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Quantum chaos in the nuclear collective model: Classical-quantum correspondence
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Spectra of the geometric collective model of atomic nuclei are analyzed to identify chaotic correlations
among nonrotational states. The model has been previously shown to exhibit a high degree of variability of
regular and chaotic classical features with energy and control parameters. Corresponding signatures are now
verified also on the quantum level for different schemes of quantization and with a variable classicality

constant.
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I. INTRODUCTION

What are typical features of a quantum system whose
classical limit is chaotic? This is a central question of so-
called “quantum chaos” [1-5], a branch of quantum physics
that has been attracting a considerable interest since 1970s.
Apparently, quantum systems show no trajectories, hence no
Lyapunov exponents, Poincaré sections or other signatures
constitutional for the distinction of chaos on the classical
level. Instead, some genuinely quantum attributes of the sys-
tem seem to absorb the information on the regular or chaotic
character of the classical dynamics. The best known ex-
amples are correlation properties of the spectra of energy
levels. As a surprise, quantum systems with a chaotic classi-
cal counterpart show highly correlated quantum spectra, de-
scribed within the theory of Gaussian matrix ensembles [6],
while the spectra of systems that are classically regular look
more or less random.

In recent years, alternative signatures of quantum chaos
have been proposed, such as the morphology of wave func-
tions [1,2,5], fluctuations of the scattering matrix [5], and
sensitivity to perturbations [7]. The research of these issues
is by far not completed. Note that the absence of an exact
definition of chaos on the quantum level led to a proposal to
use the term “quantum chaology” instead of quantum chaos
[8].

The relation of spectral properties of chaotic quantum sys-
tems to those of Gaussian matrices was proposed by Bohigas
et al. [9] in 1984. Since then, the conjecture has been tested
in numerous concrete systems and supported by several in-
volved theoretical analyses. Recently, correlation properties
of quantal spectra were rephrased into the language of sto-
chastic time series with ~1/f“ type of noise, the chaotic case
being identified with a=1 [10].

In spite of this progress, some problems concerning the
relation of the level statistics to classical chaos remain open.
The following two questions, in particular, helped to guide
the work presented in this paper: first, if the classical dynam-
ics exhibits abrupt transitions between dominantly regular
and dominantly chaotic types of motions with varying en-
ergy, to what extent does the level statistics within a single
spectrum follow these changes? Second, since the quantiza-
tion is not a unique procedure, does Bohigas’ conjecture hold
in all quantum realizations of the given classical system?
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The model we use to probe the above questions is the
geometric model of nuclear collective motions [11]. Classi-
cal dynamics generated by this model was recently shown to
exhibit an immense variability of the dynamical modes
[12,13]. The rise of ordered modes from the chaotic ones and
their breakdown are phenomena observed at numerous
places in the plane of energy versus control parameter—and
in a majority of cases they are not properly understood yet.
Very similar properties have been assigned also to the inter-
acting boson model [14—-16], which is closely related to the
geometric collective model. A detailed analysis of dynamical
features of these models is an interesting and important sub-
ject in the context of nuclear physics. However, we consider
these models to be very well suited also for more generally
oriented studies, such as those seeking answers to the above
questions.

The classical analysis of chaos in the geometric collective
model has been presented in Refs. [12,13]. In the present
paper, we focus on the analysis of quantum properties. We
restrict ourselves to a subset of quantum levels with zero
angular momentum, which makes the configuration space ef-
fectively two-dimensional (2D), in contrast to five-
dimensional (5D) space corresponding to general motions. It
is then shown that the classical version of the model for zero
rotations can be quantized in two physically meaningful
ways. We solve the eigenvalue problem in both cases and
compare the level statistics obtained, looking particularly
into the regions where transitions between regular and cha-
otic dynamics take place. The possibility of changing the
value of a classicality (Planck) constant enables us to popu-
late the spectrum with variable density of quantum states,
which is used for a global inspection of large energy domains
and zooming in some finer details.

The previous paragraph outlined the content of the present
part of this paper, further referred to as part I. In the forth-
coming part (part I [17]), the method invented by Peres [18]
will be applied to the geometric model. The method, which
exploits specific information on the structure of individual
eigenstates, makes it possible to draw the spectrum of a
quantum system in a way that allows one to visually allocate
regular and chaotic domains. A close relation to classical
dynamics, in particular an analogy with the graphical method
based on Poincaré sections, will be demonstrated.

The plan of the present part of the paper is as follows. In
Sec. II (and in the Appendix), we introduce the model with
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its alternative quantizations and discuss some technical is-
sues related to its numerical solution. The method used to
evaluate the spectral statistics is described in Sec. III. In Sec.
IV, the results of the statistical analysis are presented and
compared with the corresponding classical measures of
chaos. Conclusions are contained in Sec. V.

II. MODEL
A. 5D and 2D Hamiltonians

In this section we introduce the Hamiltonian of the geo-
metric collective model (GCM) for zero rotations, J=0, and
provide two different ways of its quantization, which are
referred to as 5D and 2D cases.

The kinetic and potential terms of the GCM Hamiltonian
H=T+V,

J—
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are built from generalized complex coordinates a= a(z)
(with u==2,...,+2) and the corresponding conjugate mo—
menta = 77#2), which are both spherical tensors of rank 2.
Parameter K in the kinetic part has the meaning of mass,
while {A, B, C} determine the form of the potential. Note that
[ax b]™ stands for a coupling of general tensors a and b to
angular momentum \. The Hamiltonian is rotationally in-
variant since it contains only scalar couplings of coordinates
and momenta.

The model is usually approached via an expansion
of the nuclear radius into spherical harmonics, R
=R0(1+E>\Ma2‘)*Y2‘)), with only the A=2 terms taken into
account; hence the name geometric model. However, the co-
ordinates can also have different interpretations keeping only
their quadrupole tensor character. The geometric Hamil-
tonian in the above form was introduced by Bohr [19] in
1952. A way of systematic construction of higher-order terms
in both potential and kinetic parts of the Hamiltonian was
presented by Gneuss et al. [20]. Several other types of po-
tential have been considered in connection with shape tran-
sitions in nuclei. An overview of these potentials with rel-
evant references and the corresponding quantum solutions
can be found in Ref. [21].

Coordinates « satisfy the constraint a(z)*z(—)“a(_z}i and
therefore contain five independent real variables. Two of
these variables capture the intrinsic shape of the nucleus
(with a quadrupole deformation) and the remaining three
variables describe the orientation of the nucleus in the labo-
ratory frame (they can be associated with the Euler angles
transforming the laboratory frame to the intrinsic one). In the
intrinsic frame, only the shape variables are relevant. These
are connected with the two independent scalar combinations
of a’s in Eq. (2) and are usually parametrized as follows:
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= Bcos y=x,
(s @ 1=0). This yields the potential in the form
V=AB*+Bp cos 3y+CB*. (4)

V2Re a2 =Bsiny=y, (3)

Standard quantization procedure with W#:—ih—ai leads to
"
the kinetic term [19]
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where T, stands for a nontrivial rotational part of the kinetic
energy, containing the derivatives with respect to Euler
angles and coupling all five dynamical variables. Since we
restrict ourselves only to nonrotating regimes, J=0, we set
T.,:=0. This can be seen as a projection of the full 5D coor-
dinate system into an effectively two-dimensional space de-
scribing vibrational degrees of freedom B and . Note, how-
ever, that this projection differs from the 2D case by a
modified definition of the scalar product, namely,

2w (oo
PP = [ [ WP glsn dylasay
0 0 N (6)
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where ‘I’fD(,B, v), with i=1,2, stands for two wave functions
and NV(f, y) represents a measure. The Appendix gives some
details, see in particular Eq. (A8). The normalization condi-
tion (W3P|P¥3P)=1 leads to another class of solutions than
would apply in case of a genuinely 2D Hamiltonian.

For J=0, however, the truly 2D scheme represents an al-
ternative way of quantization. It means that we put the sys-
tem into the intrinsic frame first and only then carry out the
quantization. The kinetic term obtained in this way reads as

follows:
1 az)
7
pap ap”t By @

which is nothing but the standard 2D kinetic energy ex-
pressed in polar coordinates (r, @)= (8, y). The scalar prod-
uct in this case is defined in the usual way, therefore the
space of solutions coincides with L?*(R?). Note that the
Hamiltonian given by Egs. (4) and (7) is a generalization of
the widely studied Hénon-Heiles model [22]. Let us stress
that in the nuclear physics context only the 5D quantization
is correct.

Both forms (5) and (7) have the same classical limit for
J=0. The corresponding Hamiltonians A and H?P, respec-
tively, with the common potential [Eq. (4)], enable one to
study the impact of the quantization method on spectral cor-
relations. Although individual energy eigenvalues obtained
in both quantizations are different, we may assume—as im-
plicit in Bohigas’ conjecture—that the spectral statistics re-
mains essentially the same (after correctly separating levels
with different conserved quantum numbers in both cases).
The validity of this assumption will be discussed in Sec. IV.
Note that despite the 2D and 5D quantum Hamiltonians carry
a clear physical meaning, they represent just two options out
of an infinite number of quantization possibilities.

2
0 __ h(la J
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FIG. 1. Energy levels of the GCM Hamiltonian for A=-1, B=1.09, C=1, and fi2/K=25%10"* drawn inside the y=0 section of the
potential well. Energy is given in relative units. Panels (a) and (b), respectively, show even and odd states in the 2D quantization, panel (c)
corresponds to the SD quantization. Levels associated with the wave functions in Fig. 2 are marked with their respective ordinal numbers.
In both 2D cases, levels of the harmonic-well approximation are drawn on the left.

B. Numerical solution

Both versions of the /=0 GCM Hamiltonian are diago-
nalized numerically using the eigenbases of a 5D or 2D har-
monic oscillator. The oscillator Hamiltonian reads as Hy,
=T +V,, where V. .=A..8* (with A, being an arbitrary
positive constant whose optimal choice will be discussed
later) and T" stands for the 5D or 2D kinetic operator (5) or
(7), respectively (we denote e=5D or 2D). A general GCM
Hamiltonian H*=T"+V is expressed as H'=H, +V’, where
V'=V-V,. It turns out that matrix elements of V' in both
oscillator bases can be expressed analytically, which makes
the process of numerical diagonalization very efficient. De-
tails and explicit expressions can be found in the Appendix.

The original 5D solution of the GCM possesses several
implicit symmetries, namely,

2ar
wP(B,y) = ‘P5D<B,7+ ?>, (8)
\PSD(B’ 7’) = \PSD(E’_ 7) > (9)

with W3P an arbitrary wave function in 5D. These relations
arise from the ambiguity of the system’s orientation in the
intrinsic frame. On the other hand, solutions of the 2D model
do not a priori satisfy such symmetries. If the spectra asso-
ciated with both quantizations are to be compared, conditions
(8) and (9) need to be imposed externally also to the 2D case.
This is done by selecting a subset \I’gm (where E stands for
even in variable ) of the 2D oscillator basis in which the
diagonalization is carried out (see the Appendix). In addition,
if we relax condition (9) and require only the equality of
absolute values of the wave functions involved, we can take
into account another independent class of 2D solutions,
namely, the wave functions odd in variable v, i.e., satisfying
W2P(B,y)=—W2P(B,~v). These are obtained by diagonal-

ization in the subset \I’%)l?nm
pendix).

The Hamiltonian matrix expressed in the truncated oscil-
lator basis has a band form. The bandwidth is approximately
equal to the maximal value of the principal quantum number
in the selected subset of basis states. This makes the diago-
nalization feasible even at relatively high dimensions. The
convergence of solutions is checked by a visual inspection of
the distribution of eigenvector components in the oscillator
basis (a bad convergence is signaled by missing tails of the
computed distributions) and/or by trial calculations using
variable size of the basis (we test the stability of computed
eigenvalues against an increase in the dimension). Our pro-
cedure guarantees that the precision OF of individual eigen-
values satisfies the condition 6E <AE, where AE is an aver-
age spacing between levels in the selected part of the
spectrum. This is needed for the determination of the nearest-
neighbor spacing (NNS) distribution.

In order to make the net spectra of converged eigensolu-
tions as large as possible, we optimize the oscillator param-
eter A that determines a characteristic scale of the basis
wave functions. The procedure is based on the determination
of the A, value for which the trace of the GCM Hamil-
tonian in the truncated basis is minimal (the optimal choice
of A, 1s however lower than this value, as empirically veri-
fied for the parameter ranges studied here). Taking all these
issues into account, we have found that on a common per-
sonal computer one can employ up to 103 basis states and
obtain up to about 5X 10* well converging eigensolutions
(exact numbers still depend on the choice of external param-
eters).

An example showing all three classes of solutions—i.e.,
2D even, 2D odd, and 5D—is plotted in Fig. 1. Here, param-
eters of Eq. (4) were chosen such that the potential has a
minimum at S+ 0. Although the spectra in the three panels
of Fig. 1 look different, very close similarities become ap-

of the 2D oscillator states (Ap-
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FIG. 2. Probability densities derived from the wave functions for selected levels from Fig. 1. Columns (a), (b), and (c) show the 2D even,
2D odd, and 5D cases, respectively. All distributions are constrained by the threefold symmetry of the potential. The dashed lines demarcate
the kinematically accessible area at given energy; cf. the dashed lines in Fig. 1. The states in two upper rows belong to the region where the
quadratic-well approximation of the potential is valid. The third and fourth rows, respectively, depict examples of regular and chaotic states

with higher energies.

parent when comparing also the corresponding wave func-
tions. This is done for selected levels in Fig. 2. At very low
energies, the system is fully regular since the minimum of
potential (4) can be approximated by a quadratic well. Wave
functions belonging to this region are seen in the first and
second rows of Fig. 2. On the other hand, the region of
mixed dynamics is exemplified by wave functions in the
third and fourth rows, which correspond to regular and cha-
otic cases, respectively. Indeed whereas wave functions in
the third row exhibit regular behavior (the wave function is
localized within an area following some specific classical
periodic orbits [5]), wave functions in the fourth row show
diverse structures and cover the whole accessible area.

It should be noted that the 2D and 5D cases differ in the
differential element needed to calculate the probability dis-
tribution in the xy plane. In the 2D quantization we simply
have [W2P(x,y)|>dxdy=|V>(B, y)|*|J|dBdy, where J=p is

the Jacobian of the transformation from (x,y) to (8, v). The
first two columns of Fig. 2 show just the squared modulus of
the respective wave functions. In the 5D case, however, all
matrix elements contain the measure A from Eq. (6). In the
rightmost column of Fig. 2 we show the squared wave func-
tion |W3P(B,y)]> multiplied by a factor A7 J=p|sin 39].
The resulting 5D density therefore vanishes where sin 37y
=0, so it is visually similar to the 2D odd case, in spite of
condition (9). This is also why the ground-state density in
Fig. 2(c) has two maxima in each potential well although the
wave function itself has no node.

Let us finally briefly remark on the choice of parameters
in this work. It is closely connected with the scaling proper-
ties of the GCM Hamiltonian discussed in Refs. [13,23]. In
the classical case [13], only one of the parameters {A,B, C}
determines the scale-independent behavior of the system,
while the others and K can be set to +1 or =1 for A. In the
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quantum case [23], the classicality parameter x=#>/K
(whose changes can be viewed either as changes in the
Planck constant or as changes in the mass) constitutes the
second-independent parameter of the model which cannot, in
general, be scaled to unity. This parameter determines the
absolute density of states.

In the following, we take B as the principal control pa-
rameter and choose « to locate a sufficient number of levels
into the energy region of interest. The remaining parameters
are fixed to (A,C)=(-~1,+1), which in the nuclear context
corresponds to nuclei with stable ground-state deformations.
For B=0, the system is completely integrable (since in this
case the Hamiltonian does not depend on vy and the xy angu-
lar momentum is an obvious integral of motions). Therefore,
the value of parameter B represents the strength of a nonin-
tegrable perturbation.

Let us note that all the above-introduced quantities and
parameters are considered here dimensionless. The conver-
sion to a concrete scale requires to choose the same unit for
energy E and parameters A, B, C, and «. In nuclear context,
the unit of {A,B,C} is set by the form of the potential (e.g.,
the depth of the minimum). The appropriate value of « (con-
nected with the effective mass parameter K) can then be
determined by adjusting the number of states in a certain
interval (e.g., below E=0).

III. SPECTRAL STATISTICS

According to Bohigas’ conjecture [9], chaotic systems ex-
hibit strong correlations between levels, which result in an
effect known as “spectral rigidity.” The short-range compo-
nent of these correlations is most clearly manifested in the
distribution of the NNSs, i.e., gaps between neighboring lev-
els in a transformed (so-called unfolded) spectrum. In fully
chaotic systems, this distribution is amazingly well approxi-
mated by the Wigner distribution, while in systems with
regular classical counterparts the NNS distribution tends to
be Poissonian.

A suitable quantity allowing one to interpolate between
the two limiting cases is the Brody parameter w [24]. It is
defined through the distribution

P(s;w) = (w+ 1)a,s® exp(— a,s°),

aw=[r(“’+2)rl, (10)
w+1

where s is the spacing between adjacent levels in the un-
folded spectrum and «, is a factor resulting from the re-
quired conditions [jP(s;w)ds=1 (normalization) and
JosP(s;w)ds=1 (unfolding). Equation (10) interpolates be-
tween the Poisson (w=0) and Wigner (w=1) distributions,
hence a value w [0, 1] obtained from a concrete spectrum
tells us where between order and chaos the actual system is.
In spite of an artificial character of this interpolation, it has
been argued that the Brody distribution is capable of fitting
the data generated by realistic systems with mixed dynamics
[25].

We use the following procedure: eigenstates obtained by
the Hamiltonian diagonalization in a sufficiently large basis
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FIG. 3. An example of the linear fit illustrating the determina-
tion of the Brody parameter from an unfolded spectrum of levels
within a single bin [it belongs to the dotted line in Fig. 5(b) at
E~1.33]. The left-hand side of Eq. (11) is denoted as 7. The NNS
distribution and its fitted Brody approximation (with w=0.62) are
shown (by the full line) in the inset. Dashed and dotted lines cor-
respond to Poisson and Wigner distributions, respectively.

are split into groups (bins), each of them counting 1000 con-
secutive levels. The standard polynomial unfolding proce-
dure [26] is applied in each group, removing locally a
smooth part of the level density and normalizing the average
spacing to unity. To obtain the Brody parameter, we use the
identity following from Eq. (10) [27]:

InIn[1 -I(s;0)] ' =In a,+ (1 + w)In 5. (11)

Here, I(s;w)=[{P(s";w)ds’ can be estimated from a cumu-
lative histogram of spacings in the unfolded spectrum. A
simple linear fit of the expression on the left-hand side of Eq.
(11) in the logarithmic scale of variable s yields the Brody
parameter w for each bin of levels. An example is shown in
Fig. 3. The bins subject to the above evaluations increase in
energy and overlap with each other (the shift between suc-
cessive bins was set to 100 levels). The average energy of
each bin is drawn on the abscissa in the resulting dependence
of w on E (cf. Figs. 5 and 6 below).

Although the linear fit [Eq. (11)] can be easily imple-
mented and demonstrates the validity of the Brody approxi-
mation over a broad domain of spacings, it may increase the
relative weight of large values of s in the calculation of w
[27]. We have performed a numerical simulation showing
that the value of the Brody parameter determined in this way
may be decreased by an absolute value Awy,~—0.08, while
the statistical error resulting from finiteness of the sample of
levels is estimated as Awg, =~ *0.07. These uncertainties
should be taken into account when evaluating the depen-
dence of w on energy, see Sec. IV.

We tried to implement also the new method [10] based on
the 1/f* noise in spectral fluctuations, with a € [1,2] corre-
sponding to spectra in between fully chaotic (a=1) and fully
regular (@=2) limits. The advantage of this method lies in its
simple and elegant formulation (with no explicit reference to
random matrix ensembles) and in the fact that it simulta-
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FIG. 4. Regular fraction f, of the classical phase space as a
function of the control parameter B and energy E in a vicinity of
E=0. The degree of chaos is coded in shades of gray, with white
(black) corresponding to complete order (chaos). One may notice an
island with increased regularity near B~ (.6. The number of bins in
the B direction is much larger than that in the E direction.

neously captures both short- and long-range spectral correla-
tions.

In our case, however, the results were not quite satisfac-
tory. The reason—an insufficient statistics—may be antici-
pated to be present in a majority of systems in which the
competition between regular and chaotic motions quickly
varies with energy. Indeed, the work [10] demonstrates the
power of the 1/f* method on the Robnik billiard that (as all
billiard or cavity systems) exhibits a constant energy-
independent ratio between regular and chaotic phase-space
volume. This allowed the authors to average over a huge
number of successive sets of levels and to get very precise
results. In contrast, properties of individual GCM trajectories
cannot be trivially scaled with energy. This feature, which in
fact represents an important motivation for the detailed
analysis of the present system, results in a significant in-
crease in the statistical error of the deduced (energy-
dependent) exponents «, in some cases even exceeding 30%.

IV. RESULTS

In this section, we will compare the quantum measure of
regularity (Brody parameter) obtained in the way described
in Sec. IIT with the corresponding classical measure. We will
focus on the influence of the different quantization schemes
and on the dependence of results on the classicality param-
eter k.

In our previous work [12,13], classical measures of chaos
in the geometric model were studied. We solved the classical
equations of motions for a number N, of trajectories with
fixed energy E and then, using the method based on so-called
alignment indices [28], classified each trajectory as either
regular or chaotic [13]. In order to quantify the overall de-
gree of regularity at given energy, we calculated a regular
fraction of the phase space foq=Nyo/ Nioi» Where Ny, repre-
sents the number of regular trajectories in the sample. The
regular fraction f., takes values from O (fully chaotic dy-
namics) to 1 (fully regular dynamics) and it can be compared
with an adjunct (1 —w) of the Brody parameter.

In the classical case, the dependence of f., on energy and
control parameter B exhibits very complex nonmonotonous
behavior, which is for energies around E=0 depicted in Fig.
4. The following features of this dependence are worth men-
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FIG. 5. A comparison between the classical regular fraction f.,
(panel a) and an adjunct (1-w) of the Brody parameter (panels b
and c) for B=0.62 (the main maximum of regularity at E=0). Re-
sults for different values of « in the 2D even case are shown in
panel (b), while results for different types of quantization for
=25X107° are presented in panel (c). A reasonable agreement of
classical and quantum measures is observed. The jittering of indi-
vidual curves is caused by statistical errors.

tioning: first, the system is regular for small values of B since
B=0 represents a fully integrable limit of the model (see the
end of Sec. II). Second, a well-pronounced island of regular-
ity in a wide range of energies is observed at B=~0.6. As
shown in Ref. [16], this region is connected with the so-
called regular arc of the interacting boson model [14,15].
Third, increased values of the regular fraction are observed
for some values of B at E~0. The absolute energy E=0
corresponds to a local maximum of the potential [Eq. (4)] at
B=0.

Figures 5-7 depict the dependence of both measures f.,
and (1 - w) on energy. The classical measure is always shown
in the uppermost panel. The value of the Hamiltonian param-
eter B in the three figures was chosen as B=0.62, B=1.09,
and B=0.24, respectively, with regard to the location of some
extremes of regularity at E=0 [12]. The energy range shown
in the figures represents the most interesting region, lying
between the domains of full regularity at very low and very
high energies. For energies just above the global minimum of
the potential the system is entirely regular due to the validity
of the harmonic-well approximation. With increasing energy,
the regularity suddenly breaks down and continues falling
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FIG. 6. The same as in Fig. 5, but for B=1.09 (a minimum of
regularity for E=0). Only the 2D even quantization is analyzed for
different values of «.

sharply until it nearly reaches zero. After this stage, it takes
off again, somewhat surprisingly, and exhibits several well-
pronounced peaks of highly regular motions, which are sepa-
rated by valleys of more chaotic dynamics. These structures
can be seen in Figs. 5-7. For sufficiently high energies, not
shown in the present figures, the regularity starts growing
steadily toward the fully regular limit, following roughly a
logarithmic dependence. This is connected with the domi-
nance of the 8* term of the potential at high energies [12,13].

The lower panels of Figs. 5-7 show the corresponding
quantum measure, the adjunct of the Brody parameter. In

1-
B=0.24
(a)
—— Classical regularity
reg
O T T T
0 2 E 4
1-
1-0
. ——2D even
| ---- 2D odd
\ SN 5D
0 T Lt T T
0 2 E 4

FIG. 7. Classical (a) and quantum (b) chaotic measures for
B=0.24 (a minimum of regularity for E=0). Only results with «
=25X 107 are shown in panel (b) for various quantizations (fluc-
tuations are caused by statistical errors).
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accordance with the discussion in Sec. III, we estimate the
absolute errors of the (1—w) curves as —0.07 and +0.11. The
reason for different error sizes in up and down directions is
the above-discussed systematic error, which tends to under-
estimate the value of w. On the other hand, a numerical error
of fre, Was estimated as <5% [13]. If the errors are taken
into account, the fluctuations observed in the lower panels of
all three figures are smoothened out and the overall corre-
spondence between f,, and (1-w) becomes rather good. In
particular, the observed maxima and minima of both curves
coincide. It turns out that the Brody parameter tends to
slightly overestimate the regularity—this being so even if the
above systematic error is considered. Note that a similar be-
havior was observed for the exponent « in the 1/f* noise
analysis [10]. Indeed, there is no reason to expect that Sreg
and (1 —w) behave in exactly the same way. We only expect
a qualitative agreement, and that is fully confirmed in the
present calculation.

A remark is needed concerning the minimum seen in Fig.
5(b) just below E=0 for lower values of «. It has no apparent
counterpart in panel (a). Indeed, this minimum is only an
artifact connected with the resonance of 8 and 7y vibrational
energies at B=0.62 [16]. The appearance of nearly equidis-
tant bunches of levels in the resonance region causes a seri-
ous deviation of the NNS distribution from the Brody form,
which results in a nonrealistic value of the Brody parameter.
The discrepancy is localized only in a relatively narrow in-
terval and gets washed out as « increases (the incriminated
energy region is populated by a decreasing number of levels;
a similar effect was discussed in Ref. [29]).

The dependence of the quantum results on the classicality
constant « is shown in Figs. 5(b) and 6(b). We observe that
the value of « does not affect the energy dependence of the
Brody parameter. Mutual deviations of the curves for various
k are bound inside the standard error interval. Instead, the
curves for distinct « differ in the width of the displayed
energy range. It has the following reason: since a decreasing
value of the classicality parameter raises the density of the
spectrum, the plots for smaller « are more detailed but can-
not reach higher energies because of computational limita-
tions of the diagonalization procedure. In our case, 3 X 10*
reliable energy levels were calculated for each value of
(the dimension of the diagonalized matrix being about two
times larger) and the curves are cut at the centroid energy of
the uppermost bin of levels (see Sec. III).

The dependence of the quantum measure of chaos on the
method of quantization is shown in Figs. 5(c) and 7(b). As
was demonstrated in Fig. 1, the spectra obtained by the three
types of quantizations (we consider the 2D quantization
scheme further split into the odd and even cases, see Sec.
IT A) differ from each other distinctly. The question concern-
ing the validity of Bohigas’ conjecture in all quantizations
has been raised above. The answer is evident from the
present results: the Brody parameter for all quantization
schemes exhibits essentially the same dependence on energy,
the mutual deviations being fully within the range of stan-
dard errors. Therefore, we can report that full agreement with
Bohigas’ conjecture is confirmed in the present model inde-
pendently of the chosen quantization scheme.
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V. CONCLUSIONS

We have studied the correspondence between classical
and quantum measures of chaos in the geometric collective
model adopted from nuclear physics. In spite of its concep-
tual simplicity, the model exhibits enormous complexity of
solutions, with a very sensitive dependence of the observed
behaviors on external parameters and energy. These features
qualify the model for being a subject of detailed analyses of
the competition between regular and chaotic modes of mo-
tions on both classical and quantum levels.

Although the dependence of chaotic measures on some
external control parameters has been extensively studied in
quantum billiards, see, e.g., Refs. [30,31], the dependence on
energy has been marginalized so far. This is partly because
billiard systems do not permit this kind of analysis—their
chaotic features are always uniform in energy. Even the stud-
ies based on “soft” potential systems have been so far fo-
cused mostly on the cases with a relatively simple energy
dependence of chaotic measures, see, €.g., Refs. [22,29,32].
The collective Hamiltonians used in Refs. [14—16] and also
those studied in Refs. [12,13] provide a very different per-
spective. In this sense, the present work can be considered as
complementary to the studies based on two-dimensional bil-
liard systems. We have demonstrated that a tight connection
between classical and quantum measures of chaos, embodied
in the well-known Bohigas’ conjecture [9], remains valid
even under the condition of a strong energy dependence.

Another important conclusion of our work is the observed
independence of quantum chaotic measures on the method
used to quantize the system. Since the definition of quantum
chaos is based on the system’s semiclassical limit, it would
be very surprising to find the opposite, i.e., statistical prop-
erties of spectra depending on the quantization. However, the
question deserves to be tested. The present work is probably
only a first step in this direction.

Finally, our results show that the Brody parameter, despite
of being often deprecated, represents a reasonably sensitive
measure of chaos in quantum system. We nevertheless do not
stop at this stage. In the forthcoming part of this paper [17],
features of the geometric model are analyzed with the aid of
the method proposed by Peres [18]. This method enabled us
to study the breakdown and reoccurrence of ordered quantal
spectra with running parameter B in a much more detailed
way.
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APPENDIX: HAMILTONIAN MATRIX ELEMENTS

Here we expose the 2D and 5D oscillator wave functions
used for the diagonalization of both versions of the GCM
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Hamiltonian for /=0 and write down explicit expressions for
relevant matrix elements. There exists a tight connection be-
tween the 2D and 5D bases, which shows up particularly in
the form of matrix elements. Note that our derivation of ma-
trix elements is based on Ref. [33], but an alternative alge-
braic approach was recently presented also in Ref. [34].

We employ the 2D and 5D oscillator bases in radial coor-
dinates B and 7y. The oscillator Hamiltonian is given by
H, =T +Ay.B°, where «=2D or 5D and T is the kinetic
energy (7) or (5). The oscillator eigenstates in the 2D and 5D
cases are denoted as |nm) and |vu), respectively, where n
and v represent the corresponding radial quantum numbers.
These states are also eigenstates of the angular momentum
associated with the rotations varying angle v, therefore they
carry good quantum number m corresponding to the O(2)
invariant in the 2D case or u corresponding to the O(5)
invariant with J=0 in the 5D case [35]. Matrix elements of a
general GCM Hamiltonian in these bases can be calculated
analytically.

Starting with the 2D case, the basis wave functions read
as

(B.AAnm) =W (B.7) = RL(BYD(y), (A1)
with the radial and angular parts given by
Rig(ﬁ) — 2kn! (kBZ)3m/26—kﬁ’2/2L3m(kBZ) ,
(n+3m)!
2D .
Dy, (v) = —=sin3my m=0,1,...,
N
1 .
= if m=0
p(N=1 1" (A2)

—cos 3my if m=1,2,....

TABLE I. Matrix elements of the radial potential terms in the
2D oscillator basis. Matrix elements for other combinations of the
oscillator states are zero.

(nm|B¥nm)=k"'2n+3m+1)

(n+1,m| B nm)=—k"N(n+1)(n+3m+1)
(n,m+1|B|nm)y=k>*N(n+3m+3)(n+3m+2)(n+3m+1)
(n=1,m+1|8|nmy==3k"3*\n(n+3m+2)(n+3m+1)
(n=2,m+1|8|nm)y=3k"3*Vn(n—1)(n+3m+1)
(n=3,m+1|8|nmy=—k3*\n(n-1)(n-2)

(nm| BHnmy=k[n(n—-1)+(n+3m+1)(5Sn+3m+2)]
(n+1,m|Bnmy==2k"2(2n+3m+2)\(n+3m+1)(n+1)
n+2,m| B nm)=k=N(n+3m+2)(n+3m+1)(n+2)(n+1)
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Here, L" denotes the Laguerre polynomial and k
=v2A,K/h. The angular part is written for both odd (O)
and even (E) cases. Note that we have applied symmetry
condition (8), selecting only the states with angular momen-
tum quantum numbers equal to multiples of 3. The states are
normalized as follows:

o 2
f Ron (IR (B)Bd X f O (NPT (Ndy
0 0
= 5m’m§n’n’ (A3)

with X standing for O or E.
Following Ref. [33] (where however a different normal-
ization of Laguerre polynomials is used), we can calculate
the relevant matrix elements. First, the oscillator Hamil-
tonian itself trivially yields
(n',m'[H?2|nm)y = hO2n + 3m + 1) 81,8501 ms

0scC

(A4)

where =12A /K. To calculate matrix elements of a gen-
eral Hamiltonian H?P, we need to know matrix elements of
the individual terms in V'=(A-A,.)B*+Bp* cos 3y+CpB".
The radial parts of these elements can be read off from Table
I and the angular contribution is given by

if m=0
if m=1,2,...

Sil=

(n',m+1|cos 3ylnmy=1 | (AS)
2
(for other combinations of basis states, the matrix elements
vanish).
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Let us turn now to the 5D case. Following the same pro-
cedure as above, we express the wave function

(B.Alvw) =W0(B.7) =R (BYD (1),

with radial and angular components,

/ 2v! 2
5D — AP 7Sl @2\3w/2 ,—kB 2y 3u+3/207, 22
RV,U,(B) = F(V+ 3+ é)k (kB°)""<e L, (kB7),

2

(A6)

2u+ 1

DP(y) = P, (cos 3y), (A7)

satisfying the normalization

% 2w
f R (BR(B)B'dpB X f O (Y)D30(y)|sin 3yldy
0 0
= 5#’/—"6’/1" (AS)
In analogy with Eq. (A4) we have
W W [ HR oy = Q20 +3u+32)8,,8,,.  (A9)

The radial matrix elements can be simply obtained from
Table T after substitution n— v,m— w on the left-hand side
and n—v,m— u+1/2 on the right-hand side. The angular
part reads as

m+1
VQu+D)2u+3)

W', o+ 1cos 3ylvu) = (A10)
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