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Space-time correlations or Eulerian two-point two-time correlations of fluctuating velocities are analytically
and numerically investigated in turbulent shear flows. An elliptic model for the space-time correlations in the
inertial range is developed from the similarity assumptions on the isocorrelation contours: they share a uniform
preference direction and a constant aspect ratio. The similarity assumptions are justified using the Kolmogorov
similarity hypotheses and verified using the direct numerical simulation �DNS� of turbulent channel flows. The
model relates the space-time correlations to the space correlations via the convection and sweeping character-
istic velocities. The analytical expressions for the convection and sweeping velocities are derived from the
Navier-Stokes equations for homogeneous turbulent shear flows, where the convection velocity is represented
by the mean velocity and the sweeping velocity is the sum of the random sweeping velocity and the shear-
induced velocity. This suggests that unlike Taylor’s model where the convection velocity is dominating and
Kraichnan and Tennekes’ model where the random sweeping velocity is dominating, the decorrelation time
scales of the space-time correlations in turbulent shear flows are determined by the convection velocity, the
random sweeping velocity, and the shear-induced velocity. This model predicts a universal form of the space-
time correlations with the two characteristic velocities. The DNS of turbulent channel flows supports the
prediction: the correlation functions exhibit a fair good collapse, when plotted against the normalized space and
time separations defined by the elliptic model.
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I. INTRODUCTION

An important concept in the turbulence theory is that
small-scale eddies are progressively decorrelated in time.
The decorrelation process can be characterized by two-time
two-point correlations of fluctuating velocities, or simply,
space-time correlations. The space-time correlations are fun-
damental to the turbulence theory and have a broad applica-
tion. The classic direct interaction approximation �DIA�
theory �1� and various Eulerian closure theories �2–4� need a
model for space-time correlations to derive energy spectra.
In isotropic turbulence, a space-time-correlation model is de-
veloped from the random sweeping hypothesis and then used
to formulate the universal scaling of the energy spectra �2�.
However, in turbulent shear flows, such a space-time-
correlation model is not available, which obstructs the deri-
vation of the energy spectra. In the recently developed map-
ping closure approximation for probability density functions
�5,6� and the functional derivative closure for scalar mixing
�7�, a space-time-correlation model is also needed. In many
applications such as aeroacoustics �8,9�, the frequency spec-
tra of sound are calculated from the space-time correlations.
The recent application of large eddy simulation �LES� to
sound prediction in turbulent flows requires the correct pre-
diction of LES on the space-time correlations �10�. In isotro-
pic turbulence, the space-time correlations are mainly deter-
mined by instantaneous energy spectra. Consequently, an
accurate prediction of LES on energy spectra implies the
accurate prediction of LES on the space-time correlations

�11�. However, in turbulent shear flows, the space-time cor-
relations may not be determined by the energy spectra at
resolved scales. A further understanding of space-time corre-
lations could help the developments of LES in predicting
turbulent noise.

The decorrelation process of small eddies with time can
arise either by the sweeping of small eddies by energy-
containing eddies or the distortions of small eddies them-
selves. In homogeneous and isotropic turbulence, the decor-
relation process of small eddies is dominated by the energy-
containing eddies �12,13�. Therefore, the decorrelation time
scales of space-time correlations are mainly determined by
the sweeping velocity defined as the rms of fluctuating ve-
locities �14�. However, in turbulent shear flows, the large-
scale shear flows induce the distortions of small eddies while
the latter is carried downstream. Generally, it is difficult to
discriminate between those two effects. The well-known
Taylor frozen flow hypothesis �15� suggests that the small
eddies are carried past a fixed point by the mean flows with-
out any essential change. It implies that the space-time cor-
relations are determined by a convection velocity. However,
Taylor’s model has many limitations such as a weak shear
rate and low turbulence intensity �16,17�. Based on the
Kovasznay �18� and Corrsin’s conjecture �19�, Farve pro-
posed that the space-time correlations can be expressed in
terms of the space correlations and its probabilistic diminu-
tion with time. The ad hoc choice of the probabilistic dimi-
nution is crucial to the success of the model �20�.

Our previous rapid communication �21� empirically pro-
posed an elliptic model for space-time correlations in turbu-
lent shear flows. It is a second approximation to the isocor-
relation contours while Taylor’s model is a first
approximation to the contours. The purpose of this paper is
to rationally develop the elliptic model for the space and
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time separations in the inertial range, including a complete
derivation of the elliptic model from the similarity hypoth-
esis on isocorrelation contours, the analytical calculations of
those two parameters in the model, and a comprehensive
numerical verification of the model using the direct numeri-
cal simulation �DNS� of turbulent channel flows. The con-
tour similarity assumption can be justified from the well-
known Kolmogorov similarity hypotheses. The elliptic
model relates the space-time correlations to space correla-
tions via two parameters: the convection and sweeping ve-
locities. We will use the quasinormality assumption to for-
mulate the analytical expressions of the convection and
sweeping velocities in homogeneous turbulent shear flows.
The expressions clearly indicate the role of mean shear rates.
Those results will be used to explore the mechanism of the
decorrelation process in turbulent shear flows. The elliptic
model will be numerically verified using the DNS date of
turbulent channel flows.

The rest of the paper is organized as follows. In Sec. II,
we will give a complete derivation of the elliptic model. In
Sec. III, we will derive from the Navier-Stokes equation the
expressions for the two parameters in the elliptic model: the
convection and sweeping velocities. The numerical verifica-
tion from the DNS of turbulent channel flows will be pre-
sented in Sec. IV. Finally, conclusions and discussions will
be made in Sec. V.

II. ELLIPTIC MODEL FOR SPACE-TIME CORRELATIONS

The classic space-time-correlation theory in turbulence
�12,13� suggests that the dominant effects on space-time pat-
terns at high frequencies is the sweeping of small eddies that
pass an observation point by large-scale eddies. This implies
that the space-time fluctuations can be expressed as an ap-
propriate transformation of space correlations. The Taylor
frozen flow hypothesis is the simplest version of the trans-
formation. To understand this problem, we introduce the
Navier-Stokes equations for the turbulent flows

�vi

�t
+ v j

�vi

�xj
= −

�p

�xi
+ �

�2vi

�xj � xj
,

�vi

�xi
= 0, �1�

where v= �v1 ,v2 ,v3�, p and � are the velocity vector and the
pressure and the kinematic viscosity, respectively. The re-
peated indices imply a summation. The velocity field can be
decomposed into the mean flow part and the fluctuating part

Ui = �vi�, vi = Ui + ui, p = �p� + p�, �2�

where the bracket � � denotes the ensemble averaging. It fol-
lows from Eq. �1� that the fluctuating velocity and pressure
satisfy

�ui

�t
= − �Uj + uj�

�ui

�xj
− uj

�Ui

�xj
+

��uiuj�
�xj

−
�p�

�xi
+ �

�2ui

�xj � xj
,

�Ui

�xi
=

�ui

�xi
= 0. �3�

In this paper, we confine the mean velocity field to a
simple mean shear flow. U1=U�x2� is only dependent on the
normal distance and U2 and U3 are negligibly small. The
space-time-correlation function is defined as

R�r,�� = �ui�x,t�ui�x + re1,t + ��� , �4�

where u1 is the stream-wise component of a velocity vector
�u1 ,u2 ,u3�, e1 is the unit vector along the stream-wise direc-
tion, r is a spatial separation vector with r being its magni-
tude, and � is a time separation. Taylor’s hypothesis assumes
that the transformation is linear, such as

R�r,�� = R�r − U�,0� . �5�

The linear transformation implies that the isocorrelation con-
tours are straight lines: r−Ut=C, where C denotes a contour
level �see Fig. 1�. Thus, the space-time correlations remain
constant for sufficiently large separations r or � in the linear
contours. This result violates the basic property of correla-
tion functions, which decay with increasing separations in
either space or time. Therefore, Taylor’s model is not correct
for larger separations. However, we learn from Taylor’s
model that the isocorrelation contours is a useful approach to
relate space-time correlations to space correlations. The
problem with Taylor’s model is that a linear approximation is
not accurate. Therefore, we should introduce a higher-order
approximation to the contours.

We will summarize our previous derivations �21� for the
elliptic model as follows. Consider a contour R�r ,��=C near
the origin �r ,��= �0,0�. We expand the correlation function
R�r ,�� in a Taylor power series at the origin up to second
order

R�r,�� = R�0,0� +
�2R�0,0�

�r � �
r�

+ 0.5� �2R�0,0�
�r2 r2 +

�2R�0,0�
��2 �2� , �6�

where �R�0,0� /�r=0 due to homogeneity and �R�0,0� /��
=0 due to stationary. The contour R�r ,��=C intersects with
the space separation axis at the point �0,rc�, such that

R�r,�� = R�rc,0� . �7�

Replacing the correlation function R in Eq. �7� by Eq. �6�, we
obtain

rc
2 = �r − U��2 + V2�2, �8�

where

U = −
�2R�0,0�

�r � �
� �2R�0,0�

�r2 �−1

,

V2 =
�2R�0,0�

��2 � �2R�0,0�
�r2 �−1

− U2. �9�

Equation �8� implies that the isocorrelation contours are el-
liptic �see Fig. 1�. Substituting Eq. �8� into Eq. �7� gives the
elliptic model

R�r,�� = R�	�r − U��2 + V2�2,0� . �10�
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It is evident that the Taylor expansion is valid for small
separations r and � and thus, the elliptic model is only valid
for small separations. The Taylor expansion also generates a
good approximation to the space-time correlations at low-
Reynolds-number flows, where the second-order terms are
dominating �22�. Our previous work suggests that the model
is also applicable for larger separations �21�. In this section,
we will extend the elliptic model from small separations to
the ones in the inertial range. The extension is based on the
following two assumptions. �1� The elliptic approximation:
the contours of space-time velocity correlations can be es-
sentially approximated by second-order algebraic curves,
which are elliptic as shown as in Eq. �8�. �2� The contour
similarity: at a sufficiently large Reynolds number, the con-
tours of space-time velocity correlations at inertial-range
separations share a preference direction and an aspect ratio,
where the preference direction is defined as the direction of
the major axis in a contour and measured by the slope of the
major axis with respect to the horizontal axis, and the aspect
ratio is defined as the length ratio of the major axis to the
minor one in the contour.

We will postpone the justification of the above two as-
sumptions later in this section and now use them to extend
the elliptic model. According to these two assumptions, the
isocorrelation contours for large separations are also elliptic
and have the same preference direction tan � and aspect ratio
�
b /a as those for small separations

tan2 � = 4U2/�	�1 + U2 − V2�2 + 4U2V2 + �1 − U2 − V2��2,

�2 = 4V2/�	�1 + U2 − V2�2 + 4U2V2 + �1 + U2 + V2��2.

�11�

Therefore, the general form of the isocorrelation contours
can be written as

�r − U��2 + V2�2 = C , �12�

which is the same as Eq. �8� with a contour level C. As a
result, we could find the intersecting point �0,rc� of the con-
tour �12� with the space separation axis, such that R�r ,��
=R�rc ,0� holds true for all r and � on the contour.

The assumption of elliptic approximation can be justified
as follows. The isocorrelation contours should be central
curves since a space-time correlation has its maximum at
origin and decays with increasing separations in space and/or
time. A linear approximation to the isocorrelation contours is
not accurate as explained before. A second-order approxima-
tion to the isocorrelation contours suggests that the contours
should be elliptic, since either parabolic or hyperbolic con-
tours imply that the correlation functions do not decay with
increasing separations on the contours. The second-order ap-
proximation offers the correct estimates of the Taylor mi-
croscales and the integral scales via the composition of the
isocontour functions into the space correlations. Successively
high-order approximation can be achieved, if necessary, by
including the higher-order terms of its Taylor-series expan-
sion. However, it does not offer any more essential improve-
ment. Gotoh and Kaneda �23� demonstrated that the results
from the second-order approximation to space-time correla-
tions are in agreement with the ones from the Lagrangian
renormalized approximation. The elliptic approximation to
the isocorrelation contours was used for velocity components
in �24,25� and Lagrangian time correlations in �26�. We
should note that the elliptic approximations are not accurate
for pressure time correlations �27�.

Next, we will justify the contour similarity hypothesis
�see Fig. 1�. The premise for the Kolmogorov similarity hy-
pothesis is taken for granted in this discussion. Every turbu-
lent flow at sufficiently large Reynolds numbers is expected
to approach a universal state of scale similarity at small
scales �28�.

�1� The assumption of a uniform preference direction is
developed from the Taylor frozen flow hypothesis. Taylor’s

(b)(a)

FIG. 1. The schematic diagram for the isocorrelation contours. �a� They are straight lines with a constant slope in Taylor’s frozen flow
hypothesis; �b� they are elliptic with a uniform preference direction and a constant aspect ratio in the present model.
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hypothesis implies that the isocorrelation contours have a
preference direction. Since the isocorrelation are parallel
lines in the frozen flows, the slope of the preference direction
is the convection velocity. In the nonfrozen flows, the isocor-
relation contours are elliptic rather than straight lines. How-
ever, there still exist an effective convection velocity which
dominates the motion of small eddies. Therefore, the isocor-
relation contours share a preference direction and thus its
slope is the convection velocity. The uniform convection ve-
locity has been verified by the theoretical arguments, experi-
mental studies, and numerical simulations �29�. Wills �25�
defined the convection velocity as the ratio rc /�c, where rc
maximizes R�r ,�� for a given �c. This definition has been
thoroughly investigated and frequently used in many re-
searches �27,30,31�. Kim and Hussian �30� calculated the
convection velocity for velocity correlations in turbulent
channel flows and the result obtained shows that the ratio
varies by less than 0.1 for different �c. For more complex,
case such as pressure correlations, Choi and Moin �27�
pointed out that the uniform convection velocity is a very
useful indicator.

�2� The assumption of a constant aspect ratio is derived
from the Kolmogorov similarity hypotheses. Since a prefer-
ence direction does not change the aspect ratio, we simply
assume that the preference direction is zero U=0. This is the
case for isotropic turbulence, which yields

R�r,�� = R„	r2 + �V��2,0… . �13�

From the Kolmogorov similarity hypotheses, the velocity
structure functions for either space or time separations must
have the form �28�

D�r,0� = CK��r�2/3,

D�0,�� = CK��V��2/3, �14�

where CK is constant and V is a sweeping velocity. Tennekes
�13� derived Eq. �14� using the sweeping hypothesis, whose
Fourier form gives the well-known scaling of Eulerian time
spectra �32�. The velocity structure function is defined by

D�r,�� = ��u1�x + r,t + �� − u1�x,t��2� . �15�

The structure function is related to the space-time correla-
tions via

D�r,0� = 2R�0,0� − 2R�r,0� , �16�

D�0,�� = 2R�0,0� − 2R�0,�� . �17�

For an elliptic contour R�r ,��=C, we could find its principal
axes lengths �c and rc from R�0,�c�=R�rc ,0�=C. respec-
tively. This implies D�rc ,0�=D�0,�c�. Submission of Eq.
�14� into the above equations yields rc /�c=V. Therefore, the
aspect ratio is constant.

The elliptic model relates the space-time correlations to
the space correlations via two parameters U and V. If V
vanishes, the model implies the result from the Taylor frozen
flow hypothesis; on the other hand, if U vanishes, the model
implies the results from the Kraichnan and Tennekes random

sweeping-velocity hypothesis �12,13�. Therefore, this model
provides an integrated treatment on those two extreme cases.

III. CONVECTION AND SWEEPING VELOCITIES IN
HOMOGENEOUS SHEAR TURBULENCE

The essential assumption of the elliptic model is the self-
similarity of the isocorrelation contours. The contours share
a preference direction and an aspect ratio. In terms of Eq.
�11�, the preference direction and aspect ratio are determined
by the convection and sweeping velocities. In this section,
we will analytically calculate the convection and sweeping
velocities for the homogeneous turbulent shear flow. The
analytical calculation is based on the Navier-Stokes equa-
tions using the quasinormal assumption. The shear effects are
explicitly included into the present calculations up to the
second-order time derivatives of fluctuating velocities. The
analytical results obtained will be used to study the influ-
ences of mean shear rates on the decorrelation processes of
fluctuation velocities.

In this section, we confine the following calculations to
homogeneous shear flows. The mean velocity U has a con-
stant shear rate in the x1 direction

Ui = Sx2�i1, �18�

where S is a shear rate and �ij is a delta function. Therefore,

�Ui

�xj
= S�i1� j2


 Aij . �19�

Using this simplification and eliminating the pressure term
from Eq. �3�, we obtain

�ui

�t
= − Uj

�ui

�xj
− Pijm����ujum − �ujum�� − Lim���Amjuj

+ �
�2ui

�xj � xj
, �20�

where

Pijm��� =
1

2

�

�xm
Pij��� +

1

2

�

�xj
Pim��� ,

Pij��� = �ij − �−2 �2

�xi � xj
,

Lij��� = �ij − 2
�

�xi
�−2 �

�xj
. �21�

Recall that the Eulerian space-time correlations are de-
fined as

R�r,�� = �ui�x,t�ui�x + re1,t + ��� . �22�

We assume that, at initial time t=0, the fluctuating velocity
field in Eq. �20� is homogeneous and isotropic with a normal
distribution of zero mean. Accordingly, a short-time calcula-
tion can be made for the initially homogenous and isotropic
velocity field. For small � and r, we may expand R�r ,�� in a
Taylor power series at �=0 and r=0 up to second order,
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R�r,�� = R�0,0� + Rrr + R�� + 0.5�Rrrr
2 + 2Rr�r� + R���

2� ,

�23�

where

Rr 

�R�0,0�

�r
, R� 


�R�0,0�
��

, Rrr 

�2R�0,0�

�r2

Rr� 

�2R�0,0�

�r � �
, R�� 


�2R�0,0�
�� � �

. �24�

The first two coefficients Rr and R� can be easily evaluated
from the homogeneity and stationarity assumptions

Rr = R� = 0. �25�

The other coefficients Rrr, Rr�, and R�� can be simplified
using the integration by parts

Rrr = �ui�x,t�
�2ui

�x1
2 �x,t�� = − � �ui

�x1
�x,t�

�ui

�x1
�x,t�� ,

�26�

Rr� = �ui�x,t�
�2ui

�x1 � t
�x,t�� = − � �ui

�x1
�x,t�

�ui

�t
�x,t�� ,

�27�

R�� = �ui�x,t�
�2ui

�t2 �x,t�� = − � �ui

�t
�x,t�

�ui

�t
�x,t�� .

�28�

The calculation techniques in the following can be found
from Refs. �23,33�, where the quasinormality is often used.

We will assume that the second-order correlation tensors
are isotropic in the following derivation, where no isotropy
assumption is made for higher-order statistics. This assump-
tion can be justified as a reasonable approximation. The clas-
sic Kolmogorov similarity theory �28� implies that there is an
energy cascade process from large scales to small scales,
which progressively reduces the effect of mean shear on the
small-scale eddies. Therefore, it is postulated that the small-
scale statistics of turbulent flows at high Reynolds numbers
is universal and isotropy. However, the recent experiment
�34� and numerical simulation �35� found that the anisotropy
persists even at high Reynolds numbers. For those high but
still finite Reynolds numbers, an approximation can be made
for small shear numbers �36�. We assume that the time scale
�S is associated with the mean shear flows, such as �S

1 /S, and �N
�r2 /��1/3 associated with the time scales of
the eddies of the length scales r in the inertial range. Thus,
the shear number Sh
�N /�S indicates the relative strength of
the inertial-scale eddies to the mean shear flows. We expand
the spectral correlation function into a series of power Sh

Qij�k,t� 
 �ûi�k,t�ûj
��k,t�� = Qij

�0��k,t� + Qij
�1��k,t�Sh + ¯ ,

�29�

where ûi�k , t� is the Fourier mode of the fluctuating veloci-
ties, and Qij

�0��k , t� represents the contribution from isotropic
part and Qij

�n��k , t� �n�1� represent the contributions from

anisotropic ones. If the shear number Sh is small, the nonlin-
ear interaction among small-scale eddies is dominating and
thus the contribution from the anisotropic parts is ignorable.
As a result, the correlation function can be well approxi-
mated by the isotropic part. Therefore, in the following cal-
culation, we will use Qij

�0��k , t� as an approximation to
Qij�k , t� and will not distinguish Qij

�0��k , t� from Qij�k , t�. Ac-
tually, two well-known experiments �34,37� suggest that the
second-order statistics in homogeneous turbulent shear flows
are isotropic, whereas higher-order statistics are anisotropic.

A. Evaluation of the coefficient Rrr

The coefficient Rrr can be evaluated from the Fourier
modes ûi�k , t� of the fluctuating velocities

Rrr = −
 k1
2�ûi�k,t�ûi

��k,t��dk

= −
1

3

 k2�ûi�k,t�ûi

��k,t��dk = −
2

3



0

�

k2E�k�dk ,

�30�

where the second and third steps invoke the isotropy assump-
tion on the fluctuating velocities and their spectrum tensors,

Qij�k,t� 
 �ûi�k,t�ûj
��k,t�� = Pij�k�

E�k�
4	k2 , �31�

Pij�k� = �ij −
kikj

k2 . �32�

B. Evaluation of the coefficient Rr�

To evaluate the coefficient Rr�, we introduce the Navier-
Stokes �20� into Eq. �27�. This gives

Rr� = Uj� �ui

�x1

�ui

�xj
� + ��Lim���Amjuj�

�ui

�x1
�

+ �Pijm�ujum − �ujum��
�ui

�x1
� , �33�

where the viscous term is ignored due to a sufficient large
Reynolds number. Similarly to the evaluation of the coeffi-
cient Rrr in Eq. �26�, we obtain

Rr� =
2

3
U1


0

�

k2E�k�dk

+ + iS
 ��i1 − 2
kik1

k2 �k1�û2�k�ûi
��k��dk . �34�

The second term in the above equation is equal to zero since
the integrand is odd. This yields

Rr� =
2

3
U1


0

�

k2E�k�dk . �35�
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C. Evaluation of the coefficient R��

The evaluation of the coefficient R�� is very similar to the
ones of the coefficients Rrr and Rr�. The difference is that the
second-order time derivatives of the velocity fluctuation is
needed in the present evaluation. The derivative can be ob-
tained by taking time derivative of the Navier-Stokes �20�.
These considerations lead to

R�� = − UjUk� �ui

�xj

�ui

�xk
� − ��Lim���Amjuj��Lik���Aklul��

− Uk� �ui

�xk
Lim���Amjuj� − ��Pijm���ujum��Pikl���ukul��

+ �Pijm���ujum��Pikl���ukul� , �36�

where

UjUk� �ui

�xj

�ui

�xk
� =

2

3
U1

2

0

�

k2E�k�dk , �37�

��Lim���Amjuj��Lik���Aklul�� =
2

3
S2


0

�

E�k�dk , �38�

Uk� �ui

�xk
Lim���Amjuj� = 0, �39�

��Pijm���ujum��Pikl���ukul�� − �Pijm���ujum��Pikl���ukul�

=
2

3
v0

2

0

�

k2E�k�dk . �40�

Here, v0
2=2�0

keE�k�dk with ke being the maximum wave num-
ber of energetic modes, and thus, it is approximately deter-
mined from the kinetic energy. The quantity v0 is referred to
as the random sweeping velocity in Kraichnan’s �12� model.

Therefore, we can obtain R�� from Eqs. �37�–�40�

R�� = −
2

3
U1

2

0

�

k2E�k�dk −
2

3
S2


0

�

E�k�dk

−
2

3
v0

2

0

�

k2E�k�dk . �41�

Submission of Eqs. �30�, �35�, and �41� into Eq. �9� yields
the expressions for the convection and sweeping velocities

U = U1, �42�

V2 = S2�T
2 + v0

2, �43�

where �T
2 =�0

�E�k�dk /�0
�k2E�k�dk is the Taylor length micro-

scale.
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FIG. 2. The surfaces of space-time correlations as functions of space separation and time delay at �a� x2
+=2.4 �viscous sublayer�, �b�

x2
+=18.0 �buffer layer�, �c� x2

+=91.9 �log-law region�, and �d� x2
+=180 �outer layer�. They are approximately fitted by the paraboloidal

surfaces suggested by Burghelea et al. �38�.

XIN ZHAO AND GUO-WEI HE PHYSICAL REVIEW E 79, 046316 �2009�

046316-6



It can be seen from Eqs. �42� and �43� that the convection
velocity is only determined by the mean velocity and the
sweeping velocity determined by the shear rate, the Taylor
microscale, and the random sweeping velocity. The latter in-
dicates that shear increases the sweeping velocity and thus
decrease the decorrelation time scales of fluctuating veloci-
ties. Although the calculations in this section is limited to
homogeneous shear flows, the conclusion has a useful impli-
cation to inhomogeneous cases. Moreover, if the mean ve-
locity U1 is dominating but the shear rate and the turbulence
intensity are relatively small then the convection velocity U
is dominating and the sweeping velocity V could be ignored.
In this case, the Taylor frozen flow hypothesis is valid; if the
mean velocity is zero, the convection velocity is zero and the
sweeping velocity is equal to the random sweeping velocity,
which is the case for the Kraichnan and Tennekes sweeping
hypothesis. This fact suggests that the present model is a
plausible interpolation between those two limits.

IV. NUMERICAL VERIFICATION OF THE ELLIPTIC
MODEL IN TURBULENT CHANNEL FLOWS

In this section, we will use the DNS of turbulent channel
flows to verify the similarity assumptions and the elliptic
model in turbulent shear flows. The similarity assumptions
imply that the isocorrelation contours share a uniform pref-
erence direction and a constant aspect ratio. We will calcu-
late the preference directions and aspect ratios for each fam-
ily of icocorrelation contours at the different locations away
from the wall, in order to find whether or not they are con-
stant. The elliptic model implies that the space-time correla-
tions are mainly determined by the convection and sweeping
velocities. Therefore, the normalized correlation functions

using Eq. �10� should be independent of the convection and
sweeping velocities and thus collapse into a universal form.
We will examine this prediction using the DNS data.

A direct numerical simulation of fully developed turbulent
channel flows has been performed. The incompressible
Navier-Stokes and continuity equations were integrated in
time using the fractional step method. A modified third-order
Runge-Kutta scheme was used for the nonlinear term treated
explicitly and second-order Crank-Nicholson scheme was
used for the viscous terms treated implicitly. A second-order
finite-volume method was used to represent the spatial de-
rivatives. The computation domain was 4	�, 2�, and 2	� in
the stream-wise, normal, and spanwise directions, where
� is a length unit. The corresponding grid numbers were
128
129
128. A nonuniform mesh was used in the wall
normal direction. The first mesh point away from the wall
was at x2

+=0.17 and the maximum spacing at the centerline
of the channel was 7.39 wall units. The friction Reynolds
number was Re�=180.

The space-time correlations of fluctuating velocity u1 in
the stream-wise direction is used to verify the elliptic model.
The ensemble average is taken as the averaging over the x1x3
plane and time t, since the stream-wise component is spa-
tially homogeneous in the x1x3 plane and temporally station-
ary.

Figure 2 plots the surface of the space-time correlations at
x2

+=2.4 �viscous sublayer�, 18.0 �buffer layer�, 91.9 �log-law
region�, and 180.0 �outer layer�. The surfaces decay most
slowly in the preference directions and most fast in its nor-
mal directions. Small oscillations are observed at large sepa-
rations due to negative correlations. Burghelea et al. �38�
suggested that the surface can be fitted by a paraboloidal
surface for sufficiently small space and time separations.

Figure 3 displays the isocorrelation contours at x2
+=2.4,
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FIG. 3. The contours of space-
time correlations as functions of
space separation and time delay at
�a� x2

+=2.4 �viscous sublayer�, �b�
x2

+=18.0 �buffer layer�, �c� x2
+

=91.9 �log-law region�, and �d�
x2

+=180 �outer layer�. The contour
levels are from 0.2 to 0.9 with in-
crements of 0.1.
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18.0, 91.9, and 180.0. It is clearly observed that these curves
are approximately elliptic with their preference directions.
The slopes of the preference directions become large with
increasing x2

+ from the wall to the centerline. Meanwhile, the
elliptic contours become elongated in shape, which indicates
that the aspect ratio becomes small. All of those observations
are in agreement with the theoretical predictions in Secs. II
and III.

Figure 4 shows the preference direction as a function of
time separations at the same locations as the ones in Fig. 2.
The preference directions are directly calculated from the
DNS data tan���=r� /��, where r� makes R�r� ,��� a maxi-
mum for each ��. They appear to be nearly uniform, which is
in agreement with Kim and Hussain’s observations in the
Appendix of �30�. We further calculate the preference direc-
tions using the slopes of the major axes of the isocorrelation
contours. They are almost uniform and closed to the ones
from the ratios. Hinze �29� pointed out that the two different
calculations tend to give the same values for large space
separation and convection velocity. Again, it is clearly seen
that the preference directions increase with the distance x2

+

from the wall.
Figure 5 presents the lengths of major axes of the isocor-

relation contours as a function of the lengths of their minor
axes at the locations x2

+=2.4, 18.0, 91.9, and 180. The lengths
of the axes are directly calculated from the DNS data. The
length of a major axis is the largest distance between two
points on the isocorrelation contours and the length of a mi-
nor axis is the smallest distance between them. It is observed
that the points are nearly located in a straight line. Moreover,
the ratios, which are represented by the slopes of each
straight lines, become large with decreasing x2

+. However,
some points on the two ends are deviated from the straight
lines. The possible reason for it is that the inertial ranges here
are not sufficiently extensive due to the relatively lower Rey-
nolds number in the present simulation.

Figure 6�a� shows the evolution of the space-time corre-
lations with respect to time separations for different space
separations r+=0, 84.42, 168.8, 253.3, 337.7, and 422.1 at
the location x2

+=18.0. These correlation curves initially in-
crease to the maximum and then decrease. We plot the
positive parts of those curves together with the separation
axis defined by the convection-velocity-dependent variable
rT=r−Ut in Fig. 6�b� and with the one defined by the
convection- and sweeping-velocity-dependent variable
rE=	�r−U��2+ �V��2 in Fig. 6�c�. Here, the parameters U
and V are directly calculated from the DNS data. Evidently,
these curves in Fig. 6�c� collapse very well while the ones in
Fig. 6�b� do not collapse especially around the peaks at rT

=0.0. This collapse indicates that the second-order Taylor-
series expansion yields a better approximation than the first
order one even in the viscous layer, where the Reynolds
number is relatively lower.

The parameters U and V in Fig. 6�c� are calculated di-
rectly from the DNS data. We first calculate the isocorrela-
tion contours using the DNS data and then extract the pref-
erence directions tan � and the aspect ratios � from the
isocorrelation contours. The quantities tan � and � are used
to calculate the convection velocity U and the sweeping ve-
locity V in terms of Eq. �11�. The parameters U and V ob-
tained are averaged so that the averaged convection and
sweeping velocities are used in Fig. 6�c�. Hereafter, we will
call this method as direct calculation. The direct calculation
gives U=11.0 and V=1.97. The two parameters can be also
obtained by curve fitting. We first find the parameter U for
V=0 such that the peaks of all correlation functions are lo-
cated at the origin and then adjust the parameter V such that
all of them collapse. The curve fitting gives U=11.5 and
V=2.23. These two sets of the parameters are very close and
the latter also yields a good collapse �see Fig. 6�d��.
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FIG. 4. The preference direc-
tions of isocorrelation contours as
functions of time delays. The
circles denote the results from the
ratio rc /�c, where rc maximizes
R�r ,�� for a given �c. They are fit-
ted by their mean values �solid
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+=91.9 �log-law region�, and
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We plot the correlation functions for x2
+=2.4 �viscous su-

blayer� in Fig. 7, x2
+=91.9 �log-law region� in Fig. 8, and

x2
+=180.0 �outer region� in Fig. 9, respectively, in the same

way as those in Fig. 6. For comparison, Fig. 8�c� is plotted
using U and V obtained from the direct calculation and Fig.
8�d� is plotted using U and V obtained from the curve fitting.
The two parameters U and V in Fig. 7 are obtained from the
direct calculation while the two parameters in Fig. 9 are ob-
tained from the curve fitting, since the preference directions
and aspect ratios in Fig. 9 are difficult to be calculated from

the isocorrelation contours. Those figures suggest that the
elliptic model is valid for space-time correlations in the in-
ertial range with appropriate parameters U and V.

The convection and sweeping velocities obtained from the
theoretical results �42� and �43� and direct calculation using
the DNS data are shown in Fig. 10. The direct calculation
results are consistent with the previous ones �30�. The theo-
retical results are the good approximations to the direct cal-
culation ones in the buffer layer, the log-law region, and the
outer region. However, both convection and sweeping ve-
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FIG. 6. The space-time corre-
lations R at x2

+=18.0 for different
space separation r+=0.0, 84.42,
168.8, 253.3, 337.7, and 422.1 are
plotted against �a� time separation,
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fined from Taylor’s frozen flow
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=10.5 and V=2.30 obtained from
curve fitting.
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locities are under predicted in the viscous sublayer, since the
shear rates are not small. To closely look at the sweeping
velocity, we plot the shear-induced velocity and random
sweeping velocity separately in Fig. 10�c�, where the mean
shear rate, Taylor’s microscales, and the random sweeping
velocity are evaluated from the DNS data. It is observed that
the shear-induced velocity has a peak about y+=6 in the vis-
cous sublayer with a narrow width. The shear-induced veloc-
ity makes large contributions to the sweeping velocity in the
viscous sublayer with small contributions to the one in other

sublayers. The random sweeping velocity manifests the tur-
bulence intensity.

The elliptic model is verified from the DNS of turbulent
channel flows. The collapses of correlation functions using
the elliptic model are observed in viscous sublayer, buffer
layer, log-law region, and outer region, while the collapses
using the Taylor frozen flow hypothesis are only observed in
the outer region. The characteristic velocities U and V in the
model are obtained from either direct calculation or curve
fitting. Both of them yield the satisfactory results.
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FIG. 8. The space-time corre-
lations R at x2

+=91.9 for different
space separations are plotted
against �a� time separation, �b� the
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Taylor’s frozen flow hypothesis,
�c� the separation rE
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XIN ZHAO AND GUO-WEI HE PHYSICAL REVIEW E 79, 046316 �2009�

046316-10



V. CONCLUSIONS AND DISCUSSIONS

The elliptic model suggests an interpretation of the deco-
rrelation process of small eddies in turbulent shear flows.
Small-scale eddies could change considerably by large-scale
shear flows while they are carried past a given point by the
mean flows and swept by the energy-containing eddies in
fluctuation velocity fields. In the frozen flows, Taylor’s
model implies that the space-time correlation is solely deter-
mined by a convection velocity, which represents the dis-

placement of small eddies carried by large-scale eddies; in
isotropic turbulence, the Kraichnan and Tennekes model sug-
gests that the space-time correlation is mainly determined by
a random sweeping velocity, which represents the distortions
of smaller-scale eddies themselves. However, in turbulent
shear flows, the large-scale flows induce the distortions of
small eddies and thus accelerate the decorrelation process of
small eddies. Therefore, in addition to convection and ran-
dom sweeping velocities, the characteristic velocities for the

τ+

R
(r

+
,τ

+
,x

2+
=

1
80

.0
)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

r+=0.0
r+=84.42
r+=168.8
r+=253.3
r+=337.7
r+=422.1

rT

R
(r

+
,τ

+
,x

2+
=

1
80

.0
)

0 50 100 150 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r+=0.0
r+=84.42
r+=168.8
r+=253.3
r+=337.7
r+=422.1

rE

R
(r

+
,τ

+
,x

2+
=

1
80

.0
)

0 50 100 150 200
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

r+=0.0
r+=84.42
r+=168.8
r+=253.3
r+=337.7
r+=422.1

(b)(a)

(c)
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fitting.
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space-time correlation in turbulent shear flows are com-
pounded by the shear-induced velocity.

The elliptic model is supported by the DNS of turbulent
channel flows. The space-time correlations for several fixed
spatial separations are plotted against time separations and
the normalized separations in terms of the elliptic model. The
latter is found to collapse to a universal form as predicted by
the elliptic model. In those plots, the convective and sweep-
ing characteristic velocities are obtained by either direct cal-
culations on the isocorrelation contours or curve fitting. Both
of them yield satisfactory collapses. The elliptic model is
based on the similarity assumptions on the isocorrelation
contours. The data from DNS of turbulent channel flows jus-
tify that the contours have a uniform preference direction;
the arguments from the Kolmogorov similarity hypotheses
justify that the contours share a constant aspect ratio.

The elliptic model predicts a universal form for the space-
time correlation in the inertial range at sufficiently high Rey-
nolds numbers. It relates the space-time correlations to the
space correlations via the convection and sweeping charac-
teristic velocities. Therefore, the space-time correlations can
be obtained from the form of space correlations �or energy
spectra� and two characteristic velocities. Compare with the
Taylor frozen flow hypothesis, the elliptic model can be used
as an improved guideline to transform the temporal informa-
tion from the one-point measurement with a single probe to
the spatial one at different points. The accuracy of Taylor’s

frozen flow approximation depends on the flow properties
such as a weak shear rate and lower turbulence intensity. The
present model takes those two factors into account and is
expected to better extract the energy spectra from experimen-
tal data. Meanwhile, this model has a useful implication to
turbulence modeling. The recent applications of LES to
aeroacoustics and turbulent mixing require the correct pre-
diction of the space-time correlations. According to the ellip-
tic model, this requires that the LES should correctly predict
the space correlation and the convection velocity and the
sweeping velocity. Noting that the sweeping velocity is de-
termined by the properties of small-scale eddies such as the
Taylor length microscales and the rms of for fluctuating ve-
locities. These properties may not be recovered from the cur-
rent subgrid-scale models. Therefore, the application of LES
to this kind of problem raises new challenges to subgrid-
scale modeling.
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