHYSICAL REVIEW E 79, 046606 (2009)

B. Geodesic stability

Using the translation principle, the stability of solutions of
natural Lagrangian systems can now be discussed in terms of
the stability of the corresponding geodesics. It turns out that
this approach has a number of limitations that are not always
appreciated in the literature:

(1) the boundaries of the Riemannian manifold;

(2) the absence of perturbations that modify energy and
the change to affine time;

(3) the problem of one-dimensional systems.

These points equally impact the discussion of global and
local stability.

1. Boundaries of the Riemannian manifold

The Maupertuis-Jacobi principle translates the solutions
of a natural Lagrangian system (M,L) with given energy E
into geodesics of an associated n-dimensional metric mani-
fold (M,gF) with metric gp=0’k, see Eq. (41). This Rie-
mannian metric has a singular boundary at all points where
the conformal factor o2 vanishes, i.e., for V(x)=E, even as-
suming regularity of the kinetic-energy metric k. The Ricci
scalar

Ry =0 [Ryy=2(n =1y In &
= (1=2)(1= DV In oVl o], (48)

generically diverges for a vanishing o. This means that the
boundary singularity is a curvature singularity, not an artifact
due to a possibly poor choice of coordinates.

The fact that the Riemannian manifold used to model the
Lagrangian system has a singular boundary can give rise to
difficulties in the discussion of the equivalent dynamical sys-
tem, see, e.g., [29,30]. All solutions for which the velocity
vanishes at some time parameter will hit this boundary;
therefore their evolution cannot be determined in the geode-
sic picture even though it is perfectly well defined on the
dynamical side. Consequently, neither the global nor the lo-
cal stability of solutions hitting the boundary can be deter-
mined: the geodesics cannot be extended outside a limited
range of their proper parameter, so the late time limit that
needs to be taken for the Lyapunov exponents is ill-defined;
also local stability cannot be checked along a complete tra-
jectory. Moreover note that fixed-point solutions, with van-
ishing velocity everywhere, are not tractable in the geodesic
picture at all. This strikingly contrasts the dynamical system
analysis, in which stability of fixed points is well understood.

The relevance of these issues is easily illustrated already
in simple radially symmetric systems

L= 5437V, (49)

with r=(x?+y*)"2. First, consider the harmonic-oscillator
potential V(r)=r> and solutions of energy E=1. In this case,
the Riemannian manifold will be restricted to {(x,y)|0=r
<1} with metric g=2(1-r?)(dx®dx+dy®dy). The Ricci
scalar is given by R=2(1-7r%)73 so that the boundary is in-
deed singular. One may check that all radial geodesics, char-
acterized in polar coordinates by ¢=0, reach the boundary in
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Vi(r)

V_(r)

FIG. 2. Potentials of different dynamical systems mapped to the
same Riemannian manifold.

finite proper time. Therefore the manifold is also geodesi-
cally incomplete. These conclusions hold in full generality
for similar potentials, too. To illustrate the consequences for
the stability analysis we consider the potentials

Vo) =217 -r*£20(~”-1)(?-1)%, (50)

where O is the Heaviside step function, see Fig. 2. Solutions
with E=1 and initial position close to r=0 are mapped to the
same Riemannian manifold for both potentials. So the differ-
ences of the two dynamical systems cannot be resolved in
their geometrical image. In particular, the stability of radial
solutions under small perturbations is (under any reasonable
intuitive idea of stability) dramatically different in the two
systems, which the geodesic picture is unable to reveal.

On the positive side, we remark that in complex systems
solutions reaching the boundary of the manifold are the ex-
ception more than the rule, at least if the kinetic-energy met-
ric is positive definite. The set of initial conditions for solu-
tions reaching the boundary will be very restricted. Solutions
with generic initial conditions are expected to be confined to
the interior of the manifold. In the examples above, only
radial geodesics reach the boundary since an arbitrarily small
angular momentum already prevents points of vanishing ve-
locity along the trajectory.

2. Perturbations that modify energy
and the change to affine time

The energy of the solutions of a Lagrangian system di-
rectly enters the definition of the metric of the corresponding
Riemannian manifold. Hence a generic Lagrangian system
cannot be mapped completely into a single metric manifold.
Note that two metric manifolds (M, gg, ) and (M, gg,) cor-
responding to different choices of fixed energy do not pos-
sess isometric regions, which makes it impossible to use part
of a given manifold to discuss dynamics at different energy.
For the discussion of global or local stability this means that
only perturbations leaving the energy fixed can be consid-
ered. From the Lagrangian point of view an initial perturba-
tion is represented by a vector ¢ in the 2n-dimensional space

PHYSICAL REVIEW E 79, 046606 (2009)

T,TM, where p € TM provides initial conditions for the ref-
erence solution. A perturbation modifies the energy of the
trajectory unless &(E)=dE(£)=0, where E is the energy func-
tion defined in Sec. VI A. We can assume dE # 0, because
the system otherwise would be in a fixed point, so dE(&)
=0 restricts £ to a (2n—1)-dimensional subspace of 7,7M. In
the geodesic translation we therefore expect to have control
only over this subspace.

Another point to note is that the preferred role of the
Lagrangian time is lost in translation from the Lagrangian
picture to the geodesic picture. In the latter the only geo-
metrically natural parameter is the affine parameter along the
geodesics. That this has impact on the discussion of stability
becomes clear in simple examples, where time rescalings
may render unstable solutions stable and vice versa.

The nonexistence of energy-changing perturbations and
the loss of Lagrangian time reduce the control of stability of
natural Lagrangian systems when discussed in the geodesic
picture. This fact is nicely reflected in the reduction in the
number of relevant exponents in the Lyapunov spectrum. To
see this note that the evolution equation for the perturbation
vector & in Eq. (9) can be recast as the Jacobi Eq. (26) using
the Levi-Civita connection of gp. In a parallely transported
orthonormal basis (e,)=(ey=x,e,) with V;Ceazo the Jacobi
equation becomes

&=0, &=-Rjud. (51)

Choosing as initial perturbation 5(1) =0, &7'=0, and éf‘=0 give
the solution ¢'=const and &'=0, and the corresponding
Lyapunov exponent clearly vanishes. The perturbation corre-
sponding to this exponent is an infinitesimal shift along the

geodesic. The choice of initial conditions 5? =0, &'=0, 5,“
=0 gives the solution &=const 7 and &*=0, and hence a
second vanishing Lyapunov exponent. In this case, the initial
perturbation corresponds to an infinitesimal shift of the ini-
tial velocity along the geodesic. As a consequence, only 2n
—2 Lyapunov exponents in the spectrum remain significant.

3. One-dimensional systems

While it is often argued that the geodesic translation is
useful for complex systems [8], one must emphasize that it
completely breaks down for simple one-dimensional sys-
tems. We already noted above that one obtains two vanishing
Lyapunov exponents for any translated system; for n=1 this
means that all Lyapunov exponents vanish. So global stabil-
ity cannot distinguish arbitrary one-dimensional systems.
The situation is similarly bad for local stability. All one-
dimensional Riemannian manifolds are flat, so the eigenval-
ues of the Riemann tensor are zero. But then also local sta-
bility cannot distinguish arbitrary dynamical systems. Both
concepts become meaningless for one-dimensional systems.

After analyzing the different aspects of the geometric pic-
ture, we conclude that the Riemannian way to define stability
suffers from a number of limitations. General dynamical sys-
tems cannot be mapped into a unique Riemannian manifold,
which leads to the presence of singular boundaries that may
spoil the method of any predictive power. Perturbations that
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modify the energy cannot be discussed at all. Systems with a
small number of degrees of freedom are affected more se-
verely; the method is not applicable to the one-dimensional
case.

None of these limitations apply to the intrinsic definitions
of stability. The generalized Lagrange metric is just k without
any conformal factor so that no singular boundaries can oc-
cur. Full control on perturbations that change energy is ex-
pected; indeed, the additional contribution from the potential
in Eq. (38) in contrast to Eq. (51) removes possible degen-
eracies that could be responsible for a reduced number of
Lyapunov exponents. One-dimensional systems do not pose
a problem for the intrinsic formalism, as we have already
seen in the example of the inverted harmonic oscillator.

VII. CONCLUSION

The use of geometric language clearly specifies the intrin-
sic ingredients of a given physical system and at the same
time clarifies which mathematical structures may be mean-
ingfully used. In this paper we have analyzed the stability of
solutions of dynamical systems in geometric language. We
have restricted ourselves to the important class of continu-
ously evolving systems which can be formulated as vector
flows X over some smooth manifold S. Although the solu-
tions simply are integral curves of the vector field X, this is
not a restriction to first-order systems; the order rather de-
pends on the choice of (§,X). Linear perturbations of refer-
ence solutions are characterized by vector fields & over S that
commute with X. Within this basic framework we have re-
considered the question of the stability of solutions under
linear perturbations.

For the analysis of global stability exists the extensive
mathematical theory of Lyapunov exponents. Here, using the
geometric formulation, we have clarified that global stability
in general is not an intrinsic notion. It requires outside infor-
mation that has to be added to the dynamical system (S,X).
More precisely, a family of seminorms has to be given on the
tangent bundle 7S. This arbitrariness of choice is not suffi-
ciently appreciated in the literature that applies the global
stability concept. We have discussed a number of examples
to show how specific choices are motivated in concrete
physical applications.

In order to analyze the local stability of solutions of (S,X)
we have proposed a very intuitive criterion that requires the
additional choice of a linear connection on 7S to measure
local accelerations. Hence also local stability in general is
not intrinsic to the dynamical system. Our connection crite-
rion for local stability is applicable to any dynamical system.
For the case of second-order systems we have shown how it
reduces to the stability theory of Kosambi [15], Cartan [16],
and Chern [17]. In fact, for a specific natural choice of con-
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nection we have proven equivalence of our criterion to KCC
stability theory for natural Lagrangian systems.

We have demonstrated that some dynamical systems con-
tain sufficient geometrical structure to allow for completely
intrinsic definitions of global and local stability. In particular
this is the case for geodesics on a Riemannian manifold, as
we have worked out in detail. But notably, we have been able
to show that this is also the case for general Lagrangian
systems (M,L). Writing them as dynamical systems (S
=TM ,X) shows that the definition of global Lyapunov sta-
bility proceeds from the generalized Lagrange metric which
simply is extended to the bundle 7S. Local stability accord-
ing to the proposed connection criterion uses the Berwald-
type connection on 7§ associated to the Lagrangian semi-
spray X. No previous notion of local stability seems to cover
general Lagrangian systems.

For natural Lagrangian systems given by Lagrangians
quadratic in the velocities, the Jacobi-Maupertuis principle is
commonly applied to translate solutions of fixed energy into
geodesics of an associated Riemannian manifold. We have
compared the resulting notions of geodesic stability with our
proposed intrinsic notions derived from the Lagrangian sys-
tem. We have pointed out that geodesic stability suffers from
various illnesses: boundaries of the Riemannian manifold
that are curvature singular; the nonability to resolve pertur-
bations that modify energy; and the complete breakdown of
the analysis for one-dimensional systems. None of these is-
sues troubles our intrinsic definitions of stability in the La-
grangian picture.

The main achievements of this paper are the following:
the clarification that the commonly applied Lyapunov crite-
rion for global stability is not intrinsic to a generic dynamical
system but requires additional data; the proposal of a crite-
rion of local stability which is applicable to any dynamical
system, not only second-order ones; the proof that Lagrang-
ian systems provide sufficient data to define intrinsic notions
of global and local stability; and the demonstration for all
natural Lagrangian systems of the advantages of these intrin-
sic notions of stability over other criteria used in the litera-
ture. All these results are based on our rewriting of the struc-
tures that underlie any discussion of the global or local
stability of solutions of dynamical systems in a geometric
language.
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