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Modulational instability in two-component discrete media with cubic-quintic nonlinearity
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The effect of cubic-quintic nonlinearity and associated intercomponent couplings on the modulational insta-
bility (MI) of plane-wave solutions of the two-component discrete nonlinear Schrodinger (DNLS) equation is
considered. Conditions for the onset of MI are revealed and the growth rate of small perturbations is analyti-
cally derived. For the same set of initial parameters as equal amplitudes of plane waves and intercomponent
coupling coefficients, the effect of quintic nonlinearity on MI is found to be essentially stronger than the effect
of cubic nonlinearity. Analytical predictions are supported by numerical simulations of the underlying coupled
cubic-quintic DNLS equation. Relevance of obtained results to dense Bose-Einstein condensates (BECs) in
deep optical lattices, when three-body processes are essential, is discussed. In particular, the phase separation
under the effect of MI in a two-component repulsive BEC loaded in a deep optical lattice is predicted and
found in numerical simulations. Bimodal light propagation in waveguide arrays fabricated from optical mate-
rials with non-Kerr nonlinearity is discussed as another possible physical realization for the considered model.
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I. INTRODUCTION

Modulational instability (MI) is a generic phenomenon in
nonlinear physics responsible for spontaneous pattern forma-
tion both in uniform and nonuniform media. It occurs under
combined effects of nonlinearity and dispersion (in temporal
domain) or diffraction (in spatial domain), when the constant
background wave becomes unstable against small amplitude
periodic perturbations in a specific range of wave numbers
[1]. MI is considered as a precursor to formation of localized
nonlinear excitations, or soliton trains, and deeply studied
since its recognition in the 1960s, in nonlinear optics [2],
plasma physics [3], hydrodynamics [4], electrical transmis-
sion lines [5], and more recently in Bose-Einstein conden-
sates (BECs) [6]. For comprehensive reviews of MI in
Hamiltonian systems, both in continuous and discrete set-
tings, the reader is addressed to Refs. [7-11].

Although the MI was originally predicted and explored
for uniform media, later the phenomenon was experimentally
observed in nonuniform media too, such as optical wave-
guide arrays [12], BEC in optical lattices [13], and layered
Kerr media [14]. In Ref. [14] a quantitative agreement be-
tween theory, numerical simulations, and experiment on MI
was found.

In a single-component system the effect of self-inter-
actions is crucially important for the onset of MI. Among
different soliton bearing wave equations, MI is most exten-
sively studied, perhaps, in the context of continuous nonlin-
ear Schrodinger equation, where the dispersion (diffraction)
is always positive (excluding the situation of negative effec-
tive mass of BEC in optical lattices), so that MI occurs only
with self-focusing nonlinearity. The condition for the MI is
essentially modified for the discrete settings [15]. A unique
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feature of discrete optical waveguide arrays is that the dif-
fraction can be either positive or negative, depending on the
excitation angle, so that MI occurs with nonlinearity of either
sign. Recently novel conditions for the onset of MI in a
single-component DNLS equation with cubic-quintic nonlin-
earity were found in [16] and [17]. The authors have shown
that the regions of self-trapping and stability of discrete
breathers are drastically modified by the quintic nonlinear
term, responsible for three-body effects in BEC. The effect
of the trap potential on the MI of a single-component BEC
with two- and three-body atomic interactions has been stud-
ied in a recent paper [18].

In multicomponent systems additional interaction mecha-
nisms can arise that strongly affect the MI. A well-known
example is the MI induced by a cross-phase modulation
(XPM) in optical fibers in the normal group-velocity disper-
sion regime [19]. In this regime the nonlinearity-induced
self-phase modulation (SPM) does not lead to MI of continu-
ous waves in the scalar limit, while the MI and soliton for-
mation are possible due to interaction between the two co-
propagating optical fields. MI in two-component BECs was
addressed for the first time in [20]. In subsequent works [21]
the MI and soliton formation in two-component BECs were
investigated in details.

Among different possible scenarios of MI the most inter-
esting one corresponds to the situation when both compo-
nents are stable in the scalar limit, but unstable in presence of
coupling between the components. This regime is especially
relevant to BEC applications since only the condensates with
repulsive interatomic forces are energetically and dynami-
cally stable. In fact the stability of repulsive BEC allows to
prepare the initial mixture of two noninteracting condensates
and then switch on the interaction between the two compo-
nents, for instance by a Feshbach resonance technique, to
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study further evolution. Besides, glasses and organic materi-
als, which are of significant interest for nonlinear optics
[22-24], exhibit self-defocusing quintic nonlinearity in addi-
tion to focusing cubic one. Recently an optical cubic-quintic
nonlinearity was observed in a colloid material [25], where
the quintic nonlinearity may have both positive and negative
signs. Bimodal light propagation at normal group-velocity
dispersion in these materials corresponds to the above men-
tioned situation.

This work is aimed at studying the MI in a two-
component DNLS equation that may arise due to the effect
of cubic-quintic nonlinearity and associated intercomponent
couplings. Of particular interest is the phase separation in a
two-component BEC resulting from the MI, which was ex-
perimentally observed in [26]. The interpretation of this phe-
nomenon based on the numerical integration of two coupled
Gross-Pitaevskii equations with cubic nonlinearity was given
in [27], where the underlying mechanism of the domain for-
mation is found to be the MI induced by cross-phase modu-
lation, which occurs in condensates with repulsive nonlinear-
ity.

The present study of the MI in systems governed by
coupled DNLS equations distinguishes itself from recent
work on this topic in several ways. First, we address the
effect of quintic nonlinearity on the MI and find it to be
essentially stronger than the cubic nonlinearity in specific
conditions. Second, combined effect of these two types of
nonlinearities may induce the MI in those regions of the
parameter space, where their individual action does not lead
to MI. Finally, we reveal features of the phase separation of
two-component BECs in deep optical lattices which result
from the MI.

There are numerous potential physical realizations for the
coupled DNLS equation considered in this work. For in-
stance, mixtures of BECs (two distinct atomic species or two
hyperfine states of the same atom) in deep optical lattices,
when three-body effects [28] are essential, can be described
by the coupled DNLS equation with cubic-quintic nonlinear-
ity. It is appropriate to mention, however, that three-body
effects are usually associated with an aspect limiting the life-
time of the condensate, which implies the existence of a
nonzero imaginary part of the corresponding interaction
term. Recently a regime has become experimentally attain-
able and a large BEC (containing ~10® sodium atoms) with
a lifetime more than 3 s was created by suppressing three-
body losses [29]. According to the estimate in Ref. [30]. the
ratio between imaginary and real parts of the three-body in-
teraction term for ®’Rb can be as small as 1073-107*. A
technique for strong suppression of three-body recombina-
tion in BECs using the resonant 27 laser pulses was devel-
oped in [31], where it was shown that reducing the decay rate
of a BEC by several orders of magnitude is possible under
realistic experimental conditions. This method is useful for
extending the lifetime of condensates in the high-density re-
gime and under the Feshbach resonance management. In
these conditions our conservative model is valid. In general,
the effect of three-body interactions in BECs can be either
attractive or repulsive (corresponding to positive or negative
quintic nonlinear term) and much stronger than two-body
interactions [17].
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In nonlinear optics, some materials with large nonlinear
coefficients, such as chalcogenide glasses [22], colloids [25],
and some organic polymers [23], also exhibit sufficiently
high quintic nonlinearity at moderate optical wave intensity.
In particular, polydiacetylene para-toluene sulfonate has one
of the largest cubic nonlinearities known to date, also exhib-
its a significant negative quintic nonlinearity [24]. Note that
although these materials possess a nonlinear loss, the char-
acteristic soliton period can be made essentially smaller than
the absorption length, so that the conservative model is jus-
tified. An appropriate mathematical framework for bimodal
light propagation in waveguide arrays fabricated from such
materials is the coupled DNLS equation with cubic-quintic
nonlinearity. Also, the model considered here is relevant to
bimodal light dynamics in media with saturable nonlinearity
in the small amplitude limit, when the cubic-quintic nonlin-
earity can result from the expansion in series of the saturable
nonlinearity. The phenomenon of discrete modulational in-
stability in one-dimensional lattices with intensity-resonant
nonlinearity has been considered in [32]. A general survey of
the physics and mathematical tools for solitons in non-Kerr
law optical media is given in the recent book [33].

The paper is structured as follows. In Sec. II the basic
two-component DNLS equation is formulated, and the con-
dition for the onset of MI is analytically derived from the
linear stability analysis. Section III is devoted to numerical
simulation of the evolution of perturbed plane-wave solu-
tions to the coupled DNLS equation, and verification of the
existence of MI in specific regions of the parameter space,
according to prediction of the linear stability theory. In Sec.
IV we analyze the phase separation in a two-component dis-
crete system subject to MI. Finally, in Sec. V we summarize
our findings.

II. MODEL AND CONDITIONS FOR
MODULATIONAL INSTABILITY

The coupled DNLS equation with cubic-quintic nonlin-
earity, which is our basic model, has the following form:

d
l% + Ca(an+1 + an—l) + )\(|an|2 + ﬁ|bn|2)an
74
+ 7(|an|4+2a|an|2|bn|2+a|bn|4)an=0v (1)

db,
ld_Z + Cb(bn+1 + bn—l) + )\(|bn|2 + :8|an|2)bn

+ y(|b,|* + 2alb,|*|a,* + ala,[*)b, =0, (2)

where a,(z) and b,(z) are the complex amplitudes of the
electromagnetic fields in the nth channel, in the case of the
waveguide array, or the mean-field wave function at the nth
site, in the BEC system, ¢, and ¢, are the linear coupling
constants between adjacent waveguides in optics applica-
tions, which depend on the distance between waveguides,
and both positive and negative values are relevant to discrete
diffraction. In BEC applications these parameters character-
ize the tunnel coupling of the condensate fragments trapped
in adjacent lattice sites, and depend on the strength of the
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optical lattice. The variable z denotes propagation coordinate
in optics applications, and time in BEC applications. The real
parameters 3 and « are the cubic and quintic intercomponent
nonlinear coupling (XPM) coefficients, respectively. The
self-interaction (SPM) coefficients are re-scaled to one. The
coefficients A and vy, which although can be re-scaled to one,
are retained for convenience to explore the effects of only
cubic (y=0), only quintic (A=0), or weighted contribution of
these two nonlinear terms (y#0, X\ #0) to overall ML In
the limit y=0 and B=1/\ Egs. (1) and (2) transform into the
coupled DNLS system considered in [34]. For 8=a=0 Egs.
(1) and (2) become decoupled, and split into two scalar
DNLS equations with cubic-quintic nonlinearity, recently
studied in the context of MI [16,17]. The MI gain spectra and
domains of instability in the parameter space found in this
work reproduce the results of Refs. [16,17,34] in the corre-
sponding limits. Coupled DNLS systems (1) and (2) was
employed in [35] for investigation of interactions between
optical solitons in bimodal cubic-quintic media.

Equations (1) and (2) can be derived from the following
Hamiltonian, assuming infinite lattice, or periodic boundary
conditions:

H=H,+H,+H,,, (3)
through
da, 6H  db, OoH
1 == ) l == P} (4)
dz éa,, dz b,
where

A
H,= E |:Ca(a:a,,+1 + anaZH) + §|an|4 + §y|an|6:| . (9

n

. . A 4
Hy,= E [Cb(bnbn+1 + bnbn+1) + E|bn|4 + §|bn|6:| . (6)

n

Hyo= 2 [BNay[?b,* + ay(|a,!|b,)* + a6, H]. (7)

n

Two conserved quantities of Egs. (1) and (2) are the Hamil-
tonian H and the total excitation norm (or power in nonlinear
optics applications) N=2,(|a,|*+|b,|*). In the case of BEC
this quantity bears the meaning of a total number of atoms in
the condensate.

We investigate the stability of stationary plane-wave so-
lutions of Egs. (1) and (2),

bn =b exp(i[an + ka]), (8)

with respect to small modulations of the amplitude and
phase. Using ansatz (8) we get the following nonlinear dis-
persion relations:

k,=2c, cos(q,) + Na* + Bb?) + y(a* + 2aa’b® + ab?),
)

ky=2c, cos(gp) + N(b? + Ba®) + y(b* + 2aa®b® + aa®).
(10)

Then we impose a slight modulation on plane waves (8),

a,=a exp(ilg,n +k,z]),
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b_n = (b + gn)eXP(i[CIb” + ka]), (1 l)
with
& =uy expli(Qn + Kz)] + uy exp[- i(On + Kz)], (12)

£y =1 expli(Qn + Kz)]+ v, exp[-i(Qn + K2)], (13)

where Q is the perturbation wave number. By inserting Eq.
(11) into Egs. (1) and (2) and performing a linearization we
end up with an eigenvalue problem for the perturbation wave
vector K,

-K+f, Ay? Aab Aab
dot Aa* K+f.  Aab Aab 0. (14)
N Aab Aab -K+ g A2 |7
Aab  Aab  Ap* K+g_
where

ft = 2ca[COS(Qa * Q) - COS(Qa)] + Aaaza (15)

g+ =2¢,[cos(q, + Q) — cos(gy) ]+ Ayb?, (16)
Ay=N+2y(ab®+d?), (17)

Ap=\+2y(aa* +b?), (18)
A=\B+2ya(a®+b?). (19)

Eigenvalue problem (14) can be recast in a more compact
form

K*+ p3K3 + p, K> + p K + py =0, (20)

where p; are coefficients depending on the parameters a, b,
4> 94> 9p> Ca» Cp and N. Explicit form of p; are presented
below by introducing notations f,=f., f,=/_, g,=&, and
Em=8-»

p3=gm_gp+fm_fpv (21)

P2= (gm _gp)(fm _fp) + a4AZ + b4A127 _fmfp - gmgp’
(22)

pP1= (gm - gp)(a4A2 _fmfp) + (fm _fp)(b4Ai - gpgm)5
(23)

Po= [b4(AaAb - 4A2)A5Ab + 2b2(gm + gp)AzAa - gmgpAi]a4
+ [2b4(fm +fp)A2Ab - bz(fm +fp)(gm + gp)A2]a2
+ (808 = b ALl (24)

For unstaggered case (adjacent elements are in phase) ¢,
=¢,=0 and staggered case (adjacent elements are out of
phase) q,=q,=m we have f,=f,=f and g,=g,=¢. Then
p3=p;=0, meantime for p, and p, we have

pr=a* A2+ A - P - g%, (25)
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FIG. 1. (a) Gain spectra for the perturbation wave number in the interval Q € [0, 7] according to Eq. (28) for the cases when only cubic
(A=0.95, y=0, solid line), only quintic (A\=0, y=0.95, dotted line), and cubic-quintic (\=y=0.95, dashed line) nonlinear terms are present
in coupled system equations (1) and (2). Initial plane-wave amplitudes and coefficients of intercomponent coupling are a=b=1, B=1/\,
a=1/, respectively. All curves pertain to the staggered mode with ¢,=c,=-0.1. (b) Gain of MI as a function of the cubic and quintic
intercomponent coupling strengths B and « according to Eq. (28) for parameters a=b=1, A\=y=1, ¢,=-0.1, and ¢,=0.1 (staggered and

unstaggered modes in two components).

Po= [b4(AaAb - 4A2)AaAb + 4b2gA2Aa - ngczz]a4
+4b*FAX (DA, - g)a® + (g2 = b*AD) 2. (26)

It should be pointed out that changing from the above men-
tioned unstaggered configuration to the staggered one can
entail sign changes in the first term in f and g. Since terms
such as g,,+g, and f,+f, occur linearly in p, of Eq. (24),
these sign-changes crucially affect the MI [see Eq. (28) be-
low]. In numerical simulations we consider both signs for the
first term in f and g by giving appropriate signs to coeffi-
cients ¢, and ¢, in Egs. (15) and (16). Specifically, we as-
sume ¢, , <0 when considering staggered configuration, and
¢4=> 0 for unstaggered case. Now the characteristic equation
is reduced to following form:

K4 +p2K2 +p0 =0. (27)

The gain (growth rate) of modulational instability can be
straightforwardly calculated from Eq. (27),

1 [ 2 1/2
G=|ImK|= ﬁﬁm[— P2+ \p5—4pel'7. (28)

The MI of plane-wave solutions of Egs. (1) and (2) in the
case when only cubic nonlinearity is present was investi-
gated in Ref. [34]. It can be easily verified that the MI gain
spectra and domains of instability given by Eq. (28) repro-
duce the results of [34] at y=0 and B=1/\.

Simple analytic expressions for Eq. (28) can be obtained
for particular sets of parameters. For instance, if in Egs. (1)
and (2) only cubic nonlinearity is present (y=0, A #0), and
a=b=1, c,=c,=c, B=1/\, we have A,=A,=\ and A=1.
Then we get the MI growth rate for the cubic nonlinearity

12
Im{—csin2<2){—2c sin2<2)+)\i 1}} .
2 2

(29)

G.= 23/2

Similarly, when the only quintic nonlinearity is present
(A=0, y#0) and a=b=1, c,=c,=c, a=1/v, we have

A,=A,=2(y+1) and A=4, which yields the MI growth rate
for the quintic nonlinearity,

2
Im{—c sin2(%> [— c sin2<%> +(y+1) = 2] }1/ )

(30)

G,=4

Finally, when both cubic and quintic nonlinearities are
present (A #0, y#0) and a=b=1, c,=c,=c, B=1/\, a
=1/7y, we have A,=A,=N+2(y+1) and A=5, which yields

s e

172
+)\+2(y+1)i5] .

—n32
Gey=2

31)

Since the growth rates of MI given by Egs. (29)—(31) are
even functions of the perturbation wave number Q, we re-
strict to consideration of only positive values of this param-
eter (for negative Q the curves are symmetric with respect to
the Gain axis).

The onset of MI is defined from the condition that the
expression under the square root in above equations acquires
a negative value. For instance, the staggered mode (¢ <0)
with cubic nonlinearity (\#0, y=0) is unstable when |Q)|
<2 arcsin[V0.5(A—1)/c], while with quintic nonlinearity
(A=0, y#0) it is unstable when |Q| <2 arcsin[\(y—1)/c].
In the presence of both types of nonlinearities (y#0,
N#0) the instabilit is observed when |Q
<2 arcsin[V0.5(\+27y—-3)/c]. Threshold perturbation wave
numbers for the existence of MI at A=y=0.95 and ¢c=-0.1,
predicted by these formulas for the cases of cubic, quintic,
and cubic-quintic nonlinearities are equal to Q"'=1.05,
QZ”: 1.57, and thqrz 2.09, respectively. Similarly, the values
of perturbation wave numbers, corresponding to maximal
growth rates of MI are determined from the extremum (first
derivative with respect to Q is zero) of the expression under
the square root in Egs. (29)-(31) as Q7*"=0.72, 0, “"=1.05,
and Qp,"=1.32. These analytical predictions corroborate
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FIG. 2. Instability domains (shaded), corresponding to different signs of intercomponent interaction in Egs. (1) and (2) for the parameter
set a=1.01, b=1.00, A=y=1, and c,=c,=-0.1. Figures indicate the growth rate of instability (MI gain). (a) 8>0, «<0. (b) 8<O,

a>0. (c) B>0, a>0. (d) B<0, a<0.

with numerical calculations using the general formula (28),
as can be observed in Fig. 1(a).

To illustrate the role of specific nonlinearities and associ-
ated intercomponent couplings in modification of the MI
conditions, we performed comparison between the cases of
purely cubic, purely quintic, and cubic-quintic nonlinearity,
as shown in Fig. 1. It is evident from Fig. 1(a) that for the
same set of parameters the quintic nonlinearity leads to sig-
nificant extension of the instability domain and greater value
of the gain parameter, compared to contribution of the cubic
nonlinearity, e.g., for 1.05<Q <w/2. Moreover, combined
effect of these two nonlinear terms gives rise to instability in
regions of the parameter space, where their individual con-
tributions are zero, e.g., at Q € [7/2,2.09]. It should be also
pointed out that the uncoupled system (a=8=0) is modula-
tionally stable for ¢,<<0, ¢,<0, A>0, and y>0, which
means that the instability is caused by intercomponent cou-
plings (XPM). Nontrivial superposition of the cubic (8) and
quintic («) intercomponent couplings leads to suppression of
the MI along the line S+2a=3 for a given set of parameters,
as illustrated in Fig. 1(b). In the context of BEC opposing

signs of dispersion and diffraction and nonlinearity (e.g.,
negative ¢, and ¢, and positive nonlinear terms) corresponds
to repulsive nonlinearity of both components, which is the
most frequently encountered experimental setting with
double-specie mixture condensates [36,37]. In further analy-
sis more emphasis will be given to this particular case.

Domains of instability corresponding to maximum of MI
gain in Q €[0, 7] for different combination of parameters
are shown in Figs. 2 and 3. With regard to the existing link
between the phenomenon of MI and soliton formation in the
system, an important conclusion can be drawn from these
figures in the context of mixture BECs. Although the indi-
vidual repulsive condensates in the absence of optical lattice
do not support stable bright solitons, they can emerge due to
the periodic potential of the deep optical lattice and inter-
component couplings in the mixture condensate. In particu-
lar, when both condensates are repulsive (see Fig. 2), a suf-
ficiently strong intercomponent interaction of at least one of
the two types, cubic (8), or quintic (), induces MI, there-
fore generates discrete vectorial solitons.
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FIG. 3. Instability domains (shaded), corresponding to maximal gain in Eq. (28) as a function of the cubic and quintic intercomponent
coupling coefficients in Egs. (1) and (2) at parameters a=b=1, A=y=1, and >0, B> 0. Figures indicate the growth rate of instability (MI
gain). (a) All attractive case, c¢,=c,=0.1. (b) One component is attractive, the other is repulsive ¢,=0.1, ¢,=—0.1. The region of conditional

stability corresponds to low MI growth rate.

On the other hand, the attractive intracomponent and in-
tercomponent interactions are usually associated with the
collapse instability of BECs [38]. In order to avoid the col-
lapse, Bose condensation of atoms with a natural negative
scattering length, like 'Li, 3Rb, is produced initially in a
repulsive state using a Feshbach resonance technique, which
allows to change the magnitude and sign of atomic interac-
tions by means of external magnetic fields near particular
resonances. That is why the existence of MI and soliton for-
mation in the case of all repulsive interactions, i.e., when the
condensate is stable against collapse, is especially interesting
[see Fig. 2(c)]. In particular, symbiotic discrete solitons on a
finite background can exist in this case [34]. This result con-
trasts with the two-component BEC in the continuous model
without optical lattice because all repulsive interactions in

Max. Gain

(a) a

that case gives rise to a phase separation with small spatial
overlap of components [39].

The onset of MI is differently influenced by the cubic and
quintic nonlinearities. The role of quintic nonlinearity and
associated intercomponent couplings in this process appears
to be stronger than the cubic one. This is evident from the
fact that for the same set of parameter values, the coefficient
of quintic intercomponent interaction can be two times
weaker than the cubic one, in order to induce the MI for
selected parameters, as shown in Fig. 2(c). In the case of all
attractive interactions the system is always modulationally
unstable [Fig. 3(a)]. In the meantime, if one of the compo-
nents is attractive and the other is repulsive, conditions for
the onset of MI is essentially different, as shown in Fig. 3(b).
Stability domain shrinks into a narrow strip, where the MI

b 1.01

0.5

0.0
0.0

(b) a

FIG. 4. (a) Contribution of only cubic (dashed line) and only quintic (solid line) nonlinearity to the MI at different amplitudes of the plane
wave a at b=1 according to Eq. (28). (b) Regions of instability (shaded) in the plane (a,b) according to Eq. (28). Figures indicate
the maximal growth rate of MI at given parameters. For both panels the parameter set corresponds to c¢,=0.1, ¢,=—0.1, A=y=1, and

a=B=1.
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FIG. 5. Evolution of the weakly perturbed plane-wave solution a=a+ &(n) with &n)=0.01 cos{8-27/N-(n—1)} governed by Egs. (1) and
(2) for A=y=1, a=1.01, b=1.00, c,=c,=-0.1, and two sets of intercomponent coupling coefficients. (a) The values @=1.0 and 8=0.9
correspond to point A in white area of Fig. 2(c), where the MI gain is negligible, and the wave propagation is stable. (b) MI develops for
a=1.0 and B=1.1, corresponding to point B in shaded area of Fig. 2(c), where MI gain is nonzero. The number of lattice sites is N=30.
Evolution of the component b=b+£(n) is qualitatively similar to @ and not shown here.

gain is very small, but finite. For selected parameters the MI
gain equals to zero only along the straight-line connecting
points a=1.5 and $=3.0. This arrangement can be relevant
to the recent experiment with a two-species BEC of °Rb and
8'Rb atoms [37]. In normal conditions *Rb BEC features
attractive atomic interactions, while 8Rb BEC is repulsive.
Strength and sign of intercomponent interactions in this two-
species BEC was shown to be tunable by a Feshbach reso-
nance technique [37]. As said above, in experiments with
BEC both the intra-atomic and interatomic scattering lengths
can be varied by external magnetic or light fields. Therefore,
it is pertinent to consider the MI for different values of cou-
pling parameters « and B as shown in Figs. 2 and 3. Mean-
while, in nonlinear optics the relevant variables are the in-
tensities (or amplitudes) of the light fields @ and b. In Fig. 4
the maximum gain of MI is plotted as a function of the
plane-wave amplitudes. The stronger effect of the quintic
nonlinearity on MI compared to the cubic one is evident
from Fig. 4(a) as the corresponding gain of MI increases
more rapidly. Note the absence of instability when a<<1. In
Fig. 4(b) the instability domain is shown by shaded areas in
the parameter space of plane-wave amplitudes a—b when
both the cubic and quintic nonlinearities contribute to the
MI.

III. NUMERICAL SIMULATIONS OF
MODULATIONAL INSTABILITY

The linear stability analysis allows to identify particular
regions in the parameter space where MI may occur, and
estimate the growth rate of perturbations according to Eq.
(28). However, the linear stability theory does not predict
further evolution of the wave field. To study the evolution of
the wave field under MI and pattern formation in the system
one has to recourse to numerical simulations of the govern-
ing DNLS (1) and (2).

Toward this objective we performed numerical simula-
tions of basic DNLS systems (1) and (2) with a perturbed

plane-wave initial conditions as per Egs. (8), (12), and (13).
Equations (1) and (2) represent a system of coupled ordinary
differential equations (ODEs) for 2n complex variables a,
and b,, where n is the number of lattice sites. To simulate the
evolution of these variables in z we impose the periodic
boundary conditions. For numerical integration of the ODE
system we employ the fifth-order Runge-Kutta procedure
with adaptive step-size control [40]. To ensure the accuracy
of computations we monitor the conserved quantities of the
problem, such as the norm (power in optics applications, and
total number of atoms in the case of BEC) and Hamiltonian,
to precision ~107°.

When the parameter set corresponds to white areas in
Figs. 2 and 3 where the growth rate of instability (MI gain) is
negligible, the plane-wave solutions remain unaltered while
propagating along z [see Fig. 5(a)]. On the contrary, when
the parameters correspond to dark areas in Figs. 2 and 3, the
MI sets in giving rise to localized states, as illustrated in Fig.
5(b). We are reminded that the linear stability analysis pro-
vides only the condition for the onset of MI, but does not tell
more about further evolution of the wave field. Long-term
evolution of the wave pattern shown in Fig. 5 is beyond the
linear theory.

IV. PHASE SEPARATION

Two component BECs have a tendency to separate into
single-component domains in absence of external potentials
[39]. Interparticle interactions between the different compo-
nents control the miscibility of condensates. In the mean-
time, the strength of interaction between the components is
critical for the possibility of MI in mixture BECs. The MI
can be a precursor for the phase separation in multicompo-
nent nonlinear media.

The periodic potential of the optical lattice modifies the
conditions for the MI and suppresses phase separation [41].
When the optical lattice is sufficiently strong, the system is
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FIG. 6. The perturbed initial plane-wave solution a+&(n) and
b+ &(n) with £,=0.01 cos(27mn/40), m=8 develops instability and
breaks into localized states at z=150 when the parameter set cor-
responds to point B in shaded area of Fig. 2(c) with nonzero MI
gain: a=1.01, b=1.00, c¢,=c,=-0.1, =10, B=1.1, and \=y=1.
Density is represented by intensity of shading. Darker areas corre-
spond to higher amplitudes of the wave. Formation of domains
entirely consisting of components (a) and (b) is indication of the
phase separation.

modeled by discrete NLS equations (1) and (2). In these
conditions the phase separation can show up as periodically
arranged domains of single components emerged from the
initially homogeneous mixture. Figure 6 illustrates this phe-
nomenon through the density plots of components (a) and (b)
for the case when both the intracomponent and intercompo-
nent interactions in BEC are repulsive. Similar numerical
experiment when the evolution takes place under the effect
of only quintic nonlinearity is shown in Fig. 7. Although
spatially periodic structure consisting of single phases
emerge due to the MI at z==150 in Fig. 6 and at z=100 in
Fig. 7, further evolution breaks the spatial order. Recurrence
into homogeneously mixed initial state does not happen,
whereas the phase separation persists.

One of the powerful tools for manipulation of atomic in-
teractions in BECs is provided by the Feshbach resonance
phenomenon [42]. Tunability of both intracomponent and in-

‘ ' 160
4120
80

440 40
T 0 0
5 10 15 20 25 30 35 40 10 15 20 25 30 35 40
(@) n () n

FIG. 7. Phase separation under the effect of only quintic nonlin-
earity and associated intercomponent couplings according to nu-
merical simulation of Egs. (1) and (2) for parameters a=0.5,
b=1.0, ¢,=0.1, ¢;,=-0.1, =£=0.9, \=0, and y=1.0.
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FIG. 8. Phase separation due to MI in all repulsive case, when
the cubic nonlinearity and associated intercomponent coupling in
Egs. (1) and (2) are set to zero (A\=0) at z=150. Further evolution
takes place under the effect of only quintic nonlinearity. Parameters
are the same as in Fig. 6. Few periodic oscillations of the spatial
arrangement of phases (a) and (b) is observed, before irregular dis-
tribution of phases sets in.

tercomponent two-body atomic scattering lengths by the
Feshbach resonance technique makes it relevant to consider
the situation, when the cubic nonlinearity and associated
coupling parameter are set to zero from the beginning (see
Fig. 7), or when the phase separation occurred. Numerical
simulation of this situation is shown in Fig. 8 for the all
repulsive case with parameters corresponding to point B in
Fig. 2(c). Redistribution of the phases can be suppressed also
by increasing the strength of the optical lattice, when local-
ized structures are formed. Since the coefficients c, and ¢,
which are proportional to the probability of atom tunneling
between adjacent lattice cites and depend on the strength of
the optical lattice, this can be modeled by instantly decreas-
ing the values of ¢, and ¢, when the phase separation oc-
curred.

V. CONCLUSIONS

We have studied conditions for the onset of modulational
instability in a two-component system described by coupled
discrete nonlinear Schrodinger equations with cubic-quintic
nonlinearity. The proposed model can be applied to mixtures
of Bose-Einstein condensates loaded in deep optical lattices
when three-body effects are essential, and bimodal light
propagation in optical waveguide arrays made of materials
featuring significant quintic nonlinearity. Analytical expres-
sion for the MI gain spectra is obtained and the regions of
instability of plane-wave solutions in the parameter space of
the governing coupled DNLS are identified. For the similar
initial conditions such as equal amplitudes of plane waves
and equal strengths of intercomponent couplings, the effect
of quintic nonlinearity on the MI is found to be stronger
compared to the effect of cubic nonlinearity. In some regions
of the parameter space combined action of the cubic-quintic
nonlinearity can induce the modulational instability, whereas
individual action of the cubic or quintic nonlinearity does not
lead to instability. By means of numerical simulations we
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explored phase separation in a two-component discrete me-
dium induced by modulational instability. Spatially periodic
structure of alternating phases emerged at initial stage of the
evolution later transforms into irregular pattern. If the cubic
nonlinearity is set to zero at particular instance of the evolu-
tion, the periodic pattern formation is observed.

PHYSICAL REVIEW E 79, 046605 (2009)
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