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Hydrodynamic interactions between two semiflexible inextensible filaments are shown to have a significant
impact on filament buckling and their subsequent motion in Stokesian fluids. In linear shear flow, hydrody-
namic interactions lead to filament shear dispersion that depends on the filament aspect ratio and the initial
filament separation. In linear extensional flow, hydrodynamic interactions lead to complex filament dynamics
around the stagnation point. These results suggest that hydrodynamic interactions need to be taken into account
to determine the self-diffusion of non-Brownian semiflexible filaments in a cellular flow �Y.-N. Young and M.
J. Shelley, Phys. Rev. Lett. 99, 058303 �2007��.
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I. INTRODUCTION

Hydrodynamic interactions �HIs� between rigid particles
have significant effects on the macroscopic mechanical prop-
erties of their suspension. For example, hydrodynamic inter-
actions between rigid fibers are crucial to the concentration
instability observed in sedimenting fiber suspensions �1�. For
suspension of rigid active fibers such as actuated swimmers,
hydrodynamic interactions are found to help order the swim-
mers over short length scales, and have a significant impact
on the mean swimming speed �2–4�. Recently hydrodynamic
interactions between rigid spheres in a thin channel are found
to lead to novel nonlinear pattern formation and dynamics
�5�.

When combined with particle deformability, hydrody-
namic interactions affect both the individual particle shape
dynamics and the macroscopic properties of the suspension.
An example is the non-Brownian viscous drop suspensions
in shear flow. Loewenberg and Hinch �6� used the boundary
integral formulation to numerically investigate the effects of
hydrodynamic interactions on dilute suspension of viscous
drops in shear flow, and concluded that the hydrodynamic
interaction and drop deformation conspire to suppress drop
breakup during the collision process. The self-diffusion co-
efficients of the non-Brownian drops in a dilute sheared
emulsion are obtained from trajectories of different collision
processes between a pair of viscous drops, and are found to
be anisotropic and dependent on the viscosity ratio and the
shear rate. As a result, the mixing efficiency of drop suspen-
sions is affected by the hydrodynamic interactions between
deformable drops. Another example of hydrodynamic inter-
actions’ effects on macroscopic properties of soft particle
suspension is the semidilute vesicle suspension in a shear
flow. Hydrodynamic interactions between vesicles give rise
to strong fluctuations in vesicle shape and inclination angle
�7�. The macroscopic viscosity of vesicle suspension is found
to depend nonmonotonically on the viscosity ratio between
the inner and outer fluids of the vesicles.

The hydrodynamics of semiflexible inextensible filaments
in viscous fluids has gained interest due to their close rel-
evance in biofluids and microfluidics. Many semiflexible
biopolymers, such as DNA, cilia, and flagella, are virtually
inextensible, and their dynamics in viscous fluids plays a

central role in their motion �8–11�. New advances in micro-
fabrication and micromanipulation enable direct interaction
with semiflexible biopolymers in simplified in vitro environ-
ments, and stimulate more interest in investigation of the
dynamics of flexible biofilaments. For example, optical twee-
zers are employed to periodically oscillate actin filaments
connected to micron-sized beads, in order to devise an arti-
ficial “one-armed swimmer” �12�. Polymer-linked magnetic
beads are used to design artificial swimmers that can be con-
trolled in a magnetic field �13�. This novel design enables an
easier control of the filaments through magnetic fields and
has allowed quantitative measurements of the physical prop-
erties of the chains, such as their bending stiffness. Similar
methodologies are applied to induce properties of the linker
molecules �14� or the affinity of chemical contacts between
polymer and particle coating from video microscopy �15�.
Semiflexible actin filaments are now used as nanocargos in
microfluidic devices for directed transport on chemically pat-
terned surfaces �16�. Fabrication of synthetic ciliary arrays
and technological applications of artificial swimmers are also
new possibilities to be explored.

The aspect ratio �radius to length� of most semiflexible
inextensible biopolymers ranges from 10−5 to 10−1. The ex-
treme aspect ratio justifies the slender-body formulation in
Stokes flow, a very viscous flow with essentially zero Rey-
nolds number. A significant amount of work has been de-
voted to the studies of a single elastic inextensible filament
in slender-body formulation �8,17–19�. Recently the hydro-
dynamics of multiple filaments in Stokes flow has been in-
vestigated. Tornberg and Shelley �20� used the nonlocal
slender-body model to numerically simulate dynamics of
multiple �up to 25� interacting filaments in a background
oscillating shear flow. Llopis et al. �21� investigated the ef-
fects of hydrodynamic interactions on the sedimentation of a
pair of inextensible filaments using the bead model. Dillon et
al. �10� examined multiciliary interaction in a mucus layer
using the immersed boundary method.

While sufficient progress has been made to understand the
complex hydrodynamics of elastic filaments, quantitative de-
tail of interacting semiflexible filament dynamics remains in-
complete. For example, how does a semiflexible filament
buckle under hydrodynamic interactions with other filaments
in the neighborhood? Do the hydrodynamic interactions be-
tween two buckling filaments in shear flow cause filament
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self-diffusion as in the case of viscous drop suspension?
How will HIs between non-Brownian elastic filaments in cel-
lular flow affect the diffusive transport due to filament buck-
ling around the stagnation points �22�? To gain fundamental
insights into the complex interplay between filament self-
diffusion, filament deformation, and hydrodynamic interac-
tions, it is useful to consider the dynamics of a pair of semi-
flexible filaments in simple flows.

We will examine the effects of HIs between a pair of
filaments in configurations where a single elastic inextensible
filament is known to exhibit buckling instability �20,22�. We
will examine how HIs induce differences in the buckling
dynamics and the subsequent filament motion. For a single
semiflexible filament subject to a body force, different fila-
ment shapes and dynamics are found as a result of both the
nonlocal HIs and elasticity �23�. For a pair of sedimenting
filaments, filament elasticity and nonlocal HIs conspire to
cause interesting filament shapes and cooperative filament
motion under gravity �21�. Our goal is to elucidate how such
combination affects buckling of a pair of semiflexible fila-
ments in linear flows.

In particular, we will focus on simulating the buckling
dynamics of a pair of interacting filaments in two prototypi-
cal linear flows: planar shear flow and planar extensional
flow. �1� Filaments in the plane of shear flow �in the x direc-
tion� experience compressive stress only when rotating to-
ward the cross-shear axis �y axis�. For these simulations, the
initial conditions are chosen to elucidate the generic trend of
the HI effects on filament buckling dynamics in shear flow
�explained in detail in Sec. III�. �2� Filaments in linear ex-
tensional flow experience compression when they move to-
ward the stagnation point. Two filaments parallel to the com-
pressional axis are initially placed on the opposite sides of
the stagnation point. As explained in Sec. IV these initial
configurations allow us to gain quantitative insights into the
roles of HIs in buckling of two interacting filaments in terms
of filament shape parameter and effective viscosity.

In our formulation Brownian forces �kT /L� are neglected
relative to drag and elastic forces ���̇L2 and Yr4 /L2, respec-
tively; Y is the Young modulus�. This is because predomi-
nance of drag force requires L�L1= �kT /��̇�1/3, which for
water and �̇=1 s−1 gives L1�1 �m. Predominance of elas-
tic forces requires L� /2= �kT /Y�4�1/3, which for aspect ratio
�=r /L=10−3 and Y =1 GPa also yields L2�1 �m. Thus we
conclude that Brownian forces can be reasonably neglected
for filaments of length larger than 1 �m in water with �̇
=1 s−1 at room temperature.

The rest of the paper is organized as follows. In Sec. II the
slender-body formulation for interacting inextensible elastic
filaments immersed in Stokes flow is presented. The
Hasimoto transformation is utilized to convert the integro-
differential slender-body equations to a system of equations
for the complex curvature of the filament centerlines �24�.
The resultant system is numerically integrated using the nu-
merical scheme summarized in Sec. II. We quantify HI ef-
fects on the buckling dynamics of two filaments in time-
independent, two-dimensional linear flows. In Sec. III we
summarize results from simulating a pair of semiflexible fila-
ments immersed in the plane of linear shear flow. In particu-
lar we focus on how HIs induce different buckling dynamics

and cause filament dispersion in shear flow. In Sec. IV we
summarize results from simulating a pair of semiflexible fila-
ments moving toward each other around the stagnation point
in extensional flow. HIs lead to different dynamics of fila-
ments in straining flow, and simulation data provide quanti-
tative description of different filament dynamics. We also
discuss how the nonlocal slender-body formulation needs to
be modified to enforce the noncontact, noncrossing condi-
tions for two filaments undergoing buckling instability. Fi-
nally in Sec. V we present conclusions and discuss ongoing
work.

II. FORMULATION

We consider interacting semiflexible inextensible slender
filaments immersed in a viscous fluid. Ignoring external forc-
ing �such as gravity� and focusing on low-Reynolds-number
flows �no inertia effects�, the Stokes equations are appropri-
ate to describe the dynamics of the system sketched in Fig. 1.
For very slender filaments the governing Stokes equations
can be reduced to a system of nonlinear, nonlocal integro-
differential equations as in �20�. Immersed in a background
flow with a characteristic time �̇−1, all filaments are assumed
to be of equal length L with the same bending rigidity E and
filament aspect ratio � �hence the same coefficient c
� log��2e��. The equations are rendered dimensionless by us-
ing L for length unit, �̇−1 for time unit, and E /L2 for force
unit. In the slender-body formulation, the lth filament is de-
scribed by its centerline position xl parametrized by arc
length s� �0,1�. Throughout the paper the subscript s de-
notes the derivative with respect to arc length. The dynamics
of the lth filament interacting with other filaments in a back-
ground flow U0 is given by the following dimensionless
equations �20�:

8���̇L4

E
� �xl

�t
− U0�xl�� = ��− c + 2�I + �− 2 − c�xlsxls�fl − Kl

− 	
k�l

M

Vlk, �1�

with � as the fluid viscosity, I as the identity tensor, and
xlsxls as a dyadic product. The force-free boundary condi-
tions give xlss=xlsss=0 at filament end points. The line force
density fl consists of a bending force and a tensile force that
enforces filament inextensibility,

X

U =(y,0,0)
Y

x (s)

0

R

x (s’)k θ
l

l R (s,s’)lk

FIG. 1. Illustration of two filaments in a planar shear flow U0.
xl�s� �left filament, thick solid line� and xk�s� �right filament, thick
dashed line� are the filament centerline positions, and � is the fila-
ment angle with respect to the x axis.
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fl�s� = xlssss − �Tl�s�xls�s. �2�

The self-hydrodynamic interaction Kl is given by the finite-
part integral

Kl = 

0

1 � I + R̂l�s,s��R̂l�s,s��
�Rl�s,s���

fl�s��

−
I + xls�s�xls�s�

�s − s��
fl�s��ds�, �3�

and the hydrodynamic interactions between the lth and kth
filaments are

Vlk = 

0

1 I + R̂lk�s,s��R̂lk�s,s��
�Rlk�s,s���

fk�s��ds�. �4�

In the above integrals Rl�s ,s��=xl�s�−xl�s�� and Rlk�s ,s��
=xl�s�−xk�s�� as sketched in Fig. 1, and R̂l�s ,s��
=Rl�s ,s�� / �Rl�s ,s��� and R̂lk�s ,s��=Rlk�s ,s�� / �Rlk�s ,s���.

The inextensibility condition of the lth filament xls ·xls
=1 gives the following equation for the line tension:

2cTlss + �2 − c��xlss · xlss�Tl

= xls ·
�

�s
�8���̇L4

E
U0�xl� − Kl − 	

k�l

M

Vlk�
+ �2 − 7c��xlss · xlsss� − 6c�xlsss · xlsss� , �5�

subject to the force-free boundary condition Tl�s=0,1�=0.
The above slender-body equations for interacting filaments
in Stokes flow were numerically investigated by Tornberg
and Shelley �20�. The authors regularized the finite-part in-
teraction integral and constructed a numerical method to suc-
cessfully avoid severe stability constraint due to the bending
force. Using this numerical method, the authors were able to
simulate the collective dynamics of 25 interacting elastic
filaments in a shear flow.

In the present work we apply the Hasimoto transformation
�18,24,25� to the above slender-body equations with hydro-
dynamic interactions. Instead of the centerline position for
the lth filament, the filament complex curvature 	l�
le

i�l is
the main dynamical variable, and �l���l /�s is the corre-
sponding torsion. In this formulation the natural coordinate

system is the unit tangent �t̂l�, normal �n̂l�, and binormal �b̂l�
vectors along the filament centerline. The slender-body equa-
tions are recast in terms of complex curvature 	l and the
three unit vectors,

8���̇L4

E

�	l

�t
= ��ss + �	l�2�
l + Gl, �6�


l � �Ul + iVl�ei�l, �7�

Gl � 	l Im 
 ds�	ls�
l
� + 	lsWl, �8�

where Ul, Vl, and Wl are projections of the filament center-

line velocity onto n̂l, b̂l, and t̂l, respectively:

8���̇L4

E

�xl

�t
= Uln̂l + Vlb̂l + Wlt̂l, �9�

Ul = n̂l · �8���̇L4

E
U0 + ul� + ��− c + 2�I + �− 2 − c�xlsxls�fl
 ,

�10�

Vl = b̂l · �8���̇L4

E
U0 + ul� + ��− c + 2�I + �− 2 − c�xlsxls�fl
 ,

�11�

Wl = t̂l · �8���̇L4

E
U0 + ul� + ��− c + 2�I + �− 2 − c�xlsxls�fl
 .

�12�

The disturbance velocity ul� due to hydrodynamic interac-
tions �including both self-interactions and mutual interac-
tions among M filaments� is defined as

ul� � − Kl − 	
k�l

M

Vlk. �13�

Instead of using Eq. �12� for Wl, we compute Wl from the
normal projection Ul based on the inextensibility condition
�by Hou et al. �26�� as

Wl = 

0

s

Ul
ds� + Wl�s = 0� , �14�

where Wl�s=0� is the tangential velocity at s=0. From the
complex curvature 	l, the filament centerline position can be
reconstructed from the Frenet geometric identities as fol-
lows. Given a complex curvature 	l, the complex vector

�l � �n̂l + ib̂l�exp�i�l� �15�

satisfies the following equations along the filament center-
line:

�ls = − 	lt̂l, �16�

t̂ls =
	l

��l + 	l�l
�

2
. �17�

�l and t̂l are obtained from integrating Eqs. �16� and �17�,
and the centerline position is obtained by integrating the tan-
gent vector

xl = 

0

s

t̂lds� + xl�s = 0� . �18�

Substituting Eqs. �10�–�12� into Eq. �6� gives a fourth-
order nonlinear integro-differential equation for 	l,
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�
�	l

�t
= �1 + 2����ss + �	l�2���− 	lss + ��	l�2 + Tl�	l�

+ �l · ��U0 + �ul��� + Gl, �19�

with effective viscosity � and filament shape parameter �
defined as

� �
8���̇L4

− cE
=

8���̇L4

− ln��2e�E
, � �

1

− c
=

1

− ln��2e�
.

�20�

The force-free boundary conditions expressed in terms of 	l
are 	l�s=0,1�=	ls�s=0,1�=0. Equation �5� for the line ten-
sion can be recast in terms of the complex curvature 	l as

2Tlss − �	l�2�1 + 2��Tl

= − �

0

s

ds�
	l

��l + 	l�l
�

2
+ t̂l�0�� · ��U0 + �ul��s

− �7 − 2���t̂ls · t̂lsss� − 6�t̂lss · t̂lss� . �21�

The advantage of the above formulation is that the filament
inextensibility condition is exactly satisfied when the fila-
ment centerline is reconstructed from the tangent vector. Nu-
merically this means that the filament inextensibility condi-
tion is obeyed up to the rounded-off errors without the need
for penalty function in the numerical scheme. The end-point
tangent vector t̂l�s=0� and the filament centerline position
xl�s=0� are required for constructing the filament centerline.
This information is obtained by computing the tangent vector
and the filament end point from markers that are convected
by the filament velocity from Eq. �9�. In the following we
outline the implementation of this formulation.

Summary of numerical methods

The integral in Eq. �3� is regularized using the high-order
regularization scheme in �20� to achieve consistent
asymptotic accuracy of the slender-body formulation of fila-
ment dynamics. Equations �19�–�21� are discretized using a
second-order time-stepping scheme, and second-order di-
vided differences to discretize the spatial derivatives. An ex-
plicit treatment of all terms in Eq. �19� yields a very strict
fourth-order stability limit for the time-step size, arising from
the high derivatives of 	l. Consequently the term 	lssss is
treated implicitly for stability of larger time-step size. Sche-
matically, we write

�	l

�t
= F�	l,	lssss� + G�	l� , �22�

where the dependence on 	lssss is to be treated implicitly, and
all other terms are to be treated explicitly using a second-
order backward differentiation formula. Thus the approxi-
mate decomposition reads

1

2�t
�3	l

n+1 − 4	l
n + 	l

n−1� = F�2	l
n − 	l

n−1,	lssss
n+1 �

+ 2G�	l
n� − G�	l

n−1� , �23�

where �t is the time step, and the time at the nth level tn

=n�t. For the first time step, before any previous time levels
are available, we replace the time discretization above by a
first-order Euler step. The spatial discretization in the arc
length s is uniform with N intervals of grid space size h
=1 /N. Second-order divided differences are used to approxi-
mate spatial derivatives. The corresponding line tension is
then computed by solving Eq. �21� using the same second-
order divided differences for spatial discretization. More de-
tails on the spatial discretization are provided in �20�. Com-
bining both the temporal and spatial discretizations, we find
that this time discretization yields only a first-order con-
straint for the time-step size; i.e., �t can be chosen to be
proportional to the spatial grid size.

At every time level, the complex vector �l and tangent
vector t̂l are obtained by integrating Eqs. �16� and �17� with
moving boundary conditions t̂l�s=0, t�. As the filament
evolves, the boundary condition t̂l�s=0� also varies with
time. To update t̂l�s=0� at the �n+1�th level, we use markers
that are independent of the filament centerline. The marker
velocity is given by Eq. �9� with Ul

n and Vl
n from Eqs. �10�

and �11� and Wl
n from Eq. �14�, all computed from 	l

n�s� and
�l

n�s� at the nth time level. The same explicit second-order
time-stepping scheme is used to advance the marker posi-
tions. Reinitialization of markers is performed if the distance
between marker is stretched too much by the velocity field.

The filament shape reconstructed from integrating t̂ along
the centerline is always of the same length up to the numeri-
cal errors in the integration. No penalty function is needed
for enforcing the inextensible condition in the above formu-
lation. The numerical code has been validated against ana-
lytic results for a single elastic fiber in prototypical flows
such as a linear shear flow and a straining flow. The numeri-
cal integrals for hydrodynamic interactions have been vali-
dated by checking against analytical results for straight rods
in various flow configurations �27�.

The rigidity of semiflexible biofilaments �such as micro-
tubules� is in the range E=1–30�10−24 N m2 �28�. For fila-
ments of length L=10 �m in a fluid of viscosity �
=1 Pa s and a flow strain rate �̇=10 s−1, the effective vis-
cosity is in the range 7500���23 000. The typical filament
shape parameter is in the range 0.03���0.27. Small values
of shape parameter correspond to very slender filaments, for
which the hydrodynamic interactions are weak. For the fol-
lowing simulation results we set ��0.1 as we focus on the
effects of HIs for slender filaments suitably described by the
slender-body theory.

III. TWO FILAMENTS IN LINEAR SHEAR FLOW

In this section we investigate effects of HIs between two
elastic filaments immersed in linear shear flow. In particular,
we focus on HI-induced change in their buckling dynamics
and the filament dispersion in shear flow.

The buckling of a single filament in the plane of shear
flow has been well studied �20�. Initially placed at the center
of the flow �y=0� with an angle ��� and a small perturba-
tion to the straight shape, the filament slowly rotates to align
with the shear flow. The filament experiences compression
�decompression� as it rotates toward �past� the vertical axis.
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A stiff filament ��=0� simply rotates to align with the shear
flow. For a floppy filament �large ��, buckling occurs when
sufficient stress is exerted from the fluid during the compres-
sion. The filament rotates as it buckles, and eventually
straightens out and gradually aligns with the shear �x axis�.

Many spatial arrangements of filaments can be considered
as initial conditions for simulations of two filaments in shear
flow. For force-free filaments the mutual interaction decays
with the inverse of filament separation squared �20�. There-
fore HIs are most effective when both filaments are in the
plane of shear flow. As we seek to elucidate the generic HI
effects on filament buckling and the subsequent filament
shear dispersion, the two filaments are placed �close to each
other� at the same level in the plane of shear flow so that any
filament shear dispersion can only result from filament buck-
ling under HIs. Preliminary simulations show that HI effects
are most prominent when both filaments buckle at around the
same time. In the shear flow this means that both filaments
are initially at the same angle with respect to the shear.
Therefore, all the simulation results presented in this section
start with an initial configuration where both filaments have
exactly the same shape and angle so they buckle together and
thus maximize the hydrodynamic interactions.

The initial perturbation is explicitly defined in terms of
curvature

	�s� = �	�s − s2�2 �24�

for s� �0,1� and �	=10−4. Two identical filaments are in-
serted in the xy plane with one centered at �0,0,0� and the
other centered at �d ,0 ,0�. This initial configuration is not
symmetric under the transformation x1→−x2, x2→−x1 �x1
and x2 are filament position vectors from �0,0 ,d /2�, the cen-
ter of two filaments�, and the ensuing buckling dynamics will
be different between two filaments. At the beginning of the
simulations, the angle � �with respect to the x axis; see Fig.
2�a�� is set to �=0.9936� for both filaments. This value is
chosen so that a noninteracting straight filament will become
vertical at t=49.664 �20�. Simulations show that hydrody-
namic interaction is negligible when filament separation is
much larger than five times the filament length.

Finally we remark that perturbations need to be seeded in
the simulations for noninteracting filaments to buckle. For
interacting filaments with small separation, however, HIs are
sufficient to induce filament shape perturbations for buckling
under the right conditions. Simulations of interacting fila-
ments show similar filament shear dispersion with or without
the small perturbation �Eq. �24�� seeded in the initial condi-
tions.

A. Effect of filament shape parameter � in shear flow

For the first set of simulations, the initial filament separa-
tion is fixed at five times the filament length �d=5� with the
effective viscosity �=15 000, which corresponds to a fila-
ment of length L=5 �m with E=10−24 �or L=10 �m with
E=30�10−24� in water for a shear rate �̇=10 s−1. The fila-
ment shape parameter varies from �=0.01 to �=0.1, or fila-
ment aspect ratio from �=10−22 to �=4�10−3: the larger the
filament aspect ratio �or filament shape parameter �� is, the

more important HIs are to filament dynamics.
Figure 2 shows buckling of two interacting semiflexible

filaments in the plane of the shear flow with the initial fila-
ment separation d=5 and filament shape parameter �=0.1.
For direct comparison, the two filaments are superimposed at
the center of each panel. With the initial angle slightly
smaller than �, both filaments rotate clockwise in synchrony
at this separation. The filament is under compressive stress
from the shear flow before it rotates past the y axis. For �
=15 000 the fluid exerts sufficiently strong compressive
stress to induce buckling as filaments rotate past �=3� /4
�t�48.5�. When both filaments are under compression, HIs
also induce the most significant difference in the filament
shape around t=49.75, when the elastic energy 
2

��0
1�	�2ds reaches maximum for both filaments; see Figs.

2�c� and 3�a�. The dotted line in the figure is the elastic
energy of the noninteracting filament, which is exactly the
average of the elastic energy for two interacting filaments.
This is because the initial conditions are exactly the same for
the two interacting filaments, and two filaments rotate and
buckle at the same time with the right filament reaching
higher curvature than the left. If the sign of perturbation is
reversed for both filaments, the left filament will reach
higher maximum curvature.

Figure 3�b� plots the elastic energy of the right filament
�ordinate� against that of the left filament �abscissa�. The

(b)

(a)

(c)

(d)

(f)

(e)

FIG. 2. Buckling instability of two interacting filaments at a
distance d=5 in a planar shear flow. Effective viscosity �=15 000
and filament shape parameter �=0.1. Both filaments have exactly
the same initial shape and angle ��0�=0.9936�. At the center of
each panel the two filaments are superimposed for comparison.
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arrows indicate the direction of evolution in terms of the
elastic energy of two filaments. The same trend is observed
for other values of filament shape parameter as shown in Fig.
4�a�. At this separation the two filaments still rotate in syn-
chrony under HIs. Stronger HIs �larger �� lead to more asym-
metric filament shape at the time of buckling �t�49.75 for
these simulations�. After the two filaments buckle and rotate
past the vertical axis, they quickly straighten out as in Figs.
2�e� and 2�f�.

Another significant consequence of HIs is the filament
dispersion in shear flow, which depends on the transverse
filament displacement �in the cross-stream direction� defined
as �y �y1c−y2c, where ylc is the vertical coordinate of the lth
filament center. In the absence of HIs two filaments slowly
align with the x axis without any shear dispersion: the trans-

verse filament displacement remains zero, and the filament
separation remains constant before and after the buckling. As
the interacting filaments rotate and buckle in the shear flow,
the transverse displacement �y increases above zero and pla-
teaus to a constant value as both filaments straighten and
align with the shear.

From the simulation data it is found that larger HIs ���
lead to larger transverse filament displacement for d=5. Fig-
ure 4�b� shows dependence of �y on filament shape param-
eter via the buckling instability mediated by HIs. The trans-
verse displacement between two filaments is proportional
�identical� to the difference in filament translational velocity
in shear flow �after nondimensionalization�. The difference
in translational velocity gives rise to a horizontal filament

(b)(a)

FIG. 3. �a� Elastic energy versus time for interacting filaments in shear flow: solid line for left filament and dashed line for right filament
in Fig. 2. The dotted line is for a noninteracting filament with the same initial conditions. �b� Elastic energy of the right filament at x=5
�ordinate� versus elastic energy of the left filament at x=0 �abscissa�. The evolution of the buckling instability follows the arrow. The dashed
line is for reference to the evolution of the noninteracting case.

0.04
0.01

δ=0.10
0.07

(b)(a)

FIG. 4. �a� Elastic energy of the right filament at x=5 �ordinate� versus elastic energy of the left filament at x=0 �abscissa� for different
values of filament shape parameter �. �b� Dependence of transverse filament displacement �y versus �.
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displacement �x=�yt, which in turn leads to the filament
shear dispersion

��t� � ��x
2 + �y

2 = �y
�t2 + 1 → �yt as t → � .

Therefore, results in Fig. 4�b� suggest that at a fixed initial
filament separation, large filament dispersion correlates to
large hydrodynamic interaction in the planar shear flow.

B. Effect of initial filament separation in shear flow

More substantial HIs are expected for smaller filament
separation because the integral Vlk in Eq. �4� vary as 1 / �Rlk�2.
In this subsection we conduct the following set of simula-
tions to examine how the previous results for d=5 may vary
with initial filament separation. For the following simulation
results, filament shape parameter �=0.07, which corresponds
to a filament aspect ratio of ��5�10−4. The initial filament
shapes and angles from the previous set of simulations are
used, while the initial filament separation d is varied from
d=5 to d=1.5.

Figure 5 shows an example of different HI-induced buck-
ling dynamics for two filaments at a separation d=2.5. Fig-
ures 5�b�–5�d� show that the filament deformation is almost
antisymmetric due to HIs. In this case HIs cause the filament
to lose synchrony in their rotation. As illustrated in Fig. 6�a�
the right filament rotates faster than the left filament until
t�51, when the left filament catches up with the right fila-
ment �see inset of Fig. 6�a��. The corresponding evolution of
elastic energy for the two filaments is shown in Fig. 6�b�.
The right filament �dashed line� reaches maximum earlier
than the left �solid line�. On the other hand, contrary to the
case of d=5 �also shown in Fig. 6�b��, the left filament de-
forms more than the right filament, which attains a higher
maximum elastic energy at a later time.

For smaller filament separation �d=1.5�, HIs induce the
buckling instability as early as t�46. The evolution of fila-
ment buckling is demonstrated in Fig. 7. At t=48.12 the
filaments already undergo significant deformation. After
t=49.37, half of the filament already straightens out, while
the other half is still bent. Both filaments straighten out
around t=52.37, after when they rotate and gradually align
with the shear. The corresponding evolution of the elastic
energy is shown as the dash-dotted line in Fig. 8�a�. The
elastic energy evolutions for d=2.5 �dotted line� and d=5
�solid line� are also plotted in the figure. For all three curves
in Fig. 8�a�, the evolution is in the clockwise direction. From
these figures we conclude that the asymmetry between the
two filaments is most prominent when the filament separa-
tion is d=2.5. This is also reflected in the transverse filament
displacement �y in Fig. 8�b�, where �y reaches maximum at
d=2.5.

The above findings can be understood as follows. When
two filaments are far from each other �at a distance greater
than five times the filament length�, hydrodynamic interac-
tion is negligible and the two filaments rotate in synchrony
given the same initial filament shape and angle. When two
filaments are in close range of each other, the hydrodynamic
interaction causes both filaments to rotate differently. In par-
ticular if the initial filament separation is comparable to their

length, strong hydrodynamic interaction acts to synchronize
the filament rotation. In addition, the shapes of the buckling
filaments are �almost� mirror images of each other as clearly
demonstrated in Fig. 7. This mirror symmetry �invariant un-
der transformation x→−x� is inherent from the linear shear
flow. As a result, even though the initial perturbed filament
shape �identical for both filaments� does not have the mirror
symmetry, strong hydrodynamic interaction enforces this
symmetry in the subsequent dynamics. For initial filament
separation between the two extreme limits, hydrodynamic
interaction is strong enough to induce faster rotation and
larger filament deformation than the noninteracting filament,
but not enough to enforce the mirror symmetry. Therefore,
the buckling dynamics of two filaments at d=2.5 shows the
most asymmetry, and consequently the largest transverse dis-
placement �solid line in Fig. 8�b��. The dashed line in Fig.

(b)

(a)

(c)

(d)

(f)

(e)

FIG. 5. Buckling instability of two interacting filaments at a
separation d=2.5 in a planar shear flow. Effective viscosity �
=15 000 and filament shape parameter �=0.07. The same initial
conditions are used for both filaments with ��0�=0.9936�. At the
center of each panel the two filaments are superimposed for
comparison.
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8�b� is for simulations that start from initial conditions with
the mirror symmetry. Similar filament buckling dynamics un-
der HIs are observed for both sets of simulations, and both
curves show the general dependence of transverse displace-
ment �y on the filament separation d, even though the exact
values depend on the details of the perturbation.

In summary, HIs between two elastic filaments induce dif-
ferent buckling dynamics and filament dispersion �transport�
in linear shear flow. Simulation results suggest that filament
dispersion is small when the initial filament separation is
either too large or too small, and maximum filament disper-
sion is found for filament separation d=2.5 �or two and a
half times the filament length�. The buckling of filament pair
at this distance is found to be most asymmetric, in terms of
both average filament curvature evolution and filament rota-
tion.

IV. TWO FILAMENTS IN LINEAR STRAINING FLOW

In this section we elucidate the effects of HIs between two
elastic filaments immersed in the plane of a linear straining
flow; see Fig. 9�a�. As for the cases of linear shear flow, we
choose initial configurations to maximize the generic HI ef-
fects on the dynamics of filaments in the linear extensional
flow. Explicitly, two filaments are placed parallel to the x
axis with one on the left �thick solid line� and the other on
the right �thick dashed line� of the stagnation point, located
at the center of Fig. 9�a�. To avoid direct collision as they
move toward the stagnation point, the left filament is cen-
tered at �−0.5,−0.03,0� and the right is centered at
�0.5,0.03,0�. The value of 0.03 is chosen so that two fila-
ments do not cross each other when they buckle under HIs
around the stagnation point �see Sec. IV B�.

The initial conditions for simulation results in this section
are perturbed curves �with perturbation given in Eq. �24��

that are invariant under x→−x. The subsequent filament dy-
namics is expected to be symmetric under the transformation
x1→−x2, x2→−x1 as they are advected by the extensional
flow and move along the arrows in Fig. 9�a�. This is because
both the initial conditions and the straining flow are invariant
under this transformation. In the simulations this mirror sym-
metry is obeyed up to the numerical discretization errors. For
unit filament length with 200 grid points for each filament,
the filament shapes and trajectories satisfy the mirror sym-
metry up to errors on the order of �10−5. For initial condi-
tions with small deviations from such mirror invariance,
slight differences in filament trajectories are found but the
general filament dynamics is almost identical.

Starting from the initial configuration in Fig. 9�a�, two
filaments experience more compression as they move closer
toward the extensional axis. In this configuration the dynam-
ics of two filaments is always synchronous and spatially in-
variant under the mirror symmetry. Buckling instability oc-
curs if the effective viscosity is sufficiently large, as in the
case of a single filament �22�.

For a noninteracting filament on the compressional �x�
axis, the critical viscosity for buckling instability is �c
=328. For ���c the filament does not buckle nor rotate. For
���c the filament buckles, rotates, and aligns with the ex-
tensional axis. Once aligned with the extensional axis, the
filament moves away from the stagnation point �22�. The
complete dynamics of a single filament with supercritical �
is the sequence of buckling, rotation, and translation. For a
noninteracting filament parallel to the compressional axis at
a distance of 0.03 from the compressional axis, the filament
experiences compression as it moves toward the extensional
axis, and buckles at a critical viscosity lower than 328 �205
for filament at a distance of 0.03�.

Different filament dynamics is found from simulations of
a pair of interacting filaments approaching the stagnation
point. First, HIs cause filaments to buckle at a lower critical

d=5
d=2.5
d=1.5

d=5

d=2.5

d=1.5

(b)(a)

FIG. 6. �a� Evolution of averaged filament angle ���: right filament �ordinate� versus left filament �abscissa� for initial filament separa-
tions d=5, d=2.5, and d=1.5. The arrow indicates the direction of evolution. The inset shows the angle of the left filament versus time. �b�
Elastic energy versus time for pairs of filaments at different initial separations with effective viscosity �=15 000 and shape parameter �
=0.07. Solid lines are for the left filaments, and dashed lines are for the right filaments.
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effective viscosity, which is now a function of filament shape
parameter � as shown in Fig. 9�b�. For � below the critical
value, filaments with small � approach the stagnation point
without buckling or rotation, and move away from the stag-
nation point as shown in the lower left inset of Fig. 9�b� �for
�=0.01 and �=190�. For filaments with larger � �and � still
below the critical value�, however, the straight filaments ro-
tate under HIs as shown in Fig. 10�a� �for �=0.1 and �
=100�.

Second, for supercritical effective viscosity ���c, the
two filaments buckle and their elastic energy reaches a maxi-
mum �upper right inset of Fig. 9�b��. The buckling of two
interacting filaments around the stagnation point is more
complicated than the buckling dynamics of a single filament:
The sequence of dynamics for a single filament is found for
a pair of interacting filaments only for � slightly above the
critical value, as shown in Fig. 10�b� for �=300 and �=0.1.
Figure 11�a� summarizes the trajectories of filament center
from simulations with small to moderate values of � such
that filaments rotate to align with the extensional axis.

For � much larger than the critical value, HIs induce sig-
nificant shape deformation, and the deformed filaments move
along the extensional axis without rotation as shown in Fig.
12�a� with �=800 and �=0.1. Without HIs, buckling is fol-

lowed by rotation for a horizontal filament lying on the com-
pressional axis with �=800 and �=0.1. Figure 11�b� summa-
rizes the trajectories of filament center with sufficiently large
� such that filaments buckle without rotating around the
stagnation point. The corresponding elastic energy for buck-
ling filaments with different values of � is plotted versus
time in Fig. 12�b�.

A. Effect of filament shape parameter � in extensional flow

Next we examine the shape parameter dependence of
buckling dynamics of two filaments as we vary � from 0.01
to 0.1. �=1000 is chosen so that filaments buckle for all
values of �. The evolution of the elastic energy versus time is
plotted in Fig. 13�a�. Detailed buckling dynamics for �
=0.01, 0.02, and 0.03 is illustrated in Fig. 13�b�. For all three
values of � filaments start to buckle around t=2.04, and the
early filament deformation is proportional to �. For �=0.03
the filament is more deformed and moves faster than the
other two filaments. The filament with �=0.01 has the least
deformation before t=3.24. As the �=0.01 filament moves
away from the stagnation point in the V shape, it reaches
maximum deformation much later than the other two fila-
ments. The corresponding filament center trajectories also

(b)

(c) (d)

(e) (f)

(g) (h)

(b)(a)

(c) (d)

(f)(e)

(g) (h)

FIG. 7. Buckling instability of two interacting filaments at a distance d=1.5 in a planar shear flow with effective viscosity �=15 000 and
shape parameter �=0.07. The same initial conditions are used for both filaments with ��0�=0.9936�. At the center of each panel the two
filaments are superimposed for comparison.
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demonstrate the nonmonotonic dependence on shape param-
eter, and the �=0.01 filament eventually catches up with the
�=0.02 filament after t�3.24. HIs between �=0.01 fila-
ments induce buckling at a slower rate, and the filament pair
reaches maximum curvature farther away from the stagna-
tion point.

B. Buckling filaments in near contact

If filaments are too close to the compressional axis of the
extensional flow, their buckling dynamics and rotation

around the stagnation point may cause them to be in near
contact with each other. An example is shown in Fig. 14�a�,
where two horizontal filaments are initially centered at
�−0.5,−0.02,0� and �0.5,0.02,0�. With �=300 and �=0.1,
two filaments first buckle and then rotate. Around t=3.64 the
two filaments come into near contact of each other.

Special treatment is required to avoid physical contact and
crossing between slender bodies in the slender-body formu-
lation �29�. A strong and very short-range repulsive force
often used in the dynamic simulations of rigid fiber suspen-

d=1.5

d=2.5

d=5

(b)(a)

FIG. 8. �a� Elastic energy of the right filament �ordinate� versus elastic energy of the left filament �abscissa� for three initial filament
separations. The evolution of the buckling instability follows the clockwise direction. The dashed line is for reference to the evolution of the
noninteracting case. �b� Dependence of transverse filament displacement �y versus initial filament separation d. The solid line is for
simulations that start from both filaments perturbed by Eq. �24�. The dashed line is for simulations that start from initial conditions with the
mirror symmetry.

unstable

stable

(b)(a)

FIG. 9. �a� Illustration of two filaments �thick solid line and thick dashed line� inserted in a linear straining flow U0= �−x ,y ,0�. The
arrows indicate the flow directions, and the contour lines are the streamlines. �b� Critical value of � for buckling instability of two filaments
�parallel to the x axis� around the stagnation point. One filament is moving toward the center from the left at a distance of 0.03 above the
x axis and the other at 0.03 below. The inset at the lower left corner is the trajectories of two filaments �with �=200 and �=0.01� and their
shapes. The inset at the upper right corner is an example of the elastic energy versus time for �=300 and �=0.1.

Y.-N. YOUNG PHYSICAL REVIEW E 79, 046317 �2009�

046317-10



sion is used as an alternative to prevent fiber crossing
�30–32�. This repulsive force can be modified for semiflex-
ible filaments as follows:

Fl
R�s� = � a0

�e−�hlk�s�

1 − e−�hlk�s� n̂l, �25�

where hlk�s� is the shortest distance between two filaments at
a given point on the lth filament, and proper signs are chosen
to denote the repulsive direction.

Without the short-range repulsive force, the two filaments
in Fig. 14�a� come into physical contact and the slender-body
formulation breaks down right after t=3.64. Adding the re-
pulsive force with a0=10−4 and �=103 in the simulation, the
two filaments slide next to each other after t=3.64, rotate and
align with the extensional axis, and diverge from the stagna-

tion point after t=4.28. Figure 14�b� shows the correspond-
ing evolution of the elastic energy �dashed line�. In compari-
son with the elastic energy for d=0.03 �solid line�, HIs
suppress filament deformation when they are in close range
of each other, an effect also found in the case of viscous
drops �6�. Further numerical investigation on the buckling
filaments in close range shows that the repulsive force with
a0=10−4 and �=103 in Eq. �25� fails to keep the buckling
filaments from crossing each other in some cases. Different
values for a0 and � can be used to prevent filament crossing.

V. CONCLUSION

The effects of HIs on the buckling dynamics of a pair of
semiflexible inextensible filaments in two simple linear flows

1

1: t=0.44
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(b)(a)

FIG. 10. Trajectories �dash-dotted lines� and shapes of two filaments of unit length with shape parameter �=0.1 at six different times. The
initial configuration is two filaments parallel to the x axis located at �−0.5,−0.03,0� and �0.5,0.03,0�. �a� �=100, and �b� �=300.

η=100

η=200

η=300
η=400

η=500

η=600

η=800
η=1000

(b)(a)

FIG. 11. Trajectories of the center of left filament with �=0.1 for different values of �. The right filament trajectories are mirror images
with respect to the origin. �a� Moderate � where the filament buckles mildly for ���c and rotates as it leaves the stagnation point �Fig. 10�.
�b� Large � where the filament deforms significantly and does not rotate as it leaves the stagnation point �Fig. 12�a��.

HYDRODYNAMIC INTERACTIONS BETWEEN TWO … PHYSICAL REVIEW E 79, 046317 �2009�

046317-11



are reported in this paper. The nonlocal slender-body formu-
lation for interacting filaments immersed in Stokes flow is
utilized to describe the dynamics. Specific initial conditions
are used in the numerical simulations to elucidate the various
aspects of HIs.

For a pair of identical filaments �same shape, angle, and
bending rigidity� lying at the center of shear flow with an
initial separation d, we find HIs change the filament rotation
in nontrivial fashions. First, HIs induce filaments to rotate
earlier than noninteracting filaments. Second, simulations
show that filament rotation is synchronous when the filament
separation is large �with negligible HIs� or small �very strong
HIs�. For an intermediate filament separation d=2.5 filament
rotation is out of sync, with the right filament completing the
rotation earlier than the left one for the given initial condi-

tions. Third, HIs also induce nontrivial filament shear disper-
sion in shear flow: without HIs the filament shear dispersion
is zero for the given initial conditions. Filament shear disper-
sion first increases with decreasing filament separation, at-
tains a maximum at d=2.5 when the loss of synchrony in
filament dynamics is the greatest, and decreases when the
filaments are synchronized again by strong HIs at short fila-
ment separation.

We have also simulated the dynamics of a pair of fila-
ments initially centered at �−49.664,1 ,0� and �0,0,0�, both
with an angle �=0.9936�. The top, left filament translates
horizontally toward the right at a dimensionless velocity of
1. Two filaments are closest to each other at t=49.664 when
the top filament center reaches �0,1,0�. As both filaments
buckle around t=49.664, HIs induce most differences in
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FIG. 12. �a� Trajectories �dash-dotted lines� and shapes of filaments with �=0.1 and �=1000 at six different times. The initial configu-
ration is two filaments parallel to the x axis located at �−0.5,−0.03,0� and �0.5,0.03,0�. �b� Elastic energy versus time for � from 300 to 1000.

δ=0.1

δ=0.01

δ=0.02

t=3.64

δ=0.01
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t=3.24

t=2.84
t=2.44

t=2.04

(b)(a)

FIG. 13. � dependence of buckling dynamics around the stagnation point. Effective viscosity �=1000 and two filaments of unit length
are initially located at �−0.5,−0.03,0� and �0.5,0.03,0�. �a� Evolution of elastic energy for �=0.01 to �=0.1 with an increment of 0.01
between curves. �b� Filament shapes at different times for �=0.01, �=0.02, and �=0.03.
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shape deformation. As in the previous cases, the conse-
quence of filament buckling under HIs is an increase in fila-
ment dispersion after both filaments straighten out and align
with the shear. However, for this configuration, the final
transverse displacement for �=0.1 is �y �1.01, an increase
of only 0.01. Therefore we conclude that HIs have little im-
pact on the shear dispersion of filaments moving toward each
other at this vertical separation. For smaller vertical separa-
tion, two filaments may come into physical contact around
t=49.

For a pair of filaments in the extensional flow, a special
initial condition is chosen so that �1� two filaments would
approach the stagnation point from equal distance, and �2�
the subsequent dynamics retains the mirror symmetry up to
numerical discretization errors. HIs reduce the threshold in
bending rigidity for buckling instability in this configuration.
For stiff filaments converging to the stagnation point in the
flow, strong HIs can induce rotation. For moderately floppy
filaments, HIs induce both buckling and rotation of fila-
ments, much similar to the buckling dynamics of a single
filament around the stagnation point. For very floppy fila-
ments, HIs induce strong filament deformation and the
highly deformed filaments diverge from the center without
rotation.

We have also shown that two filaments come into near
contact as they buckle around the stagnation point. The
slender-body formulation breaks down if two filaments are in
physical contact, which occurs when two filaments are very
close to the compressional axis as suggested in Fig. 14�a�. A
short-range repulsive force is found to be able to keep two

filaments apart only for certain ranges of effective viscosity
and shape parameter. More detailed investigation is required
to ensure that the slender-body formulation remains consis-
tent in these cases. Once we have a better treatment of the
repulsive force for buckling filaments in near contact, we
will investigate how HIs affect the transport of short fila-
ments �less than 1 �m� in a cellular flow in the presence of
thermal fluctuations, which may lead to filament tumbling
�19� and coiling �33�.

An ongoing project is to examine how macroscopic prop-
erties of semiflexible filament suspension correlate to HIs
effects on the buckling dynamics of a pair filaments summa-
rized in this paper. We are now working on incorporating the
smooth-particle mesh Ewald �SPME� scheme for fast com-
putation of the interaction integral Vlk into the nonlocal for-
mulation for multifilaments in a periodic domain. We aim to
simulate more than hundreds of interacting semiflexible fila-
ments, and these results will be useful for constructing and
validating the modeling of HIs in the framework of kinetic
theory for complex filament flows in the dilute or semidilute
limit. For example, the integral kernel of filament interaction
�34� may be consistently constructed based on the findings
presented in this paper.
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FIG. 14. �a� Buckling filaments with �=300, �=0.1, and d=0.02. The two filaments come into near contact around t=3.64. Repulsive
force is needed to prevent filament crossing in the simulation. �b� Elastic energies for different initial displacements from the compressional
�x� axis: solid line is for a displacement of 0.03 and dashed line is for a displacement of 0.02. �=300 and �=0.1 for both cases.
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