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We study synchronous behavior in ensembles of locally coupled nonidentical Bonhoeffer–van der Pol
oscillators. We show that, in a chain of N elements not less than 2N−1, different coexisting regimes of global
synchronization are possible, and we investigate wave-induced synchronous regimes in a chain and in a lattice
of coupled nonidentical Bonhoeffer–van der Pol oscillators.
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I. INTRODUCTION

The understanding of human neuronal system functioning
principles and information processing algorithms in neuron
systems is an important actual challenge. Answers to these
problems will have an immediate impact on the creation of
highly efficient and low cost artificial neuron systems which
are capable of solving tasks, apparent now as extremely com-
plex �1,2�. There are already first solutions in this direction
demonstrating the potentials of artificial networks con-
structed by analogy with neuron systems. For example, the
processing of threads of multimedia data, including tasks of
recognition of texts and images, optimum management of
complex structures, brain-machine interactions, etc. �3–6�.

The system of coupled Bonhoeffer–van der Pol oscillators
�also known as FitzHugh-Nagumo elements� is one of the
fundamental models in nonlinear dynamics and one of the
most important models of neuroscience. In neuroscience
there are only a few systems demonstrating more or less
realistic simulation results, and manual understanding of
what is happening and why it is happening in the media. The
Bonhoeffer–van der Pol model is one of them. There are
some more realistic models �e.g., well-known Huber-Braun
�7� or Komendantov �8� models in neuroscience� but such
systems have very complex dynamics, which is hard to un-
derstand and analyze. Even phase spaces for these systems
are four dimensional. Also very often the Bonhoeffer–van
der Pol model is some kind of bridge between observations
of some effects at natural experiments or realistic model
simulation, and understanding/analyzing of such results.

One basic feature of ensembles of neurons in the central
and peripheral nervous systems, or in cardiac tissue is their
ability to synchronize �1,2,9,10�. Therefore, the study of syn-
chronization in chains and networks of elements simulating
self-oscillatory activity of neurons and cardiac cells is ex-
tremely important. Actually, effect of multistability, i.e., co-
existence of multiple attractors in phase space, was observed
in different systems, not limited to cardiac cells or neurons:
these are electromagnetical �11�, mechanical �12�, and bio-
logical �13� systems. In this paper we investigate synchroni-
zation in small �two and three elements� and rather large
�chain� ensembles of coupled neuronlike oscillators. We
demonstrate that such ensembles generate multistable syn-
chronous regimes. In dependence on the initial conditions in

a chain of N coupled oscillators, not less than 2N−1 different
stable synchronous regimes are possible. For N=2 the exis-
tence of in-phase and antiphase regimes is proved analyti-
cally. Numerical simulations show the appearance of eight
different synchronous regimes for N=4. In large ensembles
different regimes of global and cluster synchronization are
found.

II. MODEL

In this paper we investigate a chain of locally diffusively
coupled Bonhoeffer–van der Pol �BvdP� oscillators as a
model of a neuron network �14�:

ẋj = Fj�xj,yj� + d�xj+1 − 2xj + xj−1� ,

ẏ j = Gj�xj� , �1�

j = 1, . . . ,N ,

where Fj�xj ,yj�=xj −xj
3 /3−yj, Gj�xj�=��xj +aj�, N is the

number of elements in the chain, and d is the coupling be-
tween the elements, ��1, 0�aj �1. We consider slightly
nonidentical oscillators with the nonidentity parameter �i,j
=ai−aj. In different experiments free-end and periodical
boundary conditions are taken. All motions in Eq. �1� can be
divided in slow and fast motions because ��1 is very small.
From a physiological point of view, the fast variable x can be
considered as a voltage, and the slow variable y as a gating
or recovery variable. Therefore, the cooperative behavior of
neuronal networks or cardiac tissue can be at least qualita-
tively reproduced by a model of coupled BvdP oscillators.
This oscillator was successfully used as individual cell for
modeling the frequency entrainment of heart pacemakers
�15�. Collective dynamics of synaptically coupled BvdP neu-
rons was studied in �16�.

For a single element:

ẋ = x − y −
x3

3
,

ẏ = ��x + a� . �2�

There is one unstable steady state �x̄ , ȳ�= �−a , a3

3 −a�. It is �i�
a focus if a��1−2��, and �ii� a node if a��1−2��. There
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exists also a stable limit cycle. It consists of fast and slow
parts because of the smallness of �. A typical phase portrait
is shown in Fig. 1�a�. Here h−�x� and h+�x� are the left and
right steady parts, and h0�x� is the unstable part of the curve
of slow motions.

III. TWO COUPLED NEURONS

Next we study a pair of coupled elements:

ẋ1 = F1�x1,y1� + d�x2 − x1� ,

ẏ1 = G1�x1� ,

ẋ2 = F2�x2,y2� + d�x1 − x2� ,

ẏ2 = G2�x2� . �3�

For some fixed parameters there are two limit cycles �9�.
These cycles correspond to in-phase and antiphase synchro-
nous regimes. For the analytical proof of this fact for a1
�a2, we consider a piecewise-linear approximation of the
functions F1,2 �Fig. 1�b��:

Fi =�
− 4

3
xi − 2 − yi, for xi � − 1

2

3
xi − yi, for − 1 � xi � 1

− 4

3
xi + 2 − yi, for xi � 1.

� �4�

These functions have two extrema: the right extreme y1,2
=2 /3+d�x2,1−x1,2�, and the left extreme y1,2=−2 /3+d�x2,1
−x1,2�. Under the general assumption that the switching time
from h��x� to h	�x� is extremely small, in the steady regime
there are four possible types of mutual arrangements of
phase points of both elements: �i� both are situated in h+�x�;
�ii� both are situated in h−�x�; �iii� the phase point of the first
element is situated in h+�x�, and the phase point of the sec-
ond element is situated in h−�x�; �iv� the phase point of the
first element is situated in h−�x�, and the phase point of the
second element is situated in h+�x�.

We consider elements to be synchronized in phase if tisi
	 t2− t1�T, where tj is the moment of switching from the

passive phase to the active one at the jth element, and T is
the period of synchronous regime. If tisi	 t2− t1
T /2, we
consider elements to be synchronized in antiphase. Note that
for a1=a2 for an in-phase regime x1=x2, y1=y2, and for an
antiphase regime the lag between two time series is equal to
T /2.

Let us study the first case: both elements are on h+�x� �see
Fig. 1�b��. After substitution 
=�t at vanishing �, according
to Eq. �4� we get the simplified model:

0 = F1�x1,y1� + d�x2 − x1� ,

dy1

d

= x1 + a1,

0 = F2�x2,y2� + d�x1 − x2� ,

dy2

d

= x2 + a2. �5�

Solving this linear system, we find both limit cycles. To do
this, we build the mapping dfn+1�dfn�, where n corresponds
to the nth passing of the limit cycle, and dfn=y1

n−y2
n. Without

loosing generality, let us consider the following case. Let
y1

n ,y2
n be the values of y1 and y2 on the nth passing of the

limit cycle. Then the first element just comes to the line
h−�x�. The state y2

n of the second element can be arbitrary on
the lines h−�x� or h+�x�. The state y1

n of the first element is
defined through y2

n. Let us assume that the second element is
located on the h+�x�. Then

y1
n = 2/3 + d�x2 − x1� = d̂−1�4d̄/3 − dy2

n� , �6�

where d̄=2 /3+d and d̂=4 /3+d.
For the moment let 
= t1, in which the second element

jumps to the line h−�x�. Then, solving system �5�, one obtains
for y1�t1� and y2�t1�:

y1
−+�t1� = �1

2
�y1

n − y2
n� + 2 − �a1 − a2�d̄�exp
−

t1

2d̄
�

+ �1

2
�y1

n + y2
n� −

2

3
�a1 + a2��exp
−

3t1

4 �
− 2 − da2 + d̂a1, �7�

y2
−+�t1� = �1

2
�y2

n − y1
n� − 2 + �a1 − a2�d̄�exp
−

t1

2d̄
�

+ �1

2
�y1

n − y2
n� −

2

3
�a1 + a2��exp
−

3t1

4 �
+ 2 − da2 + d̂a1. �8�

In Eqs. �7� and �8� the index “−+” means that the first ele-
ment is on the line h−�x�, and the second one is on the line
h+�x�. From another side, because of the fact that at 
= t1 the
second element jumps to the line h−�x�, we have

FIG. 1. �a� Phase portrait of system �Eq. �2��. Dashed line is the
curve of slow motions while solid line with arrows is the limit
cycle. �b� In-phase regime at piecewise-linear approximation of the
functions F1,2 given according to �Eq. �4��.
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y2�t1� =
2

3
+

d

2d̄
�y2�t1� − y1�t1� − 4� . �9�

Comparing Eqs. �8� and �9� and taking into account Eq. �7�,
we can find the moment t1. Now both elements are on the
line h−�x�. The respective values y1�
� and y2�
� can be cal-
culated:

y1
−−�
� = � 1

2
�y1�
0� − y2�
0�� − �a1 − a2�d̄�exp
−


 − 
0

2d̄
�

+ � 1

2
�y1�
0� + y2�
0�� + 2 −

2

3
�a1 + a2��

�exp�−
3

4
�
 − 
0�� − 2 − da2 + d̂a1, �10�

y2
−−�
� = � 1

2
�y2�
0� − y1�
0�� + �a1 − a2�d̄�exp
−


 − 
0

2d̄
�

+ � 1

2
�y1�
0� + y2�
0�� + 2 −

2

3
�a1 + a2��

�exp�−
3

4
�
 − 
0�� − 2 − da1 + d̂a2, �11�

Each element can reach the left extreme before the other
element. This depends on the initial conditions and the pa-
rameters. At 
= t2 one of the elements reaches the left ex-
treme. Then y1�t2� and y2�t2� can be obtained from Eqs. �10�
and �11�. From another side, we can use the fact that one
element at 
= t2 is located in the left extreme. Therefore, we
can define the moment t2. If we move further along the cycle,
then we can obtain �i� the moment where the first element
jumps again from the line h+�x� to the line h−�x�, and �ii� the
values y1

n+1 and y2
n+1. Therefore, we can build the mapping

dfn+1�dfn�. This mapping at d=0.002, a1=0.995, and a2
=0 .994, and at the initial state of the second element the
h−�x� is presented in Fig. 2�a�. It is visible that there are two
steady fixed points of this map, each related to a certain
synchronous regime. The fixed point in the vicinity of zero
corresponds to an in-phase regime �x1�x2� and the point
near df�n�=1.323 corresponds to an antiphase regime. Both
of these regimes appear if the coupling strength d becomes
larger than some critical value. With further increase in d, the
fixed point corresponding to the antiphase regime disappears

but the fixed point corresponding to the in-phase regime re-
mains �Fig. 2�b��. This means that for relatively large cou-
pling only an in-phase synchronous regime exists.

These analytical results obtained for a linear approxima-
tion of the functions F1,2 are tested in numerical experiments
with original model �3� for �=0.02. This way we get the
existence of in-phase and antiphase synchronous regimes.
The appropriate time series are given in Figs. 3�a� and 3�b�.
It is important to note that the antiphase regime is realized
not only in some intervals of the coupling parameter d but in
some interval of the nonidentity parameter �1,2=a1−a2 as
well. In the case of a large �1,2, when even for one of the
elements the time of movement along h+�x� is close to the
time of movement along h−�x�, the antiphase regime disap-
pears. Therefore, it is possible to assume that the strong dif-
ference between the times of two parts of slow movement is
a reason for the existence of two �and very big for large
ensembles� synchronous regimes. We have also calculated
the evolution of the observed frequencies � j =2
 /Tj vs the
parameter d. Here Tj =1 /M �i=1

M Tij, where M→�, j=1,2,
and Tij is the sequence of time intervals between consecutive
maxima of the realization xj�t�. In other words � j is an av-
eraged frequency of the occurrence of maxima in the time
series xj�t�.

As our numerical experiments show, the in-phase and an-
tiphase regimes have strongly different observed frequencies
�. The frequency of the in-phase regime is close to the maxi-
mal of the individual frequencies of the uncoupled elements.
The fastest element is the source of the synchronous oscilla-
tions. It sets rhythm to others and can be called “pacemaker.”
The frequency of the antiphase regime goes to zero if d
increases, and therefore, the antiphase regime disappears
�Fig. 4�. It can be noticed that for identical elements the
decreasing of this frequency can be estimated analytically.
Thus, at d�dcr only the in-phase regime exists.

The simplified model �Eq. �5�� reproduces most consid-
ered effects, which take place in a pair of coupled oscillators:
�i� the frequency of the in-phase regime is close to the maxi-
mal individual frequency among elements and does not
strongly depends on coupling; �ii� the frequency of the an-
tiphase regime at rather low coupling is close to the minimal
individual frequency among elements; �iii� at high coupling
only in-phase regime exists.

FIG. 2. Map dfn+1�dfn�. Initially the second element is located
on h−�x�. The parameters are a1=0.995, a2=0.994, �=0.02, and �a�
d=0.002 and �b� d=0.05.

FIG. 3. Time series for �a� in-phase and �b� antiphase regimes of
system �Eq. �1�� for N=2, �=0.02, a1=0.995, and a2=0.994. Black
dots correspond to time series of the first element, and gray dots
correspond to time series of the second element.
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IV. SYNCHRONOUS REGIMES ORIGINATION
AND DESTRUCTION IN TWO COUPLED ELEMENTS

In this section we consider dynamical regimes changing
in a pair of coupled elements at different nonidentity �1,2 and
coupling d. The respective bifurcation diagram is shown in
Fig. 5. For some value of �1,2 if d�dmin

1 �area 1 in Fig. 5�
phase beating can be observed, i.e., time shifts between the
maxima of x1 and x2 or y1 and y2 are permanently changing
from zero up to some value.

A detailed analysis based on Poincare maps and Lyapunov
characteristic exponent calculations exhibits very complex
chaotic regimes in the system at d�dmin

1 . At d near but less
than dmin

1 , the frequency of the phase beating decreases and at
d=dmin

1 the stable limit cycle, corresponding to an antiphase
synchronous regime, appears through the value of the limit
cycle multiplier s= +1 bifurcation. Note that for 0�dmin

1

−d�1 both elements oscillate in a regime, close to an an-
tiphase most part of time, and a few time elements oscillate
in regime, close to an in-phase.

At increasing d up to d=dmin
2 the stable limit cycle, cor-

responding to an in-phase synchronous regime, originates
through the value of the limit cycle multiplier s= +1 bifur-
cation. Thus, multistability of synchronous regimes exists in
area 3 in Fig. 5.

At d=dmax, the stable limit cycle of the antiphase regime
disappears and only an in-phase synchronous regime exists
in area 4 in Fig. 5. The scenario of antiphase regime destruc-
tion could be different, depending on the element noniden-
tity: through the value of the limit cycle multiplier s= +1 or
s=−1 �period-doubling� bifurcations. But from the point of
multistability of the synchronous regimes, scenario of this
bifurcation is not important because phase trajectories of the
cycle after period-doubling bifurcation lie in the vicinity of
the antiphase limit cycle before the period-doubling bifurca-
tion. It is noteworthy that dependencies of dmin

2 ��1,2� and
dmin

2 ��1,2� on the �d ,�1,2� plane are close to be in direct
proportion, and dmax��1,2� is nonlinear.

V. THREE COUPLED ELEMENTS

In an ensemble of three coupled elements

ẋ1 = F1�x1,y1� + d�x2 − x1� ,

ẏ1 = G1�x1� ,

ẋ2 = F2�x2,y2� + d�x3 − 2x2 + x1� ,

ẏ2 = G2�x2� ,

ẋ3 = F3�x3,y3� + d�x2 − x3� ,

FIG. 6. Synchronization regimes in three coupled elements. Dis-
tribution of mean frequencies �1,2,3 vs coupling. Curve 1 corre-
sponds to an in-phase synchronous regime �i�. Curve 4 - to an
antiphase synchronous regime �ii�. Curve 2 - to a mixed regime
�iii�. Curve 3 - to a mixed regime �iv�. The parameters are: �
=0.02, a1=0.995, a2=0.994 93, a3=0.994 86.

FIG. 4. Synchronization regimes in two coupled elements. Dis-
tribution of mean frequencies vs coupling. The parameters are �
=0.02, a1=0.995, and a2=0.994. Black dots correspond to experi-
ments with in-phase initial conditions, and gray dots correspond to
experiments with antiphase initial conditions.

FIG. 5. Bifurcation diagram of synchronous regimes in system
�3� on �d ,�1,2�. �1� Phase beating area, �2� monostability of the
antiphase synchronous regime, �3� multistability of the in-phase and
the antiphase synchronous regimes, and �4� monostability of the
in-phase synchronous regime. Bifurcation curves dmin

1 ��1,2�,
dmin

2 ��1,2�, and dmax��1,2�.
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ẏ3 = G3�x3� , �12�

the following synchronous regimes were found: �i� in-phase
regime �x1�x2�x3 ,y1�y2�y3�; �ii� antiphase regime
�there is no pair of elements, synchronized in in-phase�; �iii�
regime, for which the first and the second elements are syn-
chronized in in-phase, and the second and the third in an-
tiphase; �iv� regime, for which the first and the second ele-
ments are synchronized in antiphase, and the second and the
third in in-phase.

In some sense regimes �iii� and �iv� can be called mixed
regimes. Therefore 2N−1=22=4 different synchronous re-
gimes are possible. The lags between the time series
x1�t� ,x2�t� ,x3�t� are not constant and can be changed in de-
pendence on the parameters. Under some conditions the re-
gime of splay state occurs, for which the time between the
maxima of the time series is close to T /3, where T is the
period of the synchronous oscillations.

The dependence of the observed frequencies on the cou-
pling of the three elements is shown in Fig. 6. Each curve in
the figure describes this dependence at one of the four re-
gimes of global synchronization. One can observe existence
of the coupling interval, where all four regimes are stable.

The mixed regimes are established at some frequency
�mix

s , such that �anti
s ��mix

s ��in
s , where �anti

s ,�in
s are the syn-

chronization frequencies of the antiphase and the in-phase
synchronous regimes, respectively. Mixed regimes exist in a
wider interval of d than the antiphase regime. With increas-
ing d, the mixed regimes disappear, and only the in-phase
regime remains.

VI. FOUR COUPLED ELEMENTS

Let us suppose that in the chain of L elements M synchro-
nous regimes coexist. Adding a new element to the chain,
this new element can be synchronized in in-phase and in
antiphase to its neighbor. M regimes coexist in the in-phase
case, and M regimes coexist in the antiphase case; hence
totally, 2M synchronous regimes coexist. Thus, two synchro-
nous regimes coexist in a pair of coupled oscillators, and
adding a new element to the chain doubles the number of
synchronous regimes. But experiments with two and three
elements are not very convincing here.

Therefore, we consider an ensemble of four elements with
linearly distributed parameters aj �� j,j+1=��. Finding eight
stable synchronous regimes in such systems will give us
more confidence in the assumption that 2N−1 different re-
gimes of global synchronization are possible in a chain of N
elements at the same values of parameters. Obtaining and
analyzing regimes, e.g., N=6 or N=8 �28−1=128 regimes for

FIG. 7. Eight stable synchro-
nous regimes in four coupled ele-
ments: �a� in-phase regime �a

=0.033 131; �b� antiphase regime
�b=0.032 255; �c�–�h� mixed re-
gimes: �c=0.032 740, �d

=0.032 744, �e=0.032 583, � f

=0.032 613, �g=0.032 633, and
�h=0.032 661. The parameters
are �=0.02, a1=0.995, �
=0.000 07, d=0.0055, periodical
boundary conditions were used.
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N=8� have no principal difference comparing with N=4. In
experiments with four coupled cells we have indeed found
all eight synchronous regimes �see Fig. 7� at the same values
of parameters.

VII. GLOBAL AND CLUSTER SYNCHRONIZATIONS
IN LARGE ENSEMBLES

The results obtained in previous sections allow us to ex-
pect that in a chain of N elements for some parameters 2N−1

different regimes of global synchronization are possible. In
order to study synchronization phenomena in rather large
ensembles of neuronlike elements, we investigate a chain of

50 coupled oscillators with linearly distributed parameters aj
�� j,j+1=��, which means a monotonous distribution of their
individual frequencies. Arrays of oscillators with natural fre-
quencies varying monotonously along them are interesting
both conceptually and because they are encountered in a
natural fashion in various situations �17�. Two rather illustra-
tive examples are below. One of them concerns dynamics of
a mammalian small intestine. If one isolates mammalian
small intestine sections 1–3 cm long, then each of them will
be able to oscillate at a definite frequency. Changes along the
intestine may be regarded to be monotonous at rather long
distances �18�. The other example is the vortex shedding in
flow past cone-shaped bodies �e.g., supports or chimney
stacks�. Such research also involves the analysis of an array
of coupled oscillators with monotonously varying natural
frequencies if the derivative with respect to the coordinate
along the cone axis is replaced by finite differences �see, e.g.,
�19��.

Each synchronous regime �except the in-phase one� has
minimal and maximal values of coupling �dmin,dmax� of their
stability. A detailed analysis of two coupled oscillators shows
that dmin of the in-phase regime is higher than dmin for the
antiphase regime. Moreover dmax of the antiphase regime has
the minimal value among all other synchronous regimes.
Thus, it is possible to assume that, at the interval of coupling
between the minimal value of coupling of the in-phase syn-
chronous regime dmin

in-phase and the maximal value of coupling
of the antiphase regime dmax

anti-phase2N−1 different synchronous
regimes are stable.

In numerical experiments several of such regimes have
been found �Fig. 8�. The evolution of the synchronization
frequencies for an increasing coupling parameter is similar to
the evolution in the systems of two and three coupled ele-
ments. As in the previous computations, in the in-phase re-
gime the synchronization frequency is close to the maximal
of the individual frequencies. This regime remains with in-
creasing d.

Another interesting finding we have observed in the chain
of 128 elements with randomly distributed parameter a and
periodic boundary conditions is that we have obtained a syn-
chronous regime having a higher frequency than the in-phase
regime. This regime exists due to a wave of excitation propa-
gating in the chain �“wave-induced regime”�. The frequency
of this regime is conditioned by the speed of the wave and
the length of the chain. This regime exists only if its fre-
quency is higher than the frequency of the fastest element of
the chain. Typical spatiotemporal diagrams of the in-phase

FIG. 8. �a� Synchronization frequencies in a chain of 50 coupled
elements for a1=0.995, �=0.000 45, and �=0.02. We used free
boundary conditions and saw-tooth initial conditions. A, B, C, D, E,
F, G—examples of different synchronous regimes in the chain; �b�
schematic sketch of synchronous regimes explored.

FIG. 9. Time series of the �a� in-phase and �b� wave-induced
regimes in a chain of 128 elements with periodic boundary condi-
tions, aj is distributed randomly in the interval �0.9968, 0.9975�.
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and wave regime are shown in Fig. 9, respectively.
Therefore, the in-phase and the wave-induced synchro-

nous regimes are conditioned, respectively, by: �i� the fastest
element, which sets rhythm of oscillations to all other cells in
the chain. Frequency of the in-phase synchronous regime is
close to the individual frequency of this element. �ii� The
pulse propagating through the chain and activating elements
sequentially. Synchronization frequency of this regime is
conditioned by the size of the chain and the propagation
velocity, which is determined by coupling and individual
cells’ parameters. If frequency of the wave-induced regime
becomes lower than the frequency of the fastest element, the
wave-induced regime will disappear.

With an increase in coupling from zero the formation of
groups of synchronized neighboring elements, i.e., clusters
of synchronization, appears. Effect of cluster synchronization
can be observed in different models, e.g., in-phase oscillators
�20�. But as the rotation frequencies are constant in �20�,
global synchronization establishes at some average fre-
quency among individual frequencies of the elements. We
consider relaxational oscillators; hence, the in-phase syn-
chronization establishes at frequency, which is close to the
individual frequency of the fastest element in the chain. The
number of clusters decreases with increasing d, and in the
chain of 50 coupled elements for d�0.03 global synchroni-
zation sets in �Fig. 10�. Note that the formation of synchro-
nous clusters is observed for randomly distributed param-
eters aj as well �17�.

VIII. SYNCHRONIZATION OF LATTICES BY SPIRAL
AND TARGET WAVES

In the previous section it was shown that synchronization
can be achieved due to excitation pulse, propagating through
the chain. In case of lattice �two-dimensional �2D�� synchro-
nization can be also achieved due to one-dimensional �1D�
pulses, i.e., propagating through one dimension �in case of
periodical boundary conditions�. But existence of the second
spatial dimension allows realizing spiral and target waves in
the lattice, which like 1D pulses set common rhythm to all
other elements.

In a lattice of 100�100 elements �free boundary condi-
tions� two types of wave-induced regimes were obtained: �i�

a regime, characterized by one target wave, propagating from
the fastest element of the lattice, and �ii� a regime induced by
existence of a spiral wave in the lattice. Typical snapshot
xij�t� of the system in the synchronous regime with one target
wave propagation is shown in Fig. 11�a�. The frequency of
this regime is equal to the frequency of the fastest element of
the chain. In some sense this regime can be called in-phase
synchronous regime.

Typical snapshot xij�t� of the system in the regime with
existing of one spiral wave in the lattice is shown in Fig.
11�b�. The spiral wave sets a rhythm to the lattice, which is
higher than the frequency of the fastest element in the lattice.

IX. CONCLUSIONS

Based on the presented results it is possible to assume
that, in a chain of N locally diffusively coupled Bonhoeffer–
van der Pol oscillators with free boundary conditions for
fixed values of parameters, the number of different global
synchronous regimes can be not less than 2N−1. This was
numerically confirmed for N=4. An analytical proof for the
existence of two synchronous regimes was performed for N
=2. In large ensembles a transition to global synchronization
is accomplished with the formation of synchronization clus-
ters. In a chain with free boundary conditions for relatively
strong coupling, only the in-phase synchronous regime ex-
ists, which is realized on a frequency close to the maximal of
the individual frequencies. In this chain and in the lattice of
Bonhoeffer–van der Pol oscillators, we investigated wave-
induced regimes with rhythms set by the waves.

Many theoretical and experimental results show that syn-
chronization phenomena play a very important role in brain
activity. It is assumed that synchronous firing of neurons is
an essential mechanism for information processing. There-
fore, the observed multistability of synchronous regimes may
be useful for understanding of mechanisms of different brain
functions including image storage and recognition �5�, visual
perception �6�, memory processing �21�, control of move-
ment �3�, and posture �4�.
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FIG. 10. Global �d=0.03� and cluster synchronizations in a
chain of 50 coupled elements for a1=0.995, �=0.001, and �
=0.02.

FIG. 11. Snapshot xij�t� in a 100�100 lattice at the regime
with: �a� one target wave, which sets the rhythm to the lattice, �b�
one spiral wave, sets the rhythm to the lattice. Parameters: aij dis-
tributed randomly in the interval �0.975, 0.995�, d=0.4, �=0.02.
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