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Evaporation and fluid dynamics of a sessile drop of capillary size
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Theoretical description and numerical simulation of an evaporating sessile drop are developed. We jointly
take into account the hydrodynamics of an evaporating sessile drop, effects of the thermal conduction in the
drop, and the diffusion of vapor in air. A shape of the rotationally symmetric drop is determined within the
quasistationary approximation. Nonstationary effects in the diffusion of the vapor are also taken into account.
Simulation results agree well with the data of evaporation rate measurements for the toluene drop. Marangoni
forces associated with the temperature dependence of the surface tension generate fluid convection in the
sessile drop. Our results demonstrate several dynamical stages of the convection characterized by different
number of vortices in the drop. During the early stage the array of vortices arises near a surface of the drop and
induces a nonmonotonic spatial distribution of the temperature over the drop surface. The initial number of
near-surface vortices in the drop is controlled by the Marangoni cell size which is similar to that given by
Pearson for flat fluid layers. This number quickly decreases with time resulting in three bulk vortices in the
intermediate stage. The vortices finally transform into the single convection vortex in the drop existing during

about 1/2 of the evaporation time.
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I. INTRODUCTION

Evaporation of a liquid drop in an ambient gas is a well-
known yet not completely solved problem of the classical
physics (see, for example, [1,2]). The past decade was
marked by significant advancement in experiment and
progress in understanding several key aspects of evaporation
process, in particular, the vapor diffusion from the sessile
drop surface and the hydrodynamic effects within the evapo-
rating drops [3-9]. It was found, in particular, that the evapo-
rating flux density is inhomogeneous along the surface and
diverges on approach to the pinned contact line [3,4]. The
resulting inhomogeneous mass flow modifies the temperature
distribution over the drop surface and, hence, the Marangoni
forces associated with the temperature-dependent surface
tension. The convection inside a droplet [8—19] appears quite
different from the classical Marangoni convection in the sys-
tems with a simple flat geometry [20,21]. Thermal conduc-
tivity of the substrate can also influence the formation of
flows within a liquid drop since it is the magnitude of the
conductivity which determines the sign of the tangential
component of the temperature gradient at the surface close to
the contact line and, therefore, the direction of the convec-
tion [7]. The observation of the distinct stages of the evapo-
ration process [22-24] has revealed that the longest and
dominating regime of the evaporation process is the constant
contact area mode, where the contact line is pinned. As fur-
ther the contact line gets depinned, the different regime, the
constant contact angle mode switches on. Finally, the drying
mode follows, in which the height, the contact area, and the
contact angle rapidly decrease with time.

Understanding the details of the drop dynamics and
evaporation is crucial to many applications involving this
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process, including preparing ultraclean surfaces [25-28],
protein crystallography [29,30], the studies of DNA stretch-
ing behavior and DNA mapping methods [31-33], develop-
ing methods for jet ink printing [34-36], and in many other
fields (see, for example, [37]). The process of evaporation of
the drop with the colloidal suspension in it is of interest for
methods of fabrication of various structures on the substrate.
One of the examples is the effect of evaporative contact line
deposition, the so-called coffee-ring effect [3,4,6,38—40].
Another important example is the self-assembly of long-
range-ordered nanocrystal superlattice monolayer [41-43].
While the fundamentals of quasistationary evaporation
behavior are established, to some extent [8,9], the full dy-
namical description of the liquid drop evaporation is yet not
available. In this work we undertake a step toward such a
description offering a quantitative approach which enables us
to account for all the relevant components of the evaporation
process, namely, the fluid dynamics, the vapor diffusion, and
the spatial temperature distribution in an evaporating sessile
drop. The calculations are carried out according to the fol-
lowing scheme: (i) we derive the equation yielding the shape
of the sessile drop and find how the evaporation rate is in-
fluenced by the deviations of the drop shape from the ideal
spherical cap caused by the gravitational force. (ii) We solve
the diffusion equation describing the vapor kinetics and cal-
culate the local evaporation flux from the surface of the drop
as well as the resulting evolution of the drop evaporation rate
with time. At this stage we take into account the nonstation-
ary effects in a vapor diffusion and find that the dynamical
corrections to the evaporation rate do not vanish exponen-
tially, but decay as o1/ . (iii) We solve the thermal conduc-
tion equation and find the spatial temperature distribution in
the drop. (iv) We solve the Navier-Stokes equations and de-
rive the velocity field corresponding to the convection within
the drop. (v) Finally we arrive at a full description of the
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TABLE 1. The parameter values used in the paper for modeling the evaporation and hydrodynamics of the
drop. The tabular data are taken at 7,=295 K from [44].

Drop parameters

Toluene characteristics

Toluene vapor characteristics

Air characteristics

Contact line radius
Initial height

Initial mass

Density

Molar mass

Thermal conductivity
Thermal diffusivity

Kinematic viscosity

Dynamic viscosity

Specific heat
Thermal-expansion coefficient
Surface tension

Temperature derivative of surface tension
Capillary constant

Latent heat of evaporation

Diffusion constant
Saturated toluene vapor density
Mean free path

Thermal conductivity
Dynamical viscosity

ro=0.2 cm
h=0.1314 cm
my=8.7X 1073 g

p=0.87 g/cm?

©n=92.14 g/mole
k=1.311X10"> W/(cm K)
k=k/(pc,)=8.86X 107+ cm?/s
v=6.4x10"3 cm?/s
7=vp=5.6 X107 g/(cms)
cy=1.51 J/(g K)
B=1.138x1073 K~!
0=28.3049 g/s>
o'=—do/9T=0.1189 g/(s> K)
a=0.258 cm

L=300 J/g

D=0.1449 cm?/s
u,=127%x10"* g/cm?
A=2.7%X1075 cm

k,=0.258 X103 W/(cm K)
7,=1.82X107* g/(cm s)

Density

Kinematic viscosity

p,=12x1073 g/cm?
V=0, po=0.15 cm?/s

time evolution of the temperature and the fluid convection in
the drop and identify characteristic stages of the thermocap-
illary convection. To this end we take into account inertial
terms in the Navier-Stokes equations, including the time de-
rivatives.

To ensure self-consistency of the derivation of the physi-
cal characteristics of the system we include the temperature
variation over the drop surface (since the surface tension
depends on temperature) into the boundary conditions for the
fluid dynamics in the drop. Furthermore, we take into ac-
count that the velocity field influences the thermal conduc-
tion, since the velocities enter the thermal conduction equa-
tion, and, finally, we take into account that the local
evaporation flux is related to the heat transfer and, hence, to
the temperature gradient on the drop surface.

While the developed approach is quite general and thus
applies to a wide variety of the evaporating problems, we
focus here on the experimental situation corresponding to
evaporation of the toluene sessile drop of the capillary size.
The typical values of the characteristic parameters at 7T
=295 K are taken from [44] and are presented in the lower
part of Table I. The initial values which we use in our cal-
culations are given in the upper part of Table I and corre-
spond to the evaporating toluene drop containing the colloi-
dal solution of gold nanoparticles. These nanoparticles stick
to the drop surface making islands there and form a mono-

layer nanocrystal on the substrate after toluene dries out
[41-43].

We have identified three major distinct dynamic stages of
the Marangoni convection during the evaporation of the tolu-
ene drop. During the initial stage, vortices appear near the
surface of the drop, during the second stage they grow, coa-
lesce and rapidly migrate into the drop bulk, and, finally, a
single vortex survives governing all the fluid dynamics of the
thermocapillary effect in the system. We derive the tempera-
ture profiles, evaporation rates, and the velocity distributions
for each stage of the convection and uncover the important
role of the convective heat transfer and the effect of inertial
terms in the Navier-Stokes equations in the evaporation dy-
namics.

The paper is organized as follows. In Sec. II we present
basic equations and main analytical results along with the
quantitative description of main dynamical processes. In par-
ticular, Sec. IT A deals with the shape of a sessile drop. Vari-
ous aspects of the vapor diffusion and the drop evaporation
rates are discussed in Secs. II B-II D. The characteristic Ma-
rangoni numbers for the drop are found in Sec. II E. Section
IT F makes use of a self-consistent approach for calculating
the velocity field and the spatial temperature. In Sec. III we
present our main results and discussion, including the experi-
mental and theoretical data for the evaporation rates and con-
tact angles, the dynamics of vortex structure, and the tem-
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perature profile. Section IV contains discussion. The details
of the developed numerical approach are described in Ap-
pendix A.

I1. BASIC EQUATIONS AND FORMULAS
A. Sessile drop shape

During the evaporation process a drop loses its mass,
hence with time its volume decreases and the shape changes.
In this section we present the quasistationary method for cal-
culating the shape of a sessile drop based on the hydrostatic
Laplace equation. The approach holds as long as viscous
forces, which generally enter the boundary condition for the
pressure, are small. The ratio of viscous to capillary forces is
characterized by the dimensionless number C,= 70/ o, where
v is the characteristic value of the velocity. In our case C,
~2X107*<1.

The Laplace equation states that the pressure difference
Ap, taken at the different sides of the surface of the liquid in
an arbitrary point equals ok, where k=1/R;+1/R, is the
mean curvature of the surface and o is the surface tension
[45]. Taking into account the gravity, one finds that at the
surface of the drop

k+—=k

z 2
pg +_Jz‘
g a

= const, (1)

where the shape of the drop surface is defined by the relation
z=f(x,y) and a=\20/(pg) is the capillary constant. The cur-
vature of the surface of the drop is, in its turn, also expressed
in terms of the function f(x,y). Indeed, k=—Tr(G™'Q), where
G and Q are matrices of the first and the second quadratic
forms of the surface [46]. Plugging in the surface equation
z=f(x,y) we find

2
G=(1+fx I, ) oo ! (fxx f) @
A

ffy 1415 TP+ \Ly Ty
Therefore,
2 2
k=—Tr(G_1Q) _ fof.v xy_fxx(l +fy) _fyy(l +fx). 3)

2., 2
(1+fi+ 1)
We consider a sessile drop with the axial symmetry, where
z=f(r), r=vx*>+y”. Then Eq. (3) assumes the form
! !
k= ffz 2t ! PNE
L+ r(1+f7)
where prime denotes the derivative with respect to r. It is

convenient to parametrize and separate the variables as
[47,48]

(4)

7=2(s), (5)

where s is the arc length on the drop surface taken from the
apex. The curvature radii are R; and R,, where R; is the
curvature radius in the meridian rz plane and R, is the sec-
ond curvature radius. Both curvature radii can be expressed
in terms of the angle ¢ between the normal vector to the
drop surface and the symmetry axis. Namely,

r=r(s),

PHYSICAL REVIEW E 79, 046301 (2009)

L B do T
B T sing
Also, dr/ds=cos ¢, dz/ ds=—sin ¢, and r(0)=z(0)=(0)=0.

Rl ds ’
Introducing the curvature radius R, at the apex, we can re-
write the Laplace equation as

(6)

<d¢> sin ¢) 20 -
el )
7 ds r Ry p&c
and therefore
d¢ 2 pgz sing
i ®)

ds Ry o r
Hence, for the column vector y=[r(s), ¢(s),z(s)]7, where T

is the transposition operation, we have the set of first-order
differential equations with Cauchy boundary conditions,

Y fs.y). )

pgz  sin ¢

2 T
f(s,y)z(cos b,— - —T,—sin ¢) ,  (10)

R() (o

T
¥(0) = (0,0,0)", f<o,y)=(1,i,o), (11)
Ry

where the last relationship ensures that ¢(s)/r(s) — 1/R,, for
s—0. The Cauchy problem [Egs. (9)—(11)] can be solved
using the fourth-order Runge-Kutta method or the Adams-
Bashforth method [47]. Therefore, given the values of R, and
Smax» One finds the drop shape in the form of y(s)
=[r(s), #(s),z(s)]".

The quantities that are measured in the experiment are the
mass of the drop,

m= wpfsmax r*(s)sin ¢(s)ds, (12)

0

and the radius r, of the substrate to which the drop is pinned.
Given the values of R, and r, one can easily find s,,,,, and,
therefore, m. Inverting the function m(R,,,r) numerically, one
can obtain the value of R, and a drop shape for a given mass
m and contact line radius r,. We note that Egs. (9)—(11) are
exact for a sessile drop with axial symmetry.

The evaporation rate for a given drop shape can be ob-
tained as

‘ ‘;—”I’ - fom 270 (s) I () ]ds. (13)

where J[r(s)] is the mass evaporated per second from unit
area of the surface, i.e., the local evaporation flux.

B. Evaporation of the drop

Consider a sessile droplet resting on a flat substrate. The
vapor concentration above the droplet is time dependent and
inhomogeneous during the evaporation process. Since the
diffusion of the vapor from a near-surface layer is slower
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FIG. 1. (Color online) Local evaporation flux density J(r,7) (g cm™2 s~!) from a fixed surface as a function of r (cm) for t=1, 2, 3, 5, 10,
50, 100, 500, 1000, and 4000 s of the evaporation process, from top to bottom, respectively (black curves). The time dependence of the vapor
concentration is taken into account, whereas the surface of the drop with m=8.7 mg is fixed. The surface is taken as a spherical cap (left
panel) and as a sessile drop surface (right panel). The blue (bottom) line on the left panel represents J(r,) taken from the exact solution
(20). The green (bottom) line on the right panel represents J(r,%) for a sessile drop.

than the evaporation [45], the vapor concentration at the sur-
face of the drop is assumed to equal the saturation value u;.
Far above the drop, the toluene vapor concentration is neg-
ligible. The dynamics of the vapor concentration in the sur-
rounding atmosphere is described by the diffusion equation

(14)

We carry out our calculations (see Sec. III and Appendix
A) taking into account both time dependence of vapor con-
centration and the deviations of the sessile drop shape from a
spherical cap. It is instructive to begin discussing the prob-
lem with the more simple case allowing for an analytical
description. To this end we notice that if evaporation can be
viewed as an adiabatic process in a sense that the vapor
concentration adjusts fast enough to the change in the drop
size (and shape), i.e., on the time scales much less than the
droplet evaporation time ¢, then the diffusion equation (14)
can be replaced by the Laplace’s equation Au=0, and the
evaporation kinetics can be considered as a steady-state pro-
cess. Indeed the time 7, required for the Brownian particle to
pass the characteristic length r is tpzr%/D<tf under the
experimental conditions 7,~0.2 s and ;=500 s. At the
same time it is interesting as well to consider particular de-
pendencies of the local evaporation rates on time. Our simu-
lation results based on Eq. (14) for the drop with the fixed
surface can be fitted with the power-law time dependence

J(r,1) =J(r,00)(1 + An (15)

2\'5)’

which is almost exact with the accuracy within 1% for ¢
>0.5 s and |ry—r|>0.01 cm (see Fig. 1). Here J(r,?)
=|DVul is the local evaporation flux on the drop surface, and
constant A=0.966 is the only fitting parameter. For the case
of the spherical cap the asymptotic value of the evaporation
flux density J(r,o0) can be related to J(&, 6) from Eq. (20).
Equation (15) and Fig. 1 confirm the above estimation that
the vapor concentration becomes stationary under the condi-
tion > r(z,/ D. At the same time, for 1=ty the second term in
Eq. (15) still exceeds 1% of the first term. The time depen-
dence J(r,t)—J(r,®) %1/t in Eq. (15) is known for an iso-
tropic diffusion when the vapor concentration is kept satu-

rated on the fixed surface of the sphere [2]. This is also valid
for a diffusion from a flat plane [45]. Our results demonstrate
that such dependence also takes place for an inhomogeneous
diffusion from a fixed surface of the sessile drop.

We further derived the numerical results which take into
account the time-dependent drop profile (see Sec. IIT A). In
particular, they show that the corrections for the evaporation
rate due to the nonstationary effects may be up to 5% of the
resulting value.

Deegan et al. [4] reported an analytical solution for a
stationary spatial distribution of the vapor concentration for a
drop with the shape of a spherical cap. The problem was
shown to be mathematically equivalent to that solved by
Lebedev [49], who obtained the electrostatic potential of a
charged conductor having the shape defined by two intersect-
ing spheres. Modifying the equations derived in [4,49], we
arrive at the following formula for the vapor concentration
u(a, B) above surface (25) of a spherical drop:

u(a, B) = uo, + (uy— ) V2(cosh a - cos B)

Xfx cosh #7 cosh Br
o cosh rcosh(m—6)7

P_,.icosh a)dr.

(16)

Here 6 is the drop contact angle, —7m+ 0= B=m-6, and u.,
=0, a and B are the toroidal coordinates,

7o sinh « ro sin 8
r= , zZ= ) (17)
cosh a—cos B cosh a—cos B

At the drop surface B=m—6, therefore &=r/ry=\x’—1/
(x+cos 6), where x(&, §)=cosh a, hence

& cos O+ 1 - & sin® 6

,0) =cosh a= 18
x(&,0) =cosh « e (18)
The evaporation flux at the surface is
D du
J=|DV u|=—(cosh a—cos B) — ., (19)
o Bl gm0

and therefore
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FIG. 2. Log-log plot of J(r) for drops with different contact
angles. Lines marked with a, b, ¢, d, and e correspond to values
/120, /6, w/4, /3, and 237/ 60 of the contact angle 6, respec-
tively. J; is the local evaporation flux at the apex of the drop with
the contact angle 77/120.

D 1 0 -
J(£6) = —”(% +\2(x(£ ) + cos 6)2
¥

0

* cosh 071
X 7 tanh(7 — 0)
o cosh 77

XTP_jp4id X (&, 9)]d7) . (20)

After substituting é=r/ry, and Eq. (18) in Eq. (20), one
obtains J(r). Figure 2 shows J(r) in logarithmic scale for
drops with different values of the contact angle 6.

The total drop mass is

3
mry 6 0
m="2 0tan—<3+tan2—>, (21)
6 2 2
and the total evaporation rate is
dm ' g 0de
—| = 27Tr2f ——. (22)
dt °J, Ji-&sin’ 6

While it was possible to simplify the expression for the
drop evaporation rate adapting the sessile drop shape to that
of the spherical cap of the same mass (see Sec. II D), and
then integrate Egs. (20) and (22), we will employ a more
general method and develop a description of the evaporation
rate which takes into account altogether spatial and time
variations of the vapor diffusion and the sessile drop shape.

C. Estimation for the evaporation time

In this section we derive estimates for the evaporation
time of the drop, which in spite of their relative simplicity,
offer, nevertheless, a fairly good description of the experi-
mental results. Let us consider a spherical evaporating drop
of radius ry=0.2 cm, so that the vapor density is saturated at
the drop surface and vanishes far away from the drop. The
diffusion of the toluene vapor controls the evaporation pro-
cess. The outward flow of the vapor through the concentric
sphere around the drop of the radius R is J=
—D47R?*du/dR and does not depend on R. Here u is the
vapor density on the surface of the sphere of radius R, and D

PHYSICAL REVIEW E 79, 046301 (2009)

z (cm)

-0.2 -0.‘1 0.‘1 0.2 f(Cm)
FIG. 3. (Color online) The sessile drop surface (dashed red
curve) and three spherical caps (curves 1, 2, and 3; see Table II).

is the diffusion constant for the toluene vapor. Therefore
R%du/dR=-A, where A=J/(4mD). Since the vapor concen-
tration far away from the drop is negligible, we obtain u
=A/R, A=ryu,, and J=4mDryu,. On the other hand, the flow
of molecules from the fluid drop is J=-pd(47ry/3)/dt.
Therefore rydry/dt=—Du,/ p, and the evaporation time of the
drop can be written as
2
=210 (23)
u,2D
Equation (23) is a well-known result of the classical Max-
well’s theory of the evaporation (see, for example, [2]). The
diffusion constant for toluene vapor can be estimated as

D= %(v))\. (24)

Here (v)=v8RT/(mu)=26 035 cm/s is the average velocity
for the thermal motion of the vapor molecules, A is the mean
free path which may be estimated as follows. We replace the
toluene molecules by the impermeable balls of the diameter
d~1 nm (we found the estimate for the diameter by adding
together the lengths of the chemical bonds and taking into
account the molecule geometry). Therefore the mean free
path is A=1/(m\2nd?) =kT/(m2P,d*) ~2.7% 1075 cm.
Here n is the density of the toluene molecules in the toluene
vapor. If we substitute the obtained values into the Eq. (24),
we get the estimate D~0.23 cm?/s. This qualitative esti-
mate is about 1.5 times larger than the result obtained from a
comparison of our numerical results and the experimental
data in Sec. III. Substituting the value of D to Eq. (23), we
get the evaporation time of the spherical drop: =594 s.

D. Approximating a sessile drop surface
with spherical caps

Spherical caps offer a very simple model allowing for
carrying out analytical calculations to the end and are thus
widely used for the modeling of the droplet. The equation for

the surface is
2
) 2 7o
=1/ —-ro— . 25
or) sin’ 6 " tan 6 25)

Figure 3 shows surface of the sessile drop and three ap-
proximating spherical caps with the parameters listed in
Table II. The radius of the substrate is ry=0.2 cm for all the
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TABLE II. Characteristics of the sessile drop and three spherical caps.

Parameters Sessile drop Cap 1 Cap 2 Cap 3

m (mg) 8.7 9.95625 8.7 8.22035

0 (radian) 1.3032326 1.3032326 1.20453564 1.16292249
h (cm) 0.13145179 0.152552 0.137494 0.13145179
NO)=(7-20)/(27-26) 0.145545 0.145545 0.189081 0.206135
Curvature at top (cm™!) 8.0611 9.64418 9.33673 9.17966
Curvature at the contact line (cm™) 12.0727 9.64418 9.33673 9.17966

drops. The first spherical surface has the contact angle of the
sessile drop. The second spherical surface has the mass of
the sessile drop. The third spherical drop has the height of
the sessile drop.

As seen from Fig. 3 and Table II, the characteristics m, h,
and 6 of all three approximating spherical caps are quite
close to those of the sessile drop. This is not the case for
local parameters such as the local curvature of the sessile
drop. As follows from Eq. (1), for the local curvature to be
approximately constant along the drop surface, the condition
B,=pghry/ (20 sin 6)<1 has to be satisfied. Here B, is the
dimensionless number which is analogous to the Bond num-
ber.

For our sessile drop B,=0.4; thus its curvature changes
over the surface by factor of 1.5. Furthermore, one sees from
Fig. 4 and Table II that the assumption of the spherical cap
shape cannot provide an approximation for the local evapo-
ration flux density J(r), which would have been accurate
enough over a whole surface. At the same time, it is not
surprising that the total evaporation rate, integrated over the
surface of the drop, does not depend much on whether the
drop is sessile or spherical. With the values from Table I, one
may numerically integrate Eq. (22) and obtain the evapora-
tion rates for the three spherical drops: dm;/dt
=20.52 pg/s, dm,/dt=19.76 ug/s, and dms/dt
=19.47 ug/s. The difference is within a few percent.

E. Marangoni convection

A fluid convection within a drop caused by the
temperature-dependent surface tension which persists in the

J

0.00012
0.000115
0.00011
0.000105
0.0001
0.000095

0.00009

0.05 0.1

FIG. 4. (Color online) Red, blue, green, and black curves (from
top to bottom at r=0) —J(r) (g cm™2 s~!) as a function of r (cm) for
first, second, third spherical drops, and for the sessile drop corre-
sponding to Table II.

drop during all the stages of an evaporation process is called
the Marangoni convection and was first observed in its clas-
sical form by Bénard in a process of formation of the char-
acteristic hexagonal convection patterns in flat fluid films. A
theoretical description of the Marangoni convection was de-
veloped by Pearson [21]. The Marangoni number M, [see
Eq. (26) below] characterizes a relative importance of sur-
face tension forces caused by the temperature variation and
viscous forces, leading to the Benard-Marangoni instability
if M, exceeds a critical value M,. For a flat fluid film, M,
~83 [21]. To estimate the Marangoni number for a drop we
exploit a formal similarity between a drop and a flat layer.
We extract the temperature difference between the substrate
plane and the apex of the drop from our simulation results as
AT=1 K. The drop height &, the thermal conductivity k, the
kinematic viscosity v, the specific heat cy, and the rate of the
change of the surface tension with the temperature, —do/dT,
are taken from the Table I. Then the value of the Marangoni
number at the beginning of the drop evaporation process is

do
- E_‘(CvAT)h

Ma =— = 2800.

vk (26)

According to experimental data, a turbulent regime arises
for considerably larger values of the Marangoni number. For
example, in the water drop the turbulence takes place for
M ,>22 000 [50]. As the Reynolds number for toluene drop,
R,= 62, is also comparatively small, the flow in our problem
is of a laminar character. A competition between the
buoyancy-induced flow and the thermocapillary convection
is characterized by the dimensionless number B
=pgh’B/(7.14¢") [21]. In our case B~0.02<1, and the
buoyancy-driven convection is negligibly small.

For a flat liquid layer the height of the Marangoni cell
coincides with the layer thickness &, whereas the transverse
size of the cell is determined by the characteristic instability
wavelength . If the Marangoni number well exceeds the
critical value, then A\=27h/a and a=yM,/8 [21].

Our simulations show that near the surface an array of
vortices forms at the initial stage of the convection (see Sec.
III). The size of the vortices (i.e., the distance over which
they extend into the bulk of the drop), iy, constitutes a no-
ticeable fraction of the height i of the drop. With the as-
sumption that the instability wavelength N and the Ma-
rangoni number can be described similarly to the case of flat
liquid layer, one can take the value &, for the layer thickness
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and obtain )\=277v’h71d/ «. Taking as an example the number
of the near-surface vortices N=9 and s,,,=0.256 cm, we
find N=5,,,,/N=0.028 cm and

h —<)‘—‘I>2h~04h 27)
"\ 2mh o

This although crude estimate turns out to be in a good agree-
ment with our simulations for the Marangoni convection (see
Figs. 6-8 and their discussions).

F. Hydrodynamic equations

The basic equations inside the drop are the Navier-Stokes
equations, the continuity equation for the incompressible
fluid, and the equation for thermal conduction

J 1
Al +(v-V)v+ —grad p=vAv, (28)
ot p
divv=0, (29)
oT
— V- VT= AT, (30)

Here A=/ 9r*+d/rdr+d /7%, v=mn/p is kinematic viscos-
ity, and x=k/(pc,) is thermal diffusivity. Other terms in the
thermal conduction equation  v/(2c,)(dv;/ dx;+dvy/ dx;)?,
where sum over i and k is assumed, are negligibly small.

Taking the curl of both sides of Eq. (28), one excludes the
pressure p and obtains

d
E(V XV)+(v-V)(VXV)-[(VXv) - V]v=vA(V X V).
(31
Therefore
a r.z)
Ev(r,z) +(v-V)y(r,2) =v{ Ay(r,2) - 2 ) (32)
where the vorticity vy is introduced by
dv, Jdv
) =———, V Xv=yr2i,. 33
Wr.z) PR v=y(r2)i, (33)
We define the stream function ¢, such that
d d
—l/,=rv,, —l'/l=—rvz. (34)
Jz ar

One has &/ (drdz)=v,+r(dv,/dr)=-r(dv,/ dz), therefore
v,/ r+dv,/dr+dv,/dz=0, ie., the velocities obtained with
Eq. (34) will automatically satisfy requirement (29).
Applying the Laplace operator to the stream function, one
obtains Ay=ry-2v_, which can be transformed to a more

convenient form A Y=rvy with the modified operator A that
differs from the Laplace operator by the sign of the term
al(rdr),

Ky PY_Lov P _ (&_ L
V=9 Nz " ar

arr  ror * 7% ) =ry. (35)
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The method of the numerical solution is as follows. At
each step, inside the drop (1) we solve Eq. (32) with the
proper boundary conditions and find ¥(r,z). (2) We solve Eq.
(35) and find ¢(r,z). Then we find velocities with Eq. (34).
(3) We solve Eq. (30) and obtain the new boundary condi-
tions for Eq. (32).

Details of the numerical approach are given in Appendix
A. The proper boundary conditions for quantities y and ¢,
satisfying Eqgs. (32) and (35), respectively, are derived in
Appendix B. They take the form y=0 for r=0; y=dv,/ dz for
z=0; y=do/(nds)+2v.d¢/ds on the surface of the drop;
and =0 at all boundaries: at the surface of the drop, at the
axis of symmetry of the drop (r=0), and at the bottom of the
drop (z=0).

Here do/ds=-0'dT/ds is the derivative of surface ten-
sion along the surface of the drop, where the distribution of
temperatures, which is found with Eq. (30), is taken into
account, and

O'(T)za'()—o',(T—T()) (36)

is the experimental dependence of surface tension o on tem-
perature 7.

The boundary conditions for Eq. (30) are dT/dr=0 for r
=0; T=T, for z=0 and

dTIon =— Qy(r)/k (37)

on the surface of the drop. Here Qu(r)=LJ(r) is the rate of
heat loss per unit area of the upper free surface, J(r) is the
local evaporation flux, 7|, is the temperature of the substrate,
and n is a normal vector to the surface of the drop.

The relation Qy(r)=LJ(r) implies that the heat flow from
ambient air toward the drop surface is negligible. This is the
case if the temperature difference between the drop surface
and the air far from the drop is less than LDug/k [2]. This is
well satisfied in the problem in question.

III. RESULTS
A. Evaporation rates

The evaporation rate of sessile drops is controlled mainly
by the vapor diffusion in the surrounding atmosphere [4].
Here we determined the diffusion coefficient of toluene va-
por in air by measuring the toluene evaporation rate. The
main conditions and parameters of the experiment are as fol-
lows. The sessile drop of 10 ul of toluene is lying on a
substrate and evaporates to the atmosphere during =500 s.
The contact line of the drop is pinned to the edge of the
substrate. The weight of the drop was measured every 10 s.
As substrates, we used silicon wafers with a 100-nm-thick
amorphous silicon nitride layer.

The results of the measurements of drop evaporation rates
are presented in Fig. 5. Open circles are experimental values
for the pure toluene evaporation and open triangles are val-
ues for the gold nanoparticles colloid. The solid line is the
simulation result obtained in terms of Eq. (13) within the full
numerical scheme. As seen in Fig. 5, it agrees well with the
experimental data. Comparing the experimental data and the
simulation results permits us to find the diffusion coefficient
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FIG. 5. (Color online) Drop evaporation rate dm/dt. Experimen-
tal data for the pure toluene evaporation (open circles) and Au
nanoparticle colloid (open triangles). The solid line describes simu-
lation results obtained within the full numerical scheme for the
vapor diffusion (see also Sec. Il B). The dotted line is obtained
assuming the local evaporation flux to be uniform over the drop
surface and constant with time. Inset: mass variation at the end of
evaporation.

of the vapor, D, the only parameter controlling evaporation,
as D=0.1449 cm?/s. It is worth noting that the rough esti-
mate mentioned in Sec. II C is larger by the factor of about
L.5.

One can divide the evaporation process into three charac-
teristic parts. Our simulation describes the main part, i.e., the
quasistationary diffusion-limited evaporation, which lasts for
about 400 s. While there is a good agreement of the simula-
tion and experimental data during the diffusion-limited re-
gime of evaporation, this is not the case for the drying stage,
i.e., the final 50-100 s. At the drying stage, the experimental
evaporation rate drops rapidly but not abruptly. The main
physical reason for such a behavior is the depinning of the
contact line. The interface area then shrinks over time. The
two distinct parts in the drying stage of evaporation can be
identified. The first part that occurs in the t=400-510 time
window can be described as dm/dr o (t,—1)* that fits well the
experimental data with 7,=550(2), @=0.41(2) for the evapo-
ration of the pure toluene and 7,=522(3), @=0.28(8) for the
colloid evaporation. The last part of the drying stage is a
pronounced exponential decay of the evaporation rate
dm/droeexp(—t/t;), with the decay time 7,=20.5(3) for the
colloid evaporation. The exponential behavior during this
stage qualitatively follows from the fact that change in the
drop surface area A controls here the evaporation rate evolu-
tion: dA/dtxdm/dt*A. The inset in Fig. 5 represents the
experimental mass variation during the drying stage of the
evaporation process.

B. Array of vortices and the dynamics of vortex structure

Our calculations demonstrate the presence of the charac-
teristic early regime in the dynamics of the Marangoni con-
vection in an evaporating sessile drop. For various liquids
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FIG. 6. (Color online) The velocity field at 7=0.16 s.

and drop sizes, the vortices arise near the surface of the drop.
For a toluene drop, this regime quickly arises and evolves up
to t=~0.3 s. This is quite a short time period as compared
with the total evaporation time =550 s, but it admits an
experimental study. The vortices grow, the number of vorti-
ces decreases, and eventually they evolve into the Marangoni
convection cells in the bulk of the drop. The array of near-
surface vortices is presented in Figs. 6 and 7, where the
vortex structure contains four pairs of near-surface vortices
and a corner vortex, and the temperature displays just four
humps at the surface. As was shown in Sec. II E, this number
of vortices in the drop is controlled by the Marangoni cell
size which is similar to that given by Pearson for flat fluid
layers. The existence of near-surface vortices and the associ-
ated humps in the profile of the surface temperature become
more pronounced with the decrease in the viscosity of the
liquid. There are no near-surface vortices when the viscosity
increases more than four times as compared with the toluene
drop.

As seen in Fig. 7, the extrema of the surface temperature
correspond to the change in sign of the tangential component
of velocities at the surface. The reason for this behavior is
that the fluid flow moves from the higher to the lower tem-
perature regions of the surface, because, according to Eq.
(36), the surface tension decreases with increasing tempera-
ture. The flows result in a redistribution of the temperature

0

295 it
294.6 v \{%\\OA A/ 0

0.2

0.2

T (K)

v (cm/s)

T (cm)

FIG. 7. (Color online) Temperatures (curve 7) and velocities
(curve v) along the drop surface as functions of the radius at ¢
=0.16 s (compare with Fig. 6). The velocity changes its sign at
crossing points with the horizontal axis.
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FIG. 8. (Color online) (a) The velocity distribution at r=0.5 s. The stage of drop dynamics with three vortices takes place from ¢
~0.45 s to t=2.0 s. (b) The velocity distribution at =30 s. A distribution with a single vortex takes place from r=2.0 s to t=250 s.

due to the convective heat transfer. The number of the sur-
face temperature humps and the number of the near-surface
vortices decrease during their evolution.

The initial conditions chosen when generating Fig. 6 were
the vanishing velocities, constant room temperature, and the
vanishing vapor concentration. For a description of a real
experiment they have to be slightly modified to include the
weak stochastic distribution of the surface temperature and
velocities. We have carried out such calculations using small-
scale stochastic initial conditions. This has changed the par-
ticular behavior of the fluid dynamics only on the initial
stage of the process, where a large number of small-scale
surface vortices arise. Then the surface vortex structure
quickly evolves into exactly the same one as we obtained for
the basic initial conditions. This result demonstrates the ge-
neric character of the near-surface vortex regime in Fig. 6 at
the early stage of the formation of the Marangoni convec-
tion.

An initial velocity field within the sessile drop can also be
strongly disturbed right after the drop has fallen down on the
substrate or for some other reason. We model such a situation
by choosing random initial conditions for the bulk velocity
field, which are in agreement with the continuity Eq. (29).
We find that strong disturbances of the bulk velocities can
noticeably modify the initial stage of the drop dynamics, but
they do not modify its main stage. For the initial random
velocities of the order of 5 cm/s (which well exceeds the

(cm)

Z

(a) r

typical velocity in the vortex 1 cm/s), the difference between
the dynamics of the disturbed and resting drops disappears
after r=0.5 s. This verifies the stability of the large-scale
drop dynamics with respect to disturbances of the initial tem-
perature and velocity fields.

During the enlargement of the near-surface vortices, their
number decreases, and the convection involves the bulk of
the drop. As a result, for t=0.45 s, three bulk vortices con-
trol the velocity and temperature fields in the drop, as seen in
left panels in Figs. 8 and 9. During the coexistence of three
vortices, the corner vortex starts growing at the expense of
the other two vortices, and eventually at r=2.0 s it occupies
the whole drop volume. A spatial dependence of the tempera-
ture along the drop surface is nonmonotonic, if the drop con-
tains more than one vortex (see Fig. 9). Right panels in Figs.
8 and 9 demonstrate how in the single-vortex regime effects
of Marangoni forces drive liquid along the surface to the
apex, where the fluid penetrates along the symmetry axis in
the depth of the drop.

The regime with the single vortex represents one of the
main stages of the dynamics of the evaporating sessile drop.
It lasts up to =250 s. More than half of the drop mass
evaporates during this period of time. If the initial values of
mass, height, and contact angle of the drop are m=8.7 mg,
h=0.1314 cm, and #=1.2045, then at the moment =250 s
we find m=4.0 mg, h=0.0685 cm, and #=0.716. In particu-
lar, h/(2ry)=0.17, i.e., the drop shape is noticeably flat-

T (K)

(b) r (cm)

295.

FIG. 9. (Color online) Distributions of temperature within drop for the stages of drop dynamics with three vortices (a) and a single vortex
(b). The distributions are taken at t=0.5 s and at =30 s correspondingly. Temperature scale shown at the right column.
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FIG. 10. (Color online) Fluid pulsations at =263 s (a) and at 1=281 s (b).

tened. The total time of the evaporation is 508 s.

The quasistationary single-vortex state loses its stability at
t=~250 s and the vortex acquires a pronounced nonstationary
character. During this nonstationary regime, the fluid pulsa-
tions take place. The characteristic frequency of the pulsa-
tions corresponds to the circulation period 0.15 s of a fluid
element in the original vortex. Initially the pulsations are
concentrated near the center of the original vortex. Then, as
shown in Fig. 10, the single-cell pulsating state breaks into
two-center (and later three-center) pulsating structure. Even-
tually at r=300 s a quasistationary state with three vortices
arises.

The numerical calculations of the fluid dynamics were
tested with several different mesh sizes. The respective re-
sults are qualitatively identical and show reliable conver-
gence of the quantitative characteristics. For example, the
single-vortex regime was found to arise at 3.48, 2.48, 2.2,
2.06, and 2.01 s for 100X 100, 150X 150, 200 X200, 250
X250, and 300 X300 mesh elements covering half of the
drop cross section.

C. Temperature profile

If the thermal conductivity of a substrate is large com-
pared to that of the liquid, then the temperature can be main-
tained practically constant at the substrate-fluid interface.
This is the case, in particular, for the silicon nitride substrates
used in experiments [41-43]. The silicon nitride is a material
with high thermal conductivity, approximately three orders
larger than for the toluene. For this reason, the boundary
condition for the temperature distribution at the substrate can
be reduced to the constant temperature. Heat transfer be-
tween the substrate and the drop plays an important role in
establishing the temperature profile in the drop. This also
excludes a possibility for the reversal of the Marangoni con-
vection [7], taking place for substrates with relatively small
thermal conductivity.

The characteristic scale of the temperature variation on
the drop surface can be easily estimated if one disregards the
effect of velocities on the thermal conduction. According to
the evaporation rate data, the heat loss per unit area of the

drop near apex is Qy=LJ(r=0)~0.027 W/cm? during the
early stage of the evaporation process. Therefore, as follows
from the boundary condition (37), we obtain |dT/dn]
=22.88 K/cm. The calculations show that the temperature
dependence is almost linear on z at =0 in disregarding the
velocity term in thermal conduction. This permits to obtain
the temperature difference between the substrate and the
apex of the drop as 8T=|dT/dn|,_ohy=3.0087 K. This esti-
mate is in a good agreement with the temperature profile
along the surface shown in Fig. 11, where the effect of the
velocity field on the temperature in Eq. (30) is disregarded.
The temperature variation in Fig. 11 has larger amplitude and
takes the monotonic form, as compared with the respective
curve in Fig. 7. This demonstrates that the fluid flow notice-
ably modifies the temperature variations in the drop.
Similar consideration for the evaporating water drop stud-
ied in [8] results in Qy=0.093 W/cm?, |dT/dn]
=15.49 K/cm, and 6T=0.56 K. This estimation for the
temperature difference exceeds in about 24 times the respec-
tive numerical results obtained in [8] (see Figs. 1 and 2 in
[8]). We consider this discrepancy as an internal contradic-
tion of [8] leading to a significant underestimation of the
velocity values in the water drop. Our numerical calculations
confirm that 8T=0.6 K for the water drop of [8]. At the
same time, our calculations exactly reproduce the velocity
field shown in Figs. 4 and 5 in [8], if one takes a given
surface temperature distribution of [8]. One should also note

TK)
295.0r
204.5¢
294.0¢
293.5¢
293.0¢
292.5¢

292.0¢

. . . — r(cm)
0.05 0.10 0.15 0.20

FIG. 11. Temperature profile along the surface as function of r,
disregarding the effect of fluid flow on the thermal conduction.
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FIG. 12. (Color online) Contact angle of the drop during evapo-
ration (solid line) and angle of NCS domains orientation extracted
from experiment [42] (solid circles) as a function of time.

that the role of convective term in thermal conduction equa-
tion is substantially less for the water drop of [8] due to a
small size of the drop.

D. Contact angles

The evaporation process with the pinned contact line is
accompanied with an increase of the oblateness of the drop
shape. Figure 12 displays our results for time dependence of
the contact angle of sessile drop. Our results agree with the
time-dependent contact angle determined experimentally un-
der the identical initial drop parameters for the colloidal so-
lution of gold nanoparticles in the toluene drop [42]. In [42]
highly ordered nanoparticle islands were found to form on
the drop surface. For this reason their orientation angle,
which was determined experimentally close to the contact
line with small angle x-ray scattering, coincides with the
drop contact angle.

IV. DISCUSSION

We have developed the approach for studying the evapo-
ration and fluid dynamics of a sessile drop of a capillary size
and applied it for the description of the toluene drop evapo-
ration. In [41-43] the evaporating toluene drop containing
colloidal solution of gold nanoparticles was used for realiz-
ing the self-assembly of nanocrystal monolayer. During the
evaporation process, the nanoparticle islands were found to
form on the drop surface [42]. For understanding the island
formation as well as nanoparticle segregation, a study of the
fluid and evaporation dynamics is necessary. In particular,
the convective flows described in this paper are important for
driving the nanoparticles to the contact line and the drop
surface.

The numerical simulations were carried out and the sys-
tem of the diffusion equation for the vapor, the thermal con-
duction equation for the temperature, and the Navier-Stokes
equations for the fluid flow in the drop are solved. The shape
of the drop is controlled by the quasistationary Laplace equa-
tion, which includes the effect of the gravitational forces.
Their role in forming a profile of a nonspherical sessile drop
is  characterized by  dimensionless number B,
=pghry/ (20 sin ), which is analogous to the Bond number.
Since in our case B,~0.4, the effect of gravitational forces,
in general, should be taken into account. We have found that

PHYSICAL REVIEW E 79, 046301 (2009)

deviations of the sessile drop shape from the spherical cap
are noticeable in local drop characteristics such as the local
curvature and the evaporation flux density. At the same time
the integrated over the drop surface characteristics, like the
rate of the mass loss, are well described by the spherical cap
approximation.

The experimental and simulation results for the time-
dependent drop evaporation rate agree well during the main
longest stage of the evaporation process. The calculated evo-
lution of the contact angle agrees with the results of [42]. In
studying nonstationary diffusion equation, we found that the
time-dependent corrections to the stationary local evapora-
tion rates of the sessile drop do not vanish exponentially, but
decay much more slowly «1/ \t with time and, in general,
can be noticeable. This kind of behavior was established ear-
lier only for homogeneous diffusion from a surface.

Our solution demonstrates the presence of several time
stages in the evolution of the Marangoni convection in the
drop. The main quasistationary fluid flow, containing only
one vortex in the drop, is formed during the longest period of
the evaporation process. Disregarding the time derivatives
and the dynamical behavior of the quantities would result
directly in a stationary state with one vortex in the sessile
drop for a given contact angle. This kind of single-vortex
solution was obtained in previous theoretical studies of the
sessile drop evaporation [8,9]. Taking into account an ex-
plicit time dependence of all quantities permitted us to iden-
tify a sequence of early dynamical stages of the Marangoni
convection in the drop, containing an array of near-surface
vortices which then transforms to the state with three bulk
vortices. The stability of the large-scale drop dynamics with
respect to perturbations of the initial conditions is identified.
Also, for a flattened evaporating drop we found under the
conditions in question a three-vortex state instead of the
single-vortex one. We establish an important role of inertial
terms in the Navier-Stokes equations and convective heat
transfer terms in the thermal conduction equation.

Our further plans in developing the present approach in-
clude investigations of effects of surface surfactants and
nanoparticles, effects of a nonstationary dynamics of the
drop profile, and a detailed study of the influence of substrate
properties on the drop dynamics.
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APPENDIX A: NUMERICAL METHODS
1. Brief outline of the method

The simultaneous calculation of the physical quantities in
the drop can be partitioned into several steps:

(1) We apply to the diffusion Eq. (14) the implicit finite
difference method using irregular mesh outside the drop and
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a variable time step. We use a boundary interpolation in a
vicinity of the drop surface. For the boundary conditions we
take u=u, on the drop surface, u=0 far away from the drop,
and du/dr=0 and du/dz=0 on the axes r=0 and z=0, corre-
spondingly.

(2) Calculations of the stream function ¢ and velocities v
inside the drop are based on Egs. (34) and (35). The implicit
finite difference method with a regular mesh inside the drop
is applied. We use a boundary interpolation near the drop
surface. For the boundary conditions we take =0 at all
boundaries: on the surface of the drop and on the axes r=0
and z=0.

(3) We solve Eq. (32) to obtain the vorticity vy inside the
drop. The explicit finite difference method with a regular
mesh inside the drop is used. We use a boundary interpola-
tion close to the drop surface. For the boundary conditions
we take y=0 for r=0; y=dv,/dz for z=0; y=do/(nds)
+2v,d¢/ds on the drop surface, where do/ds=—c' dT/ s is
the derivative of the surface tension along the drop surface
according to Eq. (36).

(4) For calculating the temperature T inside the drop, the
explicit finite difference method with a regular mesh is ap-
plied to the thermal conduction Eq. (30). We use a boundary
interpolation in a vicinity of the drop surface. The boundary
conditions take the form d7/dr=0 for r=0; T=T, for z=0;
and dT/dn=-Qy(r)/k==LJ(r)/k on the drop surface. Here
Q,(r) is the rate of heat loss per unit area of the free surface,
and n is a normal vector to the drop surface.

(5) During the iterative procedure, the drop shape is re-
calculated in accordance with the evaporative mass loss for
the respective time interval. For this purpose we use the
Runge-Kutta method for Egs. (9)—(11).

2. Explicit method for temperatures inside the drop

For solving Eq. (30) the following explicit finite differ-
ence method is used:

T;Li+1 _ T;l] Tn

i+l

U Jii
R AT @ op

=

K
—Z(T;’_Hj 2T1+T'11)+ 2( Ll 27"+T"] )

2}12( i+1,j T?—l,j)’ (Al)

which gives

To = (T8 + T2 ) + a1+ 1/(Q2D)]T

i+1,j
+ a,(1-1/(2()T? it (1-2« —ZaZ)T?;-
ﬁrvrlj( i+1,j '—l,j) - [))ZUZI/(T“]+] i,j—l)'

(A2)

Here TZ is the temperature at the nth time step, where 7,j are
the coordinates on the regular mesh, /4, and &, are steps along
the respective axis, A, is the time step, and
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a,=kh/h;,  a,=«kh/h, =h/(2h,), B,=h/(Q2h,).

(A3)

For r=0 we have JT/dr=0, therefore for small r one has T
=a+0(r?), ie., #T/d*=9T/(rdr). Hence, instead of Eq.
(A2) we have the following formula:

ngl_a(jgj+]+76] D +4a, T+ (1-
_ﬁzvzoj(Tg,jH -

For z=0 we have T;,=T,.

= 4a)Ty;

Ty ). (A4)

3. Boundary interpolation for temperatures inside the drop

Let G=0T/dn=-LJ(r)/k and D(i,j) is the mesh point
which is close to the surface. The point D is inside the drop
and at least one of its nearest neighbors has to be outside the
drop. In linear approximation 7T=a+br+cz in a vicinity
of the point D(i,j). We denote the temperatures at points
B(i—1,j) and C(i,j—1) as up and u correspondingly. Then

bsin ¢+ccos p=G, a+b(i—1)h,+cjh.=ug,

a+bih.+c(j-1)h,=uc. (A5)
The solution of the set of equations is

a={h, cos Pliug— (i — Duc]+h_sin ¢lug+ j(uc—ug)]

—hh,G(j+i—1)}/R, (A6)
b=[h.G + (uc - ug)cos YR, (A7)
¢ =[h,G + (ug - uc)sin GIR, (A8)

R=h, cos ¢+ h_ sin . (A9)

The coefficients a,b,c allow us to calculate the temperature
at the point D(i,j) using the formula T;;=a+bh,i+ch,j.
Also, the coefficients a,b,c allow us to find the temperature

at the surface of the drop near the point D.

4. Alternating direction implicit method for vapor density

In order to cover quite a large region for the vapor density
calculation with Eq. (14), this is convenient to use irregular
mesh. We use the following mesh: r;=ih, for i<n,, r;
=h,(n,+1.047+7°-1.047) for i=n,, z;= jh for j<n, z;
=h,(n,+1.047+7-1.047°) for j=n. Here n,=n.=700,
n,h,=R, and n_h,=h. This is the mesh with sufﬁciently small
steps near the drop surface and with exponentially increasing
steps, which are chosen in accordance with the asymptotic
decay of the vapor density far away from the drop.

We denote the distances between the mesh point (i, /) and
its nearest neighbors as a=r;—r,_y, b=ri—ri, =212
and d=z;—z;_,. Then the finite difference representations for
the second derivatives are

Su #[au

A10
T (a+bab W (410)

—(a+Db)uj;+bu;, ],
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Ry 2

X m[ Ll (A11)

= (e +d)uj + cui; ],

where u is the vapor density at mesh point (i, j) for the nth
time step

We apply the alternating direction method to Eq. (14)
with the above notations. In the first part of the method one
takes the r derivative implicitly. Then the finite difference
representation of Eq. (14) is

n+1/2 n n+1/2 n+1/2

o A / it =3 B = W

: 4= éfu?j”/z + 85”:; 4+ =l
Dh,2 a+b

(A12)

For given vapor density at time step n it is convenient to
rewrite this expression as

Crun+1/2+[d 2/(Dhl)]un+1/2+er n+1/2

i%i-1,j i l+1j
= C;'ui’] L+ [d" - 2/(Dh,)Juij; + e}’u?m (A13)
Here
c/=2/[(a+b)al-1/[(a+b)r], di=-2/(ab),
(A14)

e/ =2/[(a+b)b]+ 1/[(a+b)r],

ci==2(c+d)d], dj=2/(cd), ej=-2/[(c+d)c],
(A15)
co=0, dy=—4la>, e,=4/a% (A16)
c4=0, dj=2/c* ej=-2/c*. (A17)

For each j the tridiagonal matrix algorithm is used to solve
the set of equations (A13) for the vapor density at the time
step n+1/2.

In the second part of the method one takes the z derivative
implicitly and represents Eq. (14) as

n+1/2 n+1/2

n+l n+1/2
U:; —U; lu U._y
7 e R il T Rl
i i — 5§ulnj+l/2+ 52 n+1 i+ i )
Dh,/2 r a+b

(A18)

For given vapor density at time step n+1/2 this expression
takes the form

rr n+l " n+l n n+l
ciui iy +[d +2/(Dh) Juj;” + eluy

_ ron+l/2 ’ n+1/2 ron+l1/2
=ciuy; +[d] +2/(Dh)Juii™ " + ejully 7

(A19)

where the coefficients are given in Egs. (A14)—(A17). For
each i the tridiagonal matrix algorithm is used to solve the
set of equations (A19) for the vapor density at time step n
+1.

5. Boundary interpolation for vapor density

Consider a mesh point D(i,j) close to the surface. The
point D is outside the drop and at least one of its nearest
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neighbors is inside the drop. In linear approximation u(r,z)
=a+br+cz in a vicinity of the point D(i,j). Consider mesh
points B(i+1,j), C(i,j+1) and a point A of the drop surface
near D. Then one has

a+bry+czy=u(A), a+brg+czg=u(B),

a+bre+cze=u(C). (A20)
The solution of the set of equations is
a=[(rczg = rgzc)u(A) + (razc = rezs)u(B)
+ (rpza — razp)u(C) IR, (A21)

b={zc[u(A) — u(B)] + z5[u(C) — u(A)] + z4[u(B) — u(C)I}/R,
(A22)

c=[(rg=rou(A) + (rc=ryu(B) + (ry = rp)u(C) /R,
(A23)

reza) + (rpza = razp).
(A24)

R=(rczp—rpzc) + (raze =

In the first part of the alternating direction method the calcu-
lations of rows proceed toward smaller values of j. For this
reason one should consider here u(C) and u(A)=u, as given
quantities, whereas u(B) and u(D) are unknown. It is conve-
nient under these conditions to represent Eqgs. (A21)-(A24)
as

a=ag+au(B), b=by+bu(B), c=cy+cu(B),

(A25)

and obtain explicit expressions for ag,a,,bq,b;,cy,c;. This
results in linear relation between u(D) and u(B),

u(D)=a+brp+czp
= (ag+ borp + cozp) + (a; + byrp + c1zp)u(B),

(A26)

which can be transformed to the form c/u/"?+d]u};"'?

+ejuj}\"?=b]. This completes the set of equatlons (A13)
for the tridiagonal matrix algorithm. Here ¢/=0, d/=1,
e/=—(a;+brp+czp), and b} =ay+byrp+cozp.

To carry out the boundary interpolation in the second part
of the alternating direction method, similar expressions can
be derived to relate u(D) and u(C).

The obtained values b and ¢ also allow us to find the local
evaporation rate at the surface point A:

JA)=D ‘ u
on

=—D(bsin p+ccos ¢). (A27)

The total drop evaporation rate is found from local values
(A27) with numerical integration of Eq. (13).

6. Alternating direction implicit method for stream function

The equation to be numerically solved is [compare with
Eq. (35)]
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Loy &y &y

= +
wdt It 97

mw

- — —ry(r,2). (A28)

The finite difference representation for the second deriva-
tives on a regular mesh is

‘Aflr//ij = (l//i+1,j =24+ ‘/’i—l,j)/hz’

3?'%‘/ = ('/fi,j+1 =24+ wi,j—l)/hg- (A29)

Taking r derivative implicitly in the first part of the alternat-
ing direction method, we have for Eq. (A28),

¢n+|/2 W ¢n+1/2 n+1/2
ij ijo_ 62¢/1+1/2 52¢/ i+1.,j 1.j — v
why/2 2h, Vi
(A30)

For a given ¢ at time step n it is convenient to rewrite this
expression as

C n+l/2+[d —2/(0)1’11)] n+1/2 e] ;1:11532

=cif i+ [d] = 2/(wh) Il + {1y + Ty,
(A31)
where

el =[1+ Q)R d ==2/h2, e] =[1—-1/(2i) )R,

(A32)

" 2 g 2 n 2
== UK d! =212 e = — /K. (A33)

For each j the tridiagonal matrix algorithm is used to solve
the set of equations (A31) and obtain ¢ at time step n+1/2.

In the second part of the method one takes the z derivative
implicitly and represents Eq. (A28) as

n+l1 n+1/2 n+1/2 n+1/2
lﬂ;‘ ¢i1+ 62 +1/2+52 l(v[/i:l,j _(r/lijl,l‘ —ry;
wh,/2 ’ 2h, i
(A34)

For given ¢ at time step n+1/2 this expression takes the
form

f‘;'l+[d”+2/(wh,)]¢;’]+'+ ! :’;’il

=Y+ [d] + 20(h )Y + el W ~ ryy,
(A35)

where the coefficients are defined in Egs. (A32) and (A33).
For each i the tridiagonal matrix algorithm is used to solve
the set of equations (A35) for the stream function ¢ at time
step n+1.

7. Boundary interpolation for stream function

Consider a mesh point D(i,j) close to the surface. The
point D is inside the drop and at least one of its nearest
neighbors is outside of the drop. In linear approximation
(r,z)=a+br+cz in a vicinity of the point D(i,j). For mesh
points B(i—1,j), C(i,j—1) and a point A of the drop surface
near D one gets
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a+bry+cz,=0, a+brg+czg= ¥ B),

a+bre+cze=yY(C). (A36)

We solve the set of equations (A36) and obtain a, b, and c as
functions of (B), and (C). The solution takes the form a
=a0+a1(ﬁ(B), b=b0+bllp(3), and C=C0+Clw(B), where ap,
by, ¢y, ay, by, and ¢, are functions of ¢{(C).

In the first part of the alternating direction method the
calculations of rows inside the drop proceed toward larger
values of j. For this reason one should consider here ¢(C) as
a given quantity, whereas (B) and (D) are unknown. In
order to complete the set of equations (A31) for the tridiago-
nal matrix algorithm we obtain the following relation be-
tween ¢/(B) and (D):

(D) =a+brp+czp
= (ag + borp + cozp) + (@) + byrp + ¢ 1zp) Y(B).
(A37)

Similarly, for the calculation of columns in the second part of
the alternating direction method, one obtains a=ay+a;y(C),
b=b0+b1 lﬂ(c), c=cCyt+Cy lﬂ(c), and

(D) =a+brp+czp

= (ag + borp + cozp) + (ay + byrp + ¢ 12p) Y(C).
(A38)

8. Explicit method for vorticity

For solving Eq. (32) the following explicit finite differ-
ence method is used:

1
Vi - 7/i'j+v B 1~ 7/il-1,j+v ”7/;,;41 ~ Vi1
h " 2h “ 2h

r

<

Z

_hl Vi1~ 27/;1"'3/11,)"'}’2(7/'#1 29+ im0

v 14
+ Fh’%('}/il_'_l’j_ ’)/iz—l,j) - 212]/13 )’U, (A39)
Vi = (Vi + i)

+a[1+ 12D+ a1 - 11201V

+[1-2a,-2a, - a2V} = Boij(Vie1 =~ Y1)

- Bzvzij(%’,ﬁl - ’}/i’,j—l)' (A40)
Here
a,=vh/hl, a,=vh/h, =h/(2h,), B,=h/(2h,).
(A41)

9. Boundary interpolation for vorticity

Consider a mesh point D(i,j) close to the surface. The
point D is inside the drop and at least one of its nearest
neighbors has to be outside the drop. In linear approximation
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y=a+br+cz in a vicinity of the point D(i, ). We denote the
vorticity at points B(i—1,/) and C(i,j—1) as ¥(B) and y(C)
correspondingly. The vorticity at the point A on the drop
surface near the point D is obtained as y(A)=do/(nds)
+2v,d¢/ds (see Appendix B). Then

a+bry+czy=y(A), (A42)
a+Db(i-1)h,+cjh.=y(B), (A43)
a+bih,+c(j—1)h, = y(C). (A44)
The solution of the set of equations is
a=[hr{YB) +[UC) = ¥B)]j} + hza{¥(C)
+[¥(B) = 1O)]i} = Y(A)h,h (i +j- 1DIR,
(A45)

b ={zs[ Y(C) = ¥(B)]+ h [¥(A) + ¥(B)(j - 1) - jHUC)]}/R,
(A46)

c={r\[¥(B) - O]+ h[HA) - i¥(B) + (i - )UC)]}/R,
(A47)

R=hry+hzy—hh(i+j—1). (A48)

The coefficients a,b,c allow us to calculate vy at the point
D(i,j) using the formula y(D)=a+bh,i+chj.

10. Calculation of the drop surface

For numerically solving Egs. (9) and (10) for the drop
surface in the form of y(s)=[r(s), ¢(s),z(s)]7, it is conve-
nient to modify the initial conditions (11) as follows:

y(0) = (Ry6,6,0)T. (A49)

Here r(s), ¢(s),z(s) are unknown functions, s € {0, s,,,<}, and
5=107° is introduced to fulfill the condition ¢(0)/r(0)
= 6/ (R05) = 1/R0

Consider the set of points s,=hk, where k=0,1,...,K and
Kh=s,,,. Equations (9), (10), and (A49) are solved with the
Runge-Kutta method,

h

Yer1 =Yt E(Pl +2p,y+2p3 + Pa), (A50)
P =f(5k,Yk), (ASI)

h h
pr=1f{ s, + E,Yk"' Epl ) (A52)

h h
p3 =1 s+ EaYk"' 5P/ (A53)
py=1£(s, + Ay, + hp;). (A54)

To increase the accuracy further, an interpolation is used for
obtaining the values s, and &. Then, the drop mass is cal-
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culated numerically with Eq. (12), and the evaporation rate is
given by Eq. (13).

APPENDIX B: BOUNDARY CONDITIONS FOR
VORTICITY AND STREAM FUNCTION

For a derivation of the boundary condition at the surface
of the drop for the quantity vy, which satisfies Eq. (32), we
consider a vicinity of a point taken at the surface of the drop.
The r and z components of the velocity can be expressed at
the surface via the respective tangential and normal compo-
nents, lying in the rz plane,

U,=V,C08 ¢+v, sin ¢, (B1)

v,=-v,sin ¢+v, cos ¢. (B2)

The angle ¢ between r and 7 projections of the velocity
depends, in general, on the coordinate s along the surface.
Therefore,

dv, Jdv, & . ¢d¢ v, . & (B3)
— =—¢08 ¢—v,sin p— + —sin @,
dz 9z or dz 9z
dv v, . d¢ v,
a_rz =——“sin ¢—v,cos d); +—Tcos ¢. (B4)
It follows from Egs. (B1)-(B4),
_ v,
=0 T ar
., v, . do do . )
=|(—=cos ¢+ —sin ¢ | +v,| —cos ¢— —sin
( 9z ¢ ar ¢> UT( dr ¢ dz ¢
Jdu, v, .
—( o cos ¢ — Py sin q’))
J d d d d
_0v,, d$_dv, v, dP (B5)

+ v 1 .
on "ds ds on "ds

The boundary condition at the surface of the drop can be
expressed as [45]

( 1 1 ) <8vi o"vk) do

—po—o|l —+— | |m=9| —+— |m——.

P=pPy=0 Rl Rz i K o"xk &xi b &xi
(B6)

where the unit vector n is directed toward the vapor along
the normal to the surface. Taking the tangential component
of this equation, we find

ds ox;,  0x;
((90[ (?Uk )
= — T+ —n
7 on ' ds k
dv, du, ank> ( v, d¢)
= +——v,— | = -v.—|. (B7
77( an = os ¥ os Non ~ V7 ds (B7)

Here 7; are the components of the unit vector 7 tangential to
the surface.
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As follows from Egs. (B5) and (B7), the boundary condi-
tion for Eq. (32), i.e., for the quantity ¥(r,z) at the surface of
the drop, takes the following form:

(B8)

Consider now the boundary conditions for ¢, which satisfy
Eq. (35). For z=0 we have dy(r,z=0)/dr=—rv_(r,z=0)=0
and, hence, (r,z=0)=const. At the symmetry axis r=0 we
have di(r=0,z)/dz=rv,(r=0,z)=0, therefore (r=0,z)
=const. At last, on the outer surface of the drop we have
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W_a
dJs  dr

cos ¢ — a—sin ¢
Z

=—rv,cos g—rv,sin p=—rv,=0. (B9)

Therefore, ¢y=const on the surface of the drop, and, hence,
y=const at all boundaries. Since only the derivatives of the
stream function ¢ enter expressions for physical quantities,
the particular value of the constant does not have any observ-
able consequences. For this reason, one can put =0
throughout the boundary.
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