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The Loschmidt echo �LE� �or fidelity� quantifies the sensitivity of the time evolution of a quantum system
with respect to a perturbation of the Hamiltonian. In a typical chaotic system the LE has been previously
argued to exhibit a long-time saturation at a value inversely proportional to the effective size of the Hilbert
space of the system. However, until now no quantitative results have been known and, in particular, no explicit
expression for the proportionality constant has been proposed. In this paper we perform a quantitative analysis
of the phenomenon of the LE saturation and provide the analytical expression for its long-time saturation value
for a semiclassical particle in a two-dimensional chaotic billiard. We further perform extensive �fully quantum
mechanical� numerical calculations of the LE saturation value and find the numerical results to support the
semiclassical theory.
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I. INTRODUCTION

In his seminal 1984 paper �1�, Peres studied the stability
of motion of quantum systems with respect to small pertur-
bations of the Hamiltonian. He discovered that the quantum
motion of a system, whose underlying classical dynamics is
chaotic, is more unstable than that of a system, whose dy-
namics is regular in the classical limit. The quantity intro-
duced by Peres, presently known as the Loschmidt echo �LE�
or fidelity, has been the subject of thorough theoretical and
experimental research in the fields of quantum chaos and
quantum information �2,3�.

The LE, defined as

M�t� = �O�t��2, �1�

with the amplitude

O�t� = ��0�eiH̃t/�e−iHt/���0� , �2�

quantifies the “distance” �in the Hilbert space� between the
state e−iHt/���0�, resulting from the initial state ��0� in the
course of evolution through a time t under the Hamiltonian

H, and the state e−iH̃t/���0� obtained by evolving the same
initial state through the same time t, but under a slightly

different, perturbed Hamiltonian H̃. The LE, by construction,
equals unity for t=0 and typically decays further in time. A
variety of different decay regimes—the most prominent ones
being the Lyapunov �4�, Fermi golden rule �4,5�, and the
perturbative �5–7� regime—have been found in chaotic sys-
tems with various Hamiltonians and Hamiltonian perturba-
tions. In this paper, however, we address the property of the
LE generally shared by all �Hermitian� chaotic systems: the
saturation of the decay at long times.

Peres provided in his original work �1� a qualitative �or-
der of magnitude� estimate for the value M� of the LE satu-
ration in chaotic systems. He argued that for small enough
perturbations

M� � N−1, �3�

where N is the number of eigenstates �of the unperturbed
Hamiltonian H� that are significantly represented in the ini-
tial state ��0�. In other words, N is the size of the effective
Hilbert space that is required for a reasonable description of
the time evolution of the initial state.

The phenomenon of the LE saturation has been previously
addressed in the literature from numerical �8� and analytical
�9� perspectives, and the validity of the Peres’ argument, Eq.
�3�, has been verified. However, no explicit expression for
the proportionality constant in Eq. �3� has been proposed.
Our work complements the theory of the LE in chaotic sys-
tems by providing the �previously missing� proportionality
constant.

In this paper we present the semiclassical analysis of the
LE at long times and derive an expression for the LE satu-
ration value. Our result, while in agreement with Eq. �3�,
constitutes a quantitative estimate of M�. The system treated
in this paper is a two-dimensional quantum billiard that ex-
hibits chaotic dynamics in the classical limit. The key
method underlying our analytical calculation, however, is not
restricted to billiards and can be generalized to a wider range
of chaotic systems. We further perform numerical simula-
tions of the time evolution of an initially localized Gaussian
wave packet in a chaotic billiard and compute the saturation
of the LE due to a perturbation caused by a deformation of
the boundary. The results of the numerical simulation
strongly support our analytical predictions. Finally, we con-
clude the paper with a discussion and final remarks.

II. SEMICLASSICAL APPROACH

We consider the time evolution of a quantum particle
moving inside a two-dimensional ballistic cavity—a quan-
tum billiard. In this paper we only consider hard-wall bil-
liards whose underlying classical dynamics is fully hyper-
bolic �10�. The initial state of the particle is assumed to be
the coherent state
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�0�r� =
1

	��
exp
 i

�
p0 · �r − r0� −

�r − r0�2

2�2 � , �4�

with � quantifying the dispersion of the wave packet and r0
and p0 representing, respectively, the average position and
momentum of the particle. The dispersion � is assumed to be
small compared to the linear size of the billiard for the wave
function to be normalizable to unity. We further define the
de Broglie wavelength of the particle as

� =
2��

p0
, �5�

where p0= �p0� is the magnitude of the particle’s momentum.
�Hereinafter we denote the magnitude of a vector by its cor-
responding symbol in italics.�

The time evolution of the initial state in the unperturbed
system with the Hamiltonian H is given by �t�r�
=�dr�Kt�r ,r���0�r��. In the �short-wavelength� semiclassi-
cal approximation the propagator Kt�r ,r��, for a two-
dimensional system, can be written as �11�

Kt�r,r�� 

1

2�i�
�

���r�→r,t�

D��e
iS��/�. �6�

Here, S�� denotes the action integral along the classical path
�� leading from the position r� to r in time t and D��
= �det�−�2S�� /�r�r���1/2e−i����/2 with the Maslov index ���.
Then, in the limit �see Appendix A of Ref. �12��

� 	 2�� 	 	2��lL, �7�

with lL being the Lyapunov length of the billiard, the action
integral S�� can be linearized about the trajectory ��r0
→r , t� connecting the wave-packet center r0, and the point r
in time t: S��
S�−p�

�i� · �r�−r0�, where p�
�i� is the initial mo-

mentum on the trajectory �. Using this action linearization
and performing a Gaussian integration over the initial point
r� one obtains the semiclassical expression for the time-
dependent wave function evolving under H �4�,

�t�r� 

�

	�i�
�

��r0→r,t�
D� exp
 i

�
S� −

�2

2�2 �p�
�i� − p0�2� .

�8�

The wave function �̃t�r� corresponding to the time evolution

under the Hamiltonian H̃ of the perturbed system is given by
an equation analogous to Eq. �8� with the trajectories ��r0
→r , t� replaced by �̃�r0→r , t� satisfying the classical evolu-

tion corresponding to H̃.
The LE amplitude, O�t�= ��̃t ��t�, is given by

O�t� 

�2

��2� dr �
�,�̃�r0→r,t�

D�D�̃
� exp
 i

�
�S� − S�̃��


exp�−
�2

2�2 ��p�
�i� − p0�2 + �p�̃

�i� − p0�2�� . �9�

The expression for the LE, then, being the product O��t�O�t�,
with the asterisk denoting the complex conjugation, involves
two integrals over the final points, say r and r̃, over four

sums over trajectories, two corresponding to the perturbed
system, and two to the unperturbed one. The integrand, in
general, is a rapidly oscillating function of r and r̃; therefore,
only the trajectories with the overall phase difference smaller
than � give a finite contribution to the integral. Considering
trajectories such that S�
S�̃ leads to exponentially decaying
regimes of the LE �4�. Therefore, nondecaying contributions
to the LE �responsible for the LE saturation� can only result
from trajectories that are close in action and belong to the
same Hamiltonian. This imposes a restriction on the possible
configurations of the trajectories of interest, namely, r
 r̃.
This makes it convenient to make the following transforma-
tion to the new integration coordinates: Q= �r+ r̃� /2 and q
=r− r̃. Then, following the procedure above, we linearize the
four trajectories entering the expression for the LE about the
same final point Q to obtain

M�t� 

�4

�2�4� dQ� dq �
�,��,�̃,�̃�

D�D��
� D�̃

�D�̃�


exp� i

�
�S −

�2

2�2 �
�i=�,��,�̃,�̃�

�p�i

�i� − p0�2� ,

�10�

where �S= �S�−S��−S�̃+S�̃��+ �p�
�f�+p��

�f�−p�̃
�f�−p�̃�

�f�� ·q /2
and all the four paths ��, ��, �̃, and �̃�� connect r0 and Q in
time t, with two of them �� and ��� corresponding to the
unperturbed Hamiltonian H and the other two ��̃ and �̃�� to

the perturbed Hamiltonian H̃; here p�f� denotes the final mo-
mentum �at the end point Q� on the corresponding classical
path. The integrand in Eq. �10� is still a rapidly oscillating
function of Q−�S, is generally much greater than �, and is
sensitive to Q—unless the paths �, ��, �̃, and �̃� are corre-
lated. In the diagonal approximation �13� the main contribu-
tion to the Q integral comes from such terms in the sum that
S�−S��−S�̃+S�̃�=0. One group of such terms, defined by the
identification �= �̃ and ��= �̃�, is responsible for the �gener-
ally exponential� time decay of the LE �4� and leads to a
vanishing contribution at long times. The other group, de-
fined by the identification �=�� and �̃= �̃�, gives rise to a
term surviving in the limit t→� and, therefore, provides the
leading-order contribution to the LE saturation value. Thus,
identifying the trajectories of the unperturbed ��=��� and
perturbed ��̃= �̃�� Hamiltonian we obtain

M� 

�4

�2�4� dQ� dq�
�,�̃

�D��2�D�̃�2exp� i

�
�p�

�f� − p�̃
�f�� · q

−
�2

�2 ��p�
�i� − p0�2 + �p�̃

�i� − p0�2�� . �11�

In order to evaluate the double sum in the right-hand side
of Eq. �11� we utilize the sum rule �14�

�
��r→r�,t�

�D��2f�r,p�
�i�;r�,p�

�f�� =� dp� dp�Pt�r,p;r�,p��


f�r,p;r�,p�� , �12�

where Pt�r ,p ;r� ,p��=�(r��t�−r�)�(p��t�−p�) is the classi-
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cal phase-space probability density for a trajectory �
= �(r��
� ,p��
�) ,
� �0, t�� starting from the phase-space
point (r��0� ,p��0�)= �r ,p� to end at point (r��t� ,p��t�)
= �r� ,p�� while evolving under the Hamiltonian H through
time t. Then, since dealing with chaotic Hamiltonians and
long times, we replace the probability distribution Pt by its
phase-space average

P�r,p;r�,p�� =
�„H�r�,p�� − H�r,p�…

�„H�r,p�…
, �13�

where ��E� is the phase-space volume of the energy shell
H�r ,p�=E. For the case of two-dimensional billiards ��E�
=2�mA, with m being the mass of the particle and A the
billiard area, so that in view of Eqs. �12� and �13� the long
time �t→�� limit of Eq. �11� reads

M� 

�4

�2�4�2� dQ� dq� � � � dpdp�dp̃dp̃�


�„H�r0,p� − H�Q,p��…�„H̃�r0,p̃� − H̃�Q,p̃��…


exp� i

�
�p� − p̃�� · q −

�2

�2 ��p − p0�2 + �p̃ − p0�2�� .

�14�

We now assume that both Hamiltonians can be written as
p2 /2m+V�r� and perform the integration in the right-hand
side of Eq. �14� as follows. The q integration, with the inte-
gration limits extended to R2, results in �2���2��p�− p̃��.
Consequently integrating over p� and p̃� we obtain

M� 

8�m�4

�2�2 � dQ� � dpdp̃


exp�−
�2

�2 ��p − p0�2 + �p̃ − p0�2������r0� − ��Q�

+ �p2/2m − p̃�2/2m�� , �15�

where ��r�=V�r�− Ṽ�r�. Now we assume that the perturba-
tion is small compared to the kinetic part of the Hamiltonian.
Alternatively, one may consider perturbations of the Hamil-
tonian produced by deformations of the billiard boundary
�12,15�; it is the perturbation of the latter type that we use in
our numerical experiments of Sec. III. Thus, assuming �
=0, we have

M� 

4�2

��2A
� � dpdp̃��p2 − p̃2�


exp�−
�2

�2 ��p − p0�2 + �p̃ − p0�2�� . �16�

Now, we use the integral representation of the � function,
��p2− p̃2�= �2��−1�d� exp�i�p2− i�p̃2�, and perform the
Gaussian integration over p and p̃ �eventually doing the vari-
able change x=��2 /�2� to get

M� 

2�2

A
�

−�

+� dx

1 + x2exp�− 2a
x2

1 + x2�
=

2��2

A
I0�a�exp�− a� , �17�

where a= �p0� /��2= �2�� /��2 and I0 is the zeroth order
modified Bessel function of the first kind. In the limit a�1
�or �	��, which is in agreement with Eq. �7�, the
asymptotic form I0�a�
�2�a�−1/2 exp�a� yields

M� 

1

	2�

��

A
. �18�

Equation �18� constitutes the central analytical result of our
paper.

It is easy to see that the original argument by Peres �see
Eq. �3�� is in perfect agreement with Eq. �18� derived in the
semiclassical approximation. Indeed, the number of Hamil-
tonian eigenstate required to properly describe the time evo-
lution of the initial wave packet, given by Eq. �4�, can be
evaluated as N=��E��E / �2���2. Here, as above, ��E�
=2�mA is the phase-space volume of the energy shell at the
average energy E= p0

2 /2m of the particle and �E= p0�p /m is
the energy dispersion of the initial state. Estimating the mo-
mentum dispersion as �p
2	2� /� we obtain the following
expression for the number of the eigenstates: N
2	2A /��
�and therefore M�
2�−1/2N−1�. In fact, due to certain arbi-
trariness in determination of �p the size of the effective Hil-
bert space N is not properly defined. This difficulty points to
a drawback of the original formulation of Eq. �3�. On the
contrary, Eq. �18� gives the LE saturation value in terms of
well-defined system parameters �, �, and A and, therefore,
provides a quantitative estimate for M�. In Sec. III we dem-
onstrate that the semiclassical predictions of Eq. �18� are in
agreement with the time saturation of the LE observed in
numerical experiments.

III. NUMERICAL SIMULATIONS

In order to support our semiclassical calculations we have
performed numerical simulations of a quantum particle mov-
ing inside a desymmetrized diamond billiard �DDB�. The
DDB is defined as a fundamental domain of the area con-
fined by four intersecting disks centered at the vertices of a
square. The billiard is fully chaotic �16� and has been previ-
ously considered for studying various aspects of quantum
chaos �12,15,17�. In our numerical experiments we used the
pistonlike boundary deformation �12� as the perturbation of
the Hamiltonian. The numerical method that we used for
propagating the particle’s wave function in time is the
Trotter-Suzuki algorithm �18�. Reference �12� provides fur-
ther details on the billiard systems, Hamiltonian perturbation,
and wave-function time propagation.

In our simulations the initial state of the quantum particle
is given by Eq. �4�. The blue �lower� line in Fig. 1 shows a
typical LE decay curve obtained in an individual numerical
experiment with the initial wave packet of the dispersion �
=9 and de Broglie wavelength �=4�; the area of the billiard
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A
1.51
105. Time is given in units of the free flight time tf
of the counterpart classical billiard, i.e., t / tf is the number of
bounces of the corresponding classical particle. The red �up-
per� line in Fig. 1 is the result of the averaging of the LE
over three individual decay curves, each of which was ob-
tained by propagating a wave packet centered about a differ-
ent spatial point r0 inside the billiard domain. �The wave-
packet centers were chosen such that the three initial states
had negligible overlap with one another.� Those were the
average LE decay curves that we used to determine the LE
saturation value and standard deviation—red dots and error
bars in Fig. 2—for the initial quantum state with particular
values of the dispersion and de Broglie wavelength.

In Fig. 2 we compare the semiclassical estimate for M�,
given by Eq. �18�, to the saturation values obtained from the
numerical simulations. The top �bottom� figure shows the
dependence of M� on the dispersion � �de Broglie wave-
length �� for �=4� ��=9� in the billiard of the area A

1.51
105. The red dots together with the error bars rep-
resent the numerically observed values of M�; the blue
dashed lines are plotted in accordance with Eq. �18�. We
stress here that no free �fitting� parameters have been used in
producing the theoretical lines: the slopes of the lines are
entirely fixed by Eq. �18�.

Finally, to give an idea of the scale of the numerical simu-
lations of this section we note that obtaining an individual
LE decay curve, such as the blue curve in Fig. 1, requires
more than 8 days of computational time on a high-end �2.8
GHz, 2 GB RAM� computer. Each data point in Fig. 2 is a
result of the averaging over three such individual decay
curves. Therefore, 39 individual decay curves were obtained
to produce the numerical data presented in Fig. 2, amounting

to approximately 312 days of �single-processor� computa-
tional time.

IV. CONCLUDING REMARKS

In this paper we have used the methods of the semiclas-
sical theory to derive an explicit expression for the value of
the long-time saturation of the LE, M�, in two-dimensional
chaotic billiards. Our quantitative result agrees with the early
qualitative argument �1� that the LE saturates at a value in-
versely proportional to the effective size of the Hilbert space
of the system; our calculation provides the previously miss-
ing proportionality factor.

In order to support our analytical predictions we have
performed careful numerical simulations of a quantum par-
ticle moving in a chaotic billiard. In these simulations a de-
formation of the billiard boundary played the role a Hamil-
tonian perturbation. The decay of the LE was observed until
times long enough to reliably determine M� and a proper
ensemble averaging �over the initial position of the quantum
particle� was performed to improve the accuracy. The nu-
merically obtained values of the LE saturation were found in
a good agreement with the theory.

The central aspect of our semiclassical calculation is the
pairing �in the sense of the diagonal approximation� of tra-
jectories that belong to the same �perturbed or unperturbed�
Hamiltonian. Those are these trajectory pairs that render the
time-independent contribution to the LE in addition to other
exponentially decaying contributions resulting from different
trajectory pairs. Here we note that the pairing of trajectories
considered in this work has been previously studied in the
context of the fidelity fluctuations �9� and the survival prob-
ability decay in open chaotic systems �19�.

We also note that although the phenomenon of the long-
time saturation of the LE has been previously discussed in
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FIG. 1. �Color online� Time decay of the Loschmidt echo in the
desymmetrized diamond billiard with a boundary deformation for
initial wave packets of de Broglie wavelength �=4� and dispersion
�=9. Time is given in units of the free flight time tf of the corre-
sponding classical particle. The thin �blue� line shows an individual
LE decay curve resulted from a single numerical experiment. The
thick �red� line represents the result of an averaging over three
individual decay curves obtained for different positions r0 of the
initial wave packet.
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FIG. 2. �Color online� Top figure: The Loschmidt echo satura-
tion value M� as a function of the dispersion � of the initial wave
packet for a fixed de Broglie wavelength �=4�. Bottom figure: M�

as a function of � for �=9. In both figures the billiard area A

1.51
105 and the blue dashed line represents the LE saturation
value as predicted by Eq. �18�.
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the literature �8,9� it has never been subject to a thorough
analytical and/or numerical study. In particular, the numeri-
cal simulations of the quantum Lorentz gas �8� correctly
demonstrated the inverse proportionality of M� to the billiard
area, A, while misleadingly suggesting its linear dependence
on the square of the wave-packet dispersion, �2, along with
independence of the de Broglie wavelength �. Reference �9�,
on the other hand, correctly outlined the semiclassical deri-
vation of the direct proportionality of M� to the effective
Plank constant, but did not present an explicit form of the
proportionality coefficient. Thus the present paper bridges
the gap by providing a quantitative analytical expression for
the LE saturation value and, consequently, verifying the ex-
pression by means of extensive numerical simulations.

As the final remark we would like to point out that the
present semiclassical approach to the phenomenon of the LE
saturation is only valid in the long time limit and in the
regime of weak Hamiltonian perturbations. In general, how-
ever, the LE saturation value will depend on a �properly de-
fined� perturbation strength. It is not yet clear to us how this
dependence can be described by the semiclassical theory.
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