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It has been claimed that fractal analysis can be applied to unambiguously characterize works of art such as
the drip paintings of Jackson Pollock. This academic issue has become of more general interest following the
recent discovery of a cache of disputed Pollock paintings. We definitively demonstrate here, by analyzing
paintings by Pollock and others, that fractal criteria provide no information about artistic authenticity. This
work has led us to a result in fractal analysis of more general scientific significance: we show that the statistics
of the “covering staircase” �closely related to the box-counting staircase� provide a way to characterize geom-
etry and distinguish fractals from Euclidean objects. Finally we present a discussion of the composite of two
fractals, a problem that was first investigated by Muzy. We show that the composite is not generally scale
invariant and that it exhibits complex multifractal scaling in the small distance asymptotic limit.
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I. INTRODUCTION

In 1999, a highly publicized work �1,2� applied fractal
analysis to the works of Jackson Pollock. The recent discov-
ery of a cache of approximately 25 paintings that may be the
work of Pollock has motivated the application of these tech-
niques �2–6� in order to determine authenticity of these
paintings. However we argued in �7� that in fact Pollock’s
drip paintings cannot be usefully characterized as fractal, and
that identical fractal characteristics can be trivially repro-
duced. In this work we analyze seven drip paintings �three by
Pollock, two of the newly discovered paintings, and two
commissioned works by local artists� and demonstrate con-
clusively that fractal criteria are not useful for authentication.
In particular, we demonstrate both that known Pollock drip
paintings and known non-Pollock paintings meet the claimed
criteria at equal levels of significance. Our box-counting
analysis led us to explore the asymptotics of overlapping
fractals, which were found to be complex multifractals, and
to discover an alternative way to use fractal analysis to char-
acterize geometry.

The standard technique used to determine whether an im-
age is fractal is to cover it with a grid of square boxes of size
L and count the number of occupied boxes, N. For a fractal,
N�LD, where D is the fractal dimension and is noninteger.
The box-counting curve �a plot of log N against log L� is
therefore a straight line with slope D. According to Taylor et
al. �6� the box-counting curves of Pollock paintings meet the
following criteria: �1� there are two fractal dimensions, DD
�DL, where DD is the fractal dimension for boxes smaller
than a transition length LT and DL for boxes larger than LT;
�2� LT�1.0 cm; �3� the fits to the box-counting data are low
noise with ��0.062; and �4� for multicolored paintings each
colored layer as well as the composite painting all satisfy
criteria �1�–�3�. Fractal authentication is based on the claim
that all Pollock drip paintings satisfy these criteria. In addi-
tion it is also claimed that these characteristics are exclusive
to Pollock, arising from his unique mastery of chaotic mo-
tion �2–6�.

In previous work �7� we identified several problems with
the fractal analysis of Taylor et al.: �i� an insufficient range

of box sizes was used to establish fractal behavior, �ii� it is
mathematically impossible for the visible portion of each
layer and the composite to separately behave as fractals in a
multilayered painting, and �iii� � depends on the magnifica-
tion factor used in box counting and is therefore not intrinsic
to the image.

In this paper we first focus on whether, regardless of these
issues, the box-counting curve can be used for authentication
�Sec. II�. In addition we investigate two problems in fractal
mathematics motivated by our analysis of drip paintings but
with results of broader significance. Whether fractal analysis
allows authentication of drip paintings has immediate and
significant financial implications in the art world, but the
mathematical results presented here have more enduring sci-
entific importance. In Sec. III we present an analysis of the
noise inherent in the determination of a fractal dimension by
looking at the statistics of a staircase function closely related
to the box-counting staircase. We find that the statistics pro-
vide an alternative way to distinguish fractals from Euclid-
ean objects. In Sec. IV we analyze overlapping fractals using
Cantor dusts as concrete examples, a problem that has been
studied earlier by Muzy �8�.

II. ANALYSIS OF DRIP PAINTINGS

We first focus on whether, regardless of the aforemen-
tioned shortcomings, fractal analysis can be used for authen-
tication. We begin our discussion of image analysis with the
problem of color separation. A digital image in RGB mode
describes each pixel by three numbers, its R �red�, G �green�,
and B �blue� values, which lie in the range of 0–255. Naively
one might expect individual colors to occupy distinct regions
of RGB space, and to separate a particular color from the
rest, one can simply define a median RGB value and collect
the pixels that lie within a certain radius. This is precisely the
color separation procedure used by Mureika et al. �9�. It is
easy to implement but does not work particularly well �10�,
as illustrated in Fig. 1.

As color separation is a delicate task, we developed two
independent techniques we call the Photoshop method and
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the adaptive RGB mesh method; both are described in detail
in Appendix A. Results from the two methods are in excel-
lent agreement and are tabulated in Appendix B.

We now embark on a discussion of specific paintings,
starting with three famous works by Pollock. A gallery of all
paintings discussed below can be found in Appendix C. Their
box-counting data are in Appendix B.

We chose to analyze Free Form �1946� because at one
time it was listed by Taylor et al. �6� as one of the canonical
Pollock paintings from which the fractal authentication cri-
teria were developed �11�. Surprisingly, we find that Free
Form does not conform perfectly to the fractal authentication
criteria; specifically we find that for the composite image
LT�1.0 cm. Although Free Form does not pass a rigorous
application of the fractal authentication criteria, Ref. �6� de-
scribes a more relaxed procedure called force fitting. Force
fitting imposes the constraint that LT�1.0 cm, thereby auto-
matically satisfying authentication criterion �2�. Thus authen-
tication is reduced to checking that the other criteria are ful-
filled. We find that force fitting Free Form does not
significantly change DD, DL, or � and these parameters do
remain consistent with fractal authentication criteria. Thus
adopting the more relaxed fractal authentication criterion,
based solely on fractal analysis, one would conclude that
Free Form is indeed authentic.

No such stratagem avails for Pollock’s Untitled �ca.
1950�, shown in Fig. 2, which fails the fractal authentication
test in a more spectacular way. Force fitting offers recourse
for a painting with LT�1.0 cm, and � can be decreased by
trimming the range of box sizes; thus, anomalous dimensions
DD�DL are the clearest sign that a painting fails the fractal
authentication test. It is in this respect that Pollock’s Untitled
�ca. 1950� fails. The Wooden Horse: Number 10A, 1948
�1948� is another Pollock painting that unambiguously fails
to satisfy the fractal authentication test. It has anomalous
dimensions in two of six color layers �see Appendix B.�
Thus, based solely on fractal analysis, one would conclude
neither of these paintings �both of which are undisputed Pol-
lock paintings� are authentic Pollocks.

Interestingly, two of the 25 extant paintings in the cache
discovered by Alex Matter resemble Free Form and Wooden
Horse. Taylor et al. analyzed six paintings from the Matter
cache and found that none conformed to fractal authentica-
tion criteria �1�. We find that the fractal characteristics of the
Matter paintings which resemble Free Form and Wooden
Horse bear a striking similarity to the fractal characteristics
of the two analogous Pollock paintings: the painting that
resembles Free Form meets all the fractal authentication cri-
teria provided we force fit the composite layer, and the paint-
ing that resembles Wooden Horse fails unambiguously by
having anomalous dimensions in two out of six layers.

In �7� we demonstrated that crude drawings such as Un-
titled 5 would be mistaken for authentic Pollocks by a com-

FIG. 1. �Color online� Color separation. Composition with Red
and Black �top left� and its background layer �top right� as obtained
with the color separation method of Mureika et al. �9�. The back-
ground layer for the same painting as obtained by the Photoshop
�middle left� and RGB Mesh �middle right� methods. The black
layer as obtained by Photoshop �bottom left� and RGB mesh �bot-
tom right� methods.

FIG. 2. �Color online� Untitled �ca. 1950� by Jackson Pollock,
enamel on paper, 28.3�150.3 cm2, Staatsgalerie, Stuttgart �12�.
Box-counting curves for Untitled with color separation by the Pho-
toshop method �red� and adaptive RGB mesh �blue� and cropped
image �green, lower curve�. The red and blue points lie on the upper
curve and cannot be distinguished on a plot this size. Because of the
awkward aspect ratio of this painting we were forced to scan it as
two subimages which we then merged. The cropped image here
corresponds to the larger of the two subimages. Pollock images are
reproduced by permission ©2009 The Pollock-Krasner Foundation/
Artists Right Society �ARS�, New York. Reproduction, including
downloading of Pollocks works is prohibited by copyright laws and
international conventions without the express written permission of
ARS, New York.
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puter using fractal analysis for authentication. Although Un-
titled 5 seriously undermined fractal authentication, it
remained to show that actual drip paintings that are unques-
tionably not by Pollock too can satisfy the fractal authenti-
cation criteria; it is this step of the argument we now present.
The artists we commissioned, Alexandra Ash and Michael
Hallen, studied Pollock’s technique and rendered nine drip
paintings. Of these we have so far analyzed two paintings
chosen for the relative ease with which they could be color
separated. Both paintings satisfy all fractal authentication
criteria comfortably, even without the force fitting required
for Free Form �see Appendix B for results�.

According to Taylor et al. �6� the fractal dimension on
short length scales DD increased during the course of Pol-
lock’s career so steadily that it may be possible to date a
painting by its DD value. The high DD values we obtain for
Free Form are more appropriate for a late period Pollock and
are therefore not consistent with the claimed trend. Paren-
thetically we note that if we took this trend seriously we
would identify the paintings of Ash and Hallen too as Pol-
lock works from the late period of 1948–1952. Taylor et al.
asserted that DD and the small-scale structure result from the
interaction of paint with the canvas to which it is applied.
Presumably the value of DD should then be affected by the
porosity of the surface to which paint is applied. It is there-
fore surprising that Taylor et al. did not appear to have con-
sidered the effect on DD that might result from the use of
different materials. Although the best known works of Pol-
lock are oil on canvas, he had a substantial body of work on
paper �e.g., Untitled �1950�� and other materials �see, for
example, �12��. In particular the canonical Pollock paintings
of Taylor et al., which they treated as a single homogeneous
group, included both paintings on canvas and paintings on
paper.

Finally we would like to comment on a feature of our
data, namely, that a small number of the fractal dimensions
we tabulate in Appendix B are found to be slightly greater
than 2. For an ideal planar fractal the exact fractal dimension
must be less than 2. But even for an ideal fractal, due to
inevitable measurement errors, it is entirely possible to ob-
tain a measured dimension slightly greater than 2 as ex-
plained below. Furthermore it must be remembered that the
paintings we are analyzing are not ideal fractals.

The sources of uncertainty in the determination of fractal
dimension D are �1� the box counts are discrete and deviate
from a smooth fit through the box-counting curve, �2� round-
off errors associated with digital blurring of the image, and
�3� offset errors associated with a mismatch between the size
of the boxes and the canvas �13�. Thus it is reasonable to
expect that �a� the measured D would deviate slightly from
the true ideal value; �b� as the range of box sizes measured is
increased, the deviation from the true value should decrease;
and �c� if the true fractal dimension is close to 2, we may
obtain a dimension slightly greater than 2. For a more com-
plete discussion of this topic we direct the reader to Ref.
�14�.

Note that a measured D�2 does not imply that boxes are
overcounted. We have verified in cases where D�2 that the
number of filled boxes returned by our box counter never
exceeds the total number of boxes. Indeed by itself, the con-

straint that the filled boxes must be fewer in number than the
total number of boxes does not require that the local slope of
the box-counting curve has to be less than 2.

III. COUNTING STATISTICS

A. Overview

The box-counting curve is a staircase function because the
number of filled boxes is an integer that increases monotoni-
cally as the box size is reduced. Staircase functions abound
in mathematics and physics, e.g., ��x�, the number of primes
less than x �15�; N�E�, quantum energy levels less than E
�16�; and n�s�, zeta function zeros whose imaginary part lies
between zero and s �16�. In all these cases there has been a
concerted effort to determine a smooth fit through the stair-
case as well as to characterize the deviations of the staircase
from this smooth fit. For example, Gauss found a smooth
asymptotic fit to ��x�. The smooth form of N�E� is basic to
statistical mechanics. The deviations from regularity of N�E�
show remarkable universal behavior encapsulated by
random-matrix theory. The deviation statistics of n�s� are the
subject of a conjecture, ancillary to the Riemann hypothesis,
due to Dyson and Montgomery. By contrast, hitherto in frac-
tal analysis the focus has been on finding a smooth power
law fit to the staircase and extracting the exponent �the frac-
tal dimension�; we now study the deviations from regularity.

For simplicity, instead of the box-counting dimension we
analyze a closely related variant �17�, the covering dimen-
sion. Here the staircase N��� is the number of intervals of
size � needed to cover the fractal. We first study a unit line
segment for which N����1 /�, corresponding to a covering
dimension of 1. Consider the sequence of interval sizes �n
��0 /Cn, where n=1, . . . ,M. Here �0 is the largest interval
size and C is the reduction factor. We define �n�N��n�
−1 /�n as the deviation of the exact counting staircase from
the smooth fit. It is easy to show that as M→�, �2 �the mean
value of �n

2� vanishes �Sec. III B below�. Thus the counting
curves of line segments are essentially noiseless. Similar
analysis for the middle third Cantor dust shows that the de-
viates are uniformly distributed over a finite interval and
have a nonzero mean-square value �Sec. III C below�. Thus
the fractal counting curve of the 1/3 dust is intrinsically
noisy. Intuitively we can understand that Euclidean objects
would be noiseless because the deviations from regular be-
havior originate at boundary points. A Euclidean segment has
only two boundary points; fractals have an infinite number.
We conjecture that counting curves are generically noiseless
for Euclidean objects whereas they have well-defined deviate
statistics and mean-squared deviation for fractals. Like
simple random number sequences �18�, the successive devi-
ates for the 1/3 dust are given by a formula that involves
modular arithmetic. The 1/3 dust deviates are highly corre-
lated but it is tantalizing to speculate that there might be
other fractals whose counting curves could serve as pseudo-
random number sources.

Finally, we briefly consider the implications of these find-
ings for paintings. For fractals �2 is pseudorandom and for
generic images it may be C dependent; hence, the use of �2

as a characteristic of paintings advocated in Ref. �6� is inap-
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propriate. Taylor et al. �6� suggested that Pollock’s works are
high-quality fractals because they have small �2 values. Our
analysis shows that it is in fact Euclidean objects that have
low �2.

B. Line segment

N�	� is the smallest number of segments required to cover
a unit line segment �17�. Evidently

N�	� = R�1

	
� , �1�

where R�x� is the smallest integer that is greater than or
equal to x. In other words R rounds up its argument.
Nsmooth�	�=1 /	 is a smooth fit through this counting stair-
case. From the definition

��	� = ln N�	� − ln Nsmooth�	� �2�

and Eq. �1� it is easy to see that for small 	

��	� = 	
�	� . �3�

Here 
�	�=R�1 /	�−1 /	 lies between 0 and 1 since it repre-
sents the amount of round up.

We now sample the counting curve at a sequence of in-
terval sizes 	n=	0 /Cn, where C�1 is a reduction factor, 	0 is
the largest interval size considered, and n=0,1 ,2 , . . . ,M −1.
The quantities of interest are �n=��	n�, the deviations of the
counting curve from the smooth fit at the sampled interval
sizes. As usual the mean-square deviation is given by

�2 =
1

M
	
n=0

M−1

�n
2. �4�

It is easy to derive the bound

�2 �
	0

2

M

1

1 − 1/C2 �5�

revealing that �2→0 as M→�. Thus Euclidean staircases
are essentially noiseless.

C. Cantor dust

The analysis of the middle third Cantor dust proceeds
exactly in parallel to the Euclidean line segment. The exact
staircase function is given by

N�	� = 2n�	�,

n�	� = R
 ln�1/	�
ln 3

� . �6�

Nsmooth=1 /	D1/3 is a smooth fit through this staircase where
D1/3=ln 2 / ln 3 is the fractal dimension of the middle third
dust. From the definition of ��	� �Eq. �2�� and the exact
staircase �Eq. �6�� it follows that

��	� = ln 2�R
 ln�1/	�
ln 3

� −
ln�1/	�

ln 3
� . �7�

By sampling the counting curve in the usual way we obtain
the sequence of deviates

�n = ln 2�R
n ln C

ln 3
−

ln 	0

ln 3
� − 
n ln C

ln 3
−

ln 	0

ln 3
�� . �8�

This leads us to contemplate expressions of the form

�n = R�an + b� − �an + b� . �9�

Let us make the rational choice a= p /q where, without fur-
ther loss of generality, we may take p and q to be coprime
and p�q. From Eq. �9� it is easy to see that �n is a uniformly
spaced sequence of q points on the unit interval. Thus the
�n’s are seen to be uniformly distributed and highly corre-
lated.

With suitable rescaling Eq. �9� may be written in the form
In+1= �
n+���mod m�, where In=q�n and 
, �, and m are
suitable constants. This form is very close to a common ran-
dom number generator In+1= �
In+���mod m� �18�. An inter-
esting question raised by this similarity, one that we leave
open, is whether there is a deterministic fractal whose count-
ing staircase generates an acceptable pseudorandom se-
quence.

IV. ASYMPTOTIC SCALING BEHAVIOR OF FRACTAL
COMPOSITES

A. Overview

In this section we consider the asymptotic scaling behav-
ior of the composites of ideal fractals using Cantor dusts as
concrete examples. Multicolored paintings provide a natural
motivation to consider this problem but in fact we have
learned that this problem has been formulated and studied
independently and much earlier by Muzy �8�. Here we
present an alternative analysis of this problem; our discus-
sion is entirely self-contained.

For definiteness consider the asymptotic scaling behavior
of the union of a middle 1/3 Cantor dust �dimension D1/3
=0.6309. . .� and the 3/9 dust �dimension D3/9=0.5� �see Ref.
�7� and below�. The 1/3 dust is iterated 2�2 times; the 3/9
dust, �1 times. The geometry of the union is controlled by
�=

�2

�1
. These dusts are ideal fractals since the range over

which fractal behavior is seen can be made arbitrarily large.
In previous work �7� we showed that the union is not fractal
because its box-counting curve is not a simple power law
except in the asymptotic limit of very small box sizes. In that
limit, the number of boxes filled with 1/3 dust overwhelms
the number filled with 3/9 dust because D1/3�D3/9. Thus the
union behaves as a fractal with dimension D1/3.

The full asymptotic complexity of the union is brought
out by consideration of the spectrum of multifractal dimen-
sions Dq. On small scales the 1/3 dust determines the fractal
dimension D0, but the 3/9 dust can control Dq for sufficiently
large q. Figure 3 shows that, except in the trivial instances
that one dust overwhelms the other, the union is not scale
invariant over the same range as the constituent fractals.
Moreover for fixed �, varying q can produce a discontinuous
jump in the dimension Dq. By contrast, for an ideal fractal
Dq is independent of q. For generic multifractals Dq varies
smoothly with q. Discontinuities in Dq are of great interest
due to the thermodynamic analogy between multifractal di-

JONES-SMITH, MATHUR, AND KRAUSS PHYSICAL REVIEW E 79, 046111 �2009�

046111-4



mensions and phase transitions �19,20�. Thus the union is
revealed to be a complex multifractal on the shortest length
scales; details of the derivation are now presented in Secs.
IV B and IV C below.

Let us briefly consider the relevance of this analysis to
paintings. Taylor et al. �6� asserted that the composite of two
colored layers is a fractal with a dimension that is different
from either of its constituent layers. This assertion is math-
ematically impossible. It is presumably an artifact of fitting
power-law behavior to data over a limited range.

B. Construction of Cantor dusts

The 1/3 dust �19� is constructed by starting with a unit
line segment and removing the middle third. At the second
iteration the middle third of the two surviving segments is
removed; at the third iteration, the middle third of the four
surviving segments. After � iterations the set consists of 2�

segments each of length 1 /3�. This set behaves as a fractal
on length scales between 1 and 1 /3�. By increasing � we
can make this range arbitrarily large, thus approaching a
mathematical fractal.

There is a useful way to label segments using base 3
numbers. At the first iteration we label the left, middle, and
right thirds of the initial unit segment as 0, 1, and 2, respec-
tively. We then label the left, middle, and right thirds of the
left third 00, 01, and 02, respectively. Proceeding in this way
we see that after the second iteration the four segments that
survive have the labels 00, 02, 20, and 22. After � iterations
there are 3� segments. The address of each segment is a base

3 number of � digits. The segments that survive are the ones
that have only 0’s and 2’s in their base three addresses.

The 3/9 dust is constructed by starting with a unit line
segment, dividing it into nine equal segments, and retaining
only the first, fifth, and ninth segments �7�. At the second
iteration the surviving segments are divided up into ninths
and in each case only the first, fifth, and ninth subsegments
are retained. After � iterations the set consists of 3� seg-
ments each of length 1 /9�. Segments in the 3/9 dust can be
labeled by using base 9 numbers. For example, after the first
iteration the segments that are retained are labeled 0, 4, and
8. After � iterations the segments will have labels that con-
sist of base 9 numbers of � digits. The segments that belong
to the 3/9 dust will have only 0’s, 4’s, and 8’s in their ad-
dress.

Another point of view on the 1/3 dust is that it is obtained
by taking the unit segment, dividing it up into ninths, and
retaining the first, third, seventh, and ninth segments. From
this point of view, after 2� iterations the dust consists of 4�

segments each of length 1 /9�. From this perspective seg-
ments can be labeled by base 9 numbers. For example, after
the first iteration the four surviving segments are 0, 2, 6, and
8. After 2� iterations the segments will have labels that con-
sist of base 9 numbers of � digits. The ones that belong to
the 1/3 dust will have only 0’s, 2’s, 6’s, and 8’s in their
address. This viewpoint on the 1/3 dust is useful when study-
ing its union and intersection with the 3/9 dust.

C. Asymptotic analysis of overlapping fractals

1. Two Cantor dusts

First we summarize our results, then we outline their deri-
vation. Consider the union of a 1/3 Cantor dust iterated 2�2
times and a 3/9 dust iterated �1 times with ���2 /�1�1.
This construction results in 4�2 segments each of length
1 /9�2 and 3�1 −2�1 segments each of length 1 /9�1. The total
length of the resulting object is therefore

ltot = 4�2
1

9�2
+ �3�1 − 2�1�

1

9�1
. �10�

We suppose that the resulting object has unit mass and that
the density �mass per unit length� is uniform and hence equal
to 1 / ltot.

We now cover this object with boxes of size 	=1 /9�,
where 1����1. It turns out that there are three classes of
filled boxes. The number of boxes of each class and the mass
contained within each box are given by

nA = 2�,

mA = �4�2−�/9�2 + �3�1−� − 2�1−��/9�1�/ltot,

nB = 4� − 2�,

mB = �4�2−�/9�2�/ltot,

nC = 3� − 2�,

mC = �3�1−�/9�1�/ltot. �11�

Instead of the number of filled boxes of size 	, in multi-
fractal analysis �19� we consider the generalized box count
N�q ,	� defined as

FIG. 3. �Color online� Phase diagram for overlapping Cantor
dusts. A 1/3 Cantor dust is iterated 2�2 times and a 3/9 Cantor dust
is iterated �1 times. The geometry of their union is characterized by

a single parameter �=
�2

�1
. The behavior of the multifractal spectrum

of dimensions Dq of the union is encapsulated by the phase diagram
depicted here. In the green phase �lower left region� the 1/3 dust
completely dominates and Dq=D1/3=0.6309. Similarly in the blue
phase �upper right region� the 3/9 dust dominates and Dq=D3/9
=0.5. But in the pink region �upper left� the 3/9 dust dominates on
long length scales and the 1/3 on short scales; the effective dimen-
sion Dq crosses over from D3/9 to D1/3. In the orange region �middle
sliver on the right� the crossover is from 3/9 to 1/3. If we focus on
the shortest scales for a fixed ���c=1.354. . ., Dq jumps from D1/3
to D3/9 as q is increased. Similarly for fixed ���c, the jump is from
D3/9 to D1/3. Thus on the shortest scales the union of two fractals is
revealed to be a complex multifractal. The vertical line q=0 corre-
sponds to the ordinary fractal dimension. Along this line we find
relatively trivial behavior: the 1/3 dust always dominates and the
union behaves asymptotically as a fractal with dimension D1/3.
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ln N�q,	� =
1

1 − q
ln 	

i

mi
q. �12�

Here q is a continuous real parameter, mi is the mass in the
ith occupied box, and the sum is over all filled boxes. For
multifractals it is expected that N�q ,	� will vary as a power
of box size 	. Thus we may extract the multifractal spectrum
of dimensions by computing

Dq = lim
	→0

ln N�q,	�
ln�1/	�

. �13�

Evidently N�q ,	� is equal to the number of filled boxes for
q=0 and D0 is just the ordinary fractal dimension. Making
use of Eq. �11�, it follows that for the overlapping Cantor
dusts

N�q,	� =
1

1 − q
ln�nAmA

q + nBmB
q + nCmC

q � . �14�

Equation �14� is the central result of this section. It allows us
to plot the generalized box-counting curve of the union of
the Cantor dusts as well as to determine the asymptotic be-
havior.

The phase diagram for the overlapping Cantor dusts can
be constructed by straightforward asymptotic analysis of Eq.
�14�. It is easy to argue that class B and class C boxes gen-
erally dominate the contribution of class A to the generalized
box count. When class B dominates class C the generalized
box count approaches that of a pure 1/3 dust; when class C
dominates class B, it approaches that of a pure 3/9 dust. First
consider the case 0�q�1. In this case for 1����c the 1/3
dust dominates; for ���+ the 3/9 dust dominates. For �c
����+ there is a crossover: the 3/9 dust dominates for �
��c and the 1/3 dust dominates for ���c. Here �1
=ln 3 / ln�9 /4�=1.354. . ., �+ is the curve defined by �+=1
+ ��c−1� /q, and �c is given by

�c = �1
q

1 − q

�� ln�9/4� − ln 3�
ln�4/3�

. �15�

Note that �c /�1 varies from 0 to 1 as � varies from �c to �+.
Similarly for q�1 we find that for ���c the 3/9 dust

dominates. For �+���1 the 1/3 dust dominates. For �+

����c there is a crossover: the 1/3 dust dominates for �
��c and the 3/9 for ���c, where �c is given by Eq. �15�.

Now we outline the derivation of these results. For sim-
plicity we only consider the union of two Cantor dusts with
�2=�1=�; the generalization is straightforward. We adopt
the notation that n=0 or 8, m=2 or 6, �=0, 4, or 8, and N
=0, 2, 6, or 8. After the first iteration of the 3/9 dust and the
second iteration of the 1/3 dust the base 9 addresses of the
surviving segments are 0, 2, 4, 6, and 8. In terms of the
notation above the addresses are n1, m1, or 4. At the next
iteration the possible addresses are n1n2; n1m2, m1N2; and n1
4 or 4 �2. By working out a few iterations with this notation
it is easy to deduce that once an m appears in an address the
subsequent integers in the address must be Ns. Once a 4
appears, the subsequent integers are �’s. On the other hand,
an n can be followed by n, m, or 4. Thus after � iterations
the segments fall into three classes with binary addresses that

�A� are composed entirely of n’s, �B� include at least one m,
and �C� include at least one 4. By induction we can show that
nA=2�, nB=4�−2�, and nC=3�−2�. Since all segments are
of length 1 /9� we can easily write down an expression for
the total length of the object ltot which is in agreement with
Eq. �10�.

Now suppose we cover the object with boxes of size 1 /9�

where ���. The boxes themselves fall into the three classes
A, B, and C depending on their base 9 addresses. A class A
box has only n’s in its base 9 address. A segment that lies in
a class A box has the same sequence of n’s for the first �
digits of its base 9 address. The remaining �−� digits may
be n’s, m’s, or 4’s. Thus the segments contained in a class A
box effectively constitute the union of a 1/3 and 3/9 dust that
is iterated �−� times. Therefore it contains 4�−�+3�−�

−2�−� segments. Moreover, since the address of a class A
box is a string of n’s of length �, evidently there are 2� class
A boxes. In the same way we can show that there are 4�

−2� boxes of class B and 3�−2� boxes of class C. The
segments in a class B box have a base 9 address that coin-
cides with that of the box for the first � places. According to
the rules above this is followed by a string of Ns of length
�−�. Thus a class B box contains 4�−� segments. Similarly
a segment in a class C box has a base 9 binary address that
coincides with that of the box for the first � places. There-
after it is a string of �’s of length �−�. Thus a class C box
contains 3�−� segments. With this we have derived all the
information in Eq. �11� for the special case �1=�2=�. The
derivation is readily generalized to the case �1��2.

Note also that for this special case we have also shown
that the number of filled boxes of size 1 /9� is 4�+3�−2�.
This is the result plotted in Fig. 1 of Ref. �7� to illustrate that
the box-counting curve for the union of two fractals is not a
simple power law.

2. Euclidean island in sea of Cantor dust

We now briefly outline a second soluble example of the
union of two objects with distinct fractal dimensions. The set
we consider consists of a 1/3 dust that is initially iterated �1
times. The segment to the extreme right �the Euclidean is-
land� is now left fixed. The other surviving segments are
further subdivided a further �2 times to form a fine 1/3 dust.
The Euclidean island has a length 1 /3�1. The dust consists of
2�1+�2 −2�2 segments each of length 1 / �3�1+�2�. The total
length of the object is therefore

ltot =
1

3�1
+ �2�1+�2 − 2�2�

1

3�1+�2
. �16�

Let us now cover the object with boxes of size 	
=1 / �3�1+��, where 0����2. The occupied boxes fall into
class �A� that covers dust and class �B� that covers the Eu-
clidean island. It is easy to see that

nA = 2�1+� − 2�, mA =
1

ltot
2�2−� 1

3�1+�2
,
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nB = 3�, mB =
1

ltot

1

3�1+� . �17�

Thus the generalized box count defined in Eq. �12� is given
by

ln N�q,	� =
1

1 − q
ln�nAmA

q + nBmB
q� . �18�

Equation �18� is the main result of this section. It allows us
to plot the generalized box-counting curve for this composite
object as well as to analyze its asymptotic behavior.

The phase diagram implied by Eqs. �17� and �18� can be
obtained by straightforward asymptotic analysis. The geom-
etry of the union of the island and dust is controlled by a
single parameter ���1 /�2. First consider 0�q�1. It is
convenient to define �0=ln�3 /2� / ln 2=0.584 96. . .. Now for
��q�0 the island dominates and the dimensions Dq=1. For
���0 the dust dominates and the dimensions Dq=D1/3, the
fractal dimension of the 1/3 dust. For q�0����0 the dust
dominates for ���0, the island for ���0; the slope of the
generalized box-counting curve crosses over from D1/3 to 1.
Here the crossover scale �0 is given by

�0 = �2
1

1 − q

� − q�0

�0
. �19�

Now consider q�1. In this case for ���0 the island domi-
nates and the dimensions Dq=1. For ��q�0 the dust domi-
nates and Dq=D1/3. For �0���q�0 the island dominates
for ���0 and the dust for ���0; the slope of the general-
ized box-counting curve crosses over from 1 to D1/3. This
information is encapsulated in the phase diagram shown in
Fig. 4.

V. CONCLUSION

In summary, while in �7� we briefly described various
shortcomings of fractal analysis as an authentication tool and
identified a number of mathematical inconsistencies lurking
in the mere application of fractal analysis to multicolored
drip paintings, we have shown here that �i� amateur artists
seeking to emulate Pollock’s technique can successfully cre-
ate paintings which possess the fractal signature said to be
unique to Pollock and �ii� even authentic Pollock paintings
fail to possess his fractal signature. Contrary to Taylor et al.,
we also find at least one Matter painting possesses Pollock’s
fractal signature. Finally, our analysis presented a study of
the statistics of counting staircases, a topic in fractal math-
ematics that invites much further exploration.
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APPENDIX A: COLOR SEPARATION

In a digital image the color of each pixel is described by
three numbers each of which lies in the range of 0–255 �its

R, G, and B values�. Thus color or RGB space may be
viewed as a cube. Each pixel corresponds to a point inside
this cube. Naively one might expect that pixels of the same
color would clump together in color space and pixels of dif-
ferent colors would be well separated. But in fact human
color perception is highly nonlinear: in some regions of color
space a small variation in the RGB values can lead to a
dramatic change in perceived color; in other regions, large
variations in the RGB values correspond to essentially no
change in the perceived color. Thus different colors form
large almost interpenetrating regions in color space �see Fig.
5� and color separation is therefore a formidable task.

Consider separating a painting such as Composition with

FIG. 4. �Color online� Phase diagram for Euclidean segment and
Cantor dust. The geometry of the union of the two sets is controlled
by a single parameter �=�1 /�2, where �1 is the scale of the island
and �1+�2 of the dust as explained in the text. The diagram shows
the behavior of the multifractal spectrum of dimensions Dq as a
function of � and q. In the green phase �lower right region� the
island dominates completely and Dq=1. Similarly in the blue phase
�upper left region� the 1/3 dust dominates and Dq=D1/3. But in the
pink region �upper right region� the island dominates on long scales
while the dust dominates on short scales; the effective dimension
Dq crosses over from 1 to D1/3. In the orange region �lower left� the
dust dominates on long length scales and the island on short scales;
the effective dimension Dq crosses over from D1/3 to 1. If we fix �,
Dq jumps discontinuously as a function of q over an appropriate
range of length scales. Thus the union of the two sets is a complex
multifractal on these scales.

FIG. 5. �Color online� The partition of the RGB cube into red
and black regions for Composition with Red and Black �left�. The
blank portion of the RGB cube is occupied by pixels from the
essentially white background. The partition of the RGB cube into
regions occupied by black and background pixels for the Matter
painting that resembles Free Form is shown to the right. The region
of the RGB cube occupied by background pixels is shown in green;
by the white layer, left blank. The RGB cube has been sliced to
reveal a cutaway. Note how the different colored layers occupy
complex interpenetrating regions of RGB color space.
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Red and Black into its red and black layers. As discussed
above the red pixels and black pixels form irregular interpen-
etrating swarms in RGB color space. The simplest approach
to color separation is to place two nonintersecting spheres
inside color space and to count the pixels inside one as red
and the ones inside the other as black. The location of the
spheres and their size are fitting parameters that can be ad-
justed to ensure that each sphere encloses as many of the
right kind of pixels as possible and as few of the wrong sort.
Typically, however either different colors get mixed or parts
of a layer get left behind as background residue, as illustrated
in Fig. 1 of the paper. Thus this method, which was used in
Ref. �9�, has few virtues besides ease of implementation.
�Parenthetically we note that Fig. 1 in the paper was gener-
ated by taking the center of the black sphere at �R,G,B�
= �41,40,41� and the red sphere at �161,15,34�. The radius of
both spheres was taken to be 40. The centers were chosen by
using the median �R,G,B� values, as computed using Photo-
shop, and the radius was optimized by trial and error�.

In the Photoshop method the user selects a pixel using a
tool called magic wand. All pixels within a narrow user-
controlled RGB range �the “tolerance”� of the selected pixel
are then highlighted by magic wand. If they are all from the
desired layer they are transferred to a blank background. The
user continues to select pixels in this way until the entire
layer has been transferred. By judicious selection of pixels
and use of a narrow tolerance accidental selection of pixels
from a different layer can be minimized. Schematically the
contrast between the simple method of the previous para-
graph and the Photoshop method is that the former attempts
to enclose the swarm of red pixels within a single well-
chosen sphere; the Photoshop method covers it with a series
of small spheres and can therefore accommodate the large
extent and the irregular shape.

In the adaptive RGB mesh approach the color cube is
divided up into eight smaller cubes which are designated
with a binary address. 011 for example refers to the subcube
where 0�R�127, 128�G�255, and 128�B�255; 101,
where 128�R�255, 0�G�127, and 128�B�255; and
so forth. The user then examines an image in which only
pixels from a single subcube are displayed with their true
colors; the other pixels are displayed as white or another user
selected uniform background color. If this image is seen to
contain pixels from a single layer the user records that the
entire subcube contains only pixels of one color. For ex-
ample, for Composition with Red and Black it was found that
001, 010, and 011 contained only black pixels; 100, 101, and
110 contained only red; and 111 contained only background.
But if a subcube contains more than one color, as does 000,
it is further subdivided into eight cubes and the process is
reiterated as many times as needed. Composition in Red and
Black, for example, required three levels of subdivision. The
binary address notation for higher level subdivisions works
in the same way. For example the level 2 subcube with bi-
nary address 01-10-11 refers to the region where 64�R
�127, 128�G�191, and 192�B�255.

The two methods have complementary strengths. The
Photoshop method, if skillfully deployed, is faster. Also it
allows the user to make better use of spatial information
when deciding which pixels to include in a given layer. The

adaptive RGB mesh on the other allows for systematic re-
finement and provides a detailed characterization of the way
in which color space is partitioned into the layers of the drip
painting. The code we developed to implement RGB mesh
included a number of features including the ability to count
the pixels in each subcube to determine their relative impor-
tance and the ability to regroup and consolidate pixels spa-
tially for easier viewing. In principle the program could be
refined to make fuller use of spatial information but in prac-
tice we found that results adequate for our needs could be
obtained without this feature.

APPENDIX B: DATA

Notes: results obtained using the Photoshop color separa-
tion method are marked PS; using adaptive RGB mesh,
marked RGB. The known Pollock works are identified by
name and their serial number in �21�, hereafter abbreviated
JPCR. For some paintings the digital image was cropped
slightly before analysis. In these cases we give the dimen-
sions of the cropped image used in each analysis. For layers
that were force fitted the results are marked ff �see below for
a precise description of force fitting�. The quantity that is
directly inferred from the data is ln LT but we present LT
values since it is easier to visualize. However it should be
kept in mind that by exponentiating the measured quantity
we are amplifying the errors. Thus our two methods agree
much better on the location of the box-counting transition
than this tabulation of LT values may suggest. For each paint-
ing the results are briefly summarized at the end.

Force fitting. Reference �6� describes a more relaxed pro-
cedure called force-fitting that can be applied to paintings
that fail to pass the strict authentication test. The procedure is
to find the best fit to the data subject to the constraint
LT�1.0 cm. Thus authentication criterion �2� is automati-
cally satisfied and authentication is reduced to checking that
the other criteria are fulfilled.

1. Untitled 1: �poured media on board�. Matter painting
that resembles Pollock’s Free Form.

Physical dimensions: 35.6�44.5 cm
Digital image: 2020�2520 �PS black� 1994�2487

�PS white� 1986�2502 �RGB�
Range of box sizes: 0.2–3.1 cm �PS� 0.2–3.1 cm �RGB�
Black layer:
Area of layer: 43.0% �PS� 38.46% �RGB�
Noise: 0.023 �PS� 0.017 �RGB� 0.020 �RGB ff�
LT: 1.0 cm �PS� 0.8 cm �RGB� 1.0 cm �RGB ff�
Lower dimension: 1.41 �PS� 1.71 �RGB� 1.73 �RGB ff�
Upper dimension: 1.98 �PS� 1.98 �RGB� 2.00 �RGB ff�
White layer:
Area of layer: 13.9% �PS� 10.86% �RGB�
Noise: 0.024 �PS� 0.023 �RGB� 0.025 �PS ff� 0.024

�RGB ff�
LT: 0.85 cm �PS� 0.95 cm �RGB� 1.0 cm �PS ff� 1.0 cm

�RGB ff�
Lower dimension: 1.47 �PS� 1.35 �RGB� 1.49 �PS ff� 1.36

�RGB ff�
Upper dimension: 1.97 �PS� 1.93 �RGB� 2.00 �PS ff� 1.95

�RGB ff�
Composite layer:

JONES-SMITH, MATHUR, AND KRAUSS PHYSICAL REVIEW E 79, 046111 �2009�

046111-8



Noise: 0.018 �PS� 0.017 �RGB� 0.021 �PS ff� 0.021
�RGB ff�

LT: 0.58 cm �PS� 0.59 cm �RGB� 1.0 cm �PS ff� 1.0 cm
�RGB ff�

Lower dimension: 1.86 �PS� 1.82 �RGB� 1.90 �PS ff� 1.86
�RGB ff�

Upper dimension: 2.02 �PS� 2.02 �RGB� 2.07 �PS ff� 2.04
�RGB ff�

RGB color partition:
White=111, 010
Black=001, 011, 101,
00-00-01, 00-01-00, 00-01-01,
000-000-000, 000-000-001, 000-001-000, 000-001-001
Brown=100, 110,
01-00-00, 01-00-01, 01-01-00, 01-01-01,
001-000-000, 001-000-001, 001-001-000, 001-001-001
Summary: Satisfies fractal authentication criteria if the

more lax force-fitting procedure is allowed.
2. Untitled 14: �poured media on board�. Matter painting

that resembles Pollock’s Wooden Horse.
Physical dimensions: 31.7�46.4 cm2.
Digital image: 1764�2568 pixels
Range of box sizes: 0.2–3.1 cm �PS�
Red layer:
Area of layer: 10.0% �PS�
Noise: 0.014 �PS�
LT: 1.4 cm �PS�
Lower dimension: 1.36 �PS�
Upper dimension: 1.69 �PS�
Orange layer:
Area of layer: 1.7% �PS�
Noise: 0.024 �PS�
LT: 0.5 cm �PS�
Lower dimension: 1.28 �PS�
Upper dimension: 0.91 �PS�
Yellow layer:
Area of layer: 5.1% �PS�
Noise: 0.018 �PS�
LT: 1.2 cm �PS�
Lower dimension: 1.08 �PS�
Upper dimension: 1.69 �PS�
Blue layer:
Area of layer: 4.2% �PS�
Noise: 0.023 �PS�
LT: 1.0 cm �PS�
Lower dimension: 1.05 �PS�
Upper dimension: 1.67 �PS�
Black layer:
Area of layer: 11.6% �PS�
Noise: 0.014 �PS�
LT: 1.2 cm �PS�
Lower dimension: 1.36 �PS�
Upper dimension: 1.71 �PS�
White layer:
Area of layer: 11.0% �PS�
Noise: 0.010 �PS�
LT: 2.0 cm �PS�
Lower dimension: 2.02 �PS�
Upper dimension: 1.81 �PS�
Summary: Does not satisfy fractal authentication criteria.

Exhibits anomalous dimensions in orange and white layers.
3. Free Form Pollock �1946� �JPCR 165� �oil on canvas�.
Physical dimensions: 48.9�35.5 cm2

Digital image: 4550�3253 �PS black�, 4576�3288 �PS
white�; 2277�1629 pixels �RGB�

Range of box sizes: 0.1–4.5 cm �PS� 0.2–4.2 cm �RGB�
N.B.: the image was coarsened before RGB analysis to

speed up computations. In principle this should have no ef-
fect on the fractal analysis since the smallest box sizes ex-
ceed the coarsening scale. This expectation is borne out by
the concordance between the PS and RGB results.

Black layer:
Area of layer: 56.0% �PS� 54.39% �RGB�
Noise: 0.015 �PS� 0.013 �RGB�
LT: 1.0 cm �PS� 1.0 cm �RGB�
Lower dimension: 1.79 �PS� 1.85 �RGB�
Upper dimension: 2.05 �PS� 2.02 �RGB�
White layer:
Area of Layer: 20.7% �PS� 23.48% �RGB�
Noise: 0.019 �PS� 0.019 �RGB� 0.021 �PS ff�
LT: 0.9 cm �PS� 1.0 cm �RGB� 1.0 cm �PS ff�
Lower dimension: 1.57 �PS� 1.60 �RGB� 1.58 �PS ff�
Upper dimension: 2.04 �PS� 2.00 �RGB� 2.06 �PS ff�
Composite layer:
Noise: 0.013 �PS� 0.012 �RGB� 0.012 �RGB ff� 0.015

�PS ff�
LT: 0.8 cm �PS� 0.65 cm �RGB� 1.2 cm �RGB ff� 1.1 cm

�PS ff�
Lower dimension: 1.93 �PS� 1.94 �RGB� 1.96 �RGB ff�

1.93 �PS ff�
Upper dimension: 2.06 �PS� 2.01 �RGB� 2.02 �RGB ff�

2.075 �PS ff�
RGB color partition:
Black=000, 001, 011, 101
Red=100
White=010, 110, 111
Summary: Satisfies fractal authentication criteria if the

more lax force-fitting procedure is allowed.
4. The Wooden Horse: Number 10A, 1948 Pollock

�1948� �JPCR 207� �oil and enamel paint on canvas�.
Physical dimensions: 90.1�190.5 cm2

Digital image: 2340�1176 �PS and RGB�
Range of box sizes: 0.8–14.2 cm �PS� 0.8–14.0 cm �RGB�

0.8–9.5 cm �RGB, orange layer�
Red layer:
Area of layer: 3.6% �PS� 2.5% �RGB�
Noise: 0.023 �PS� 0.026 �RGB�
LT: 4.32 cm �PS� 4.32 cm �RGB�
Lower dimension: 1.16 �PS� 1.12 �RGB�
Upper dimension: 1.56 �PS� 1.63 �RGB�
Orange layer:
Area of layer: 1.7% �PS� 1.9% �RGB�
Noise: 0.0301 �PS� 0.027 �RGB�
LT: 3.23 cm �PS� 2.67 cm �RGB�
Lower dimension: 1.39 �PS� 1.50 �RGB�
Upper dimension: 1.18 �PS� 1.25 �RGB�
Yellow layer:
Area of layer: 1.2% �PS� 1.3% �RGB�
Noise: 0.026 �PS� 0.018 �RGB�
LT: 7.63 cm �PS� 1.67 cm �RGB�
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Lower dimension: 1.11 �PS� 1.26 �RGB�
Upper dimension: 1.05 �PS� 1.08 �RGB�
Black and blue layers:
Area of layer: 10.3% �PS� 2.3% �blue, RGB� 7.4% �black,

RGB�
Noise: 0.028 �PS� 0.024 �black RGB� 0.025 �blue RGB�
LT: 3.91 cm �PS� 4.32 cm �black RGB� 4.32 cm �blue

RGB�
Lower dimension: 1.44 �PS� 1.35 �black RGB� 1.14 �blue

RGB�
Upper dimension: 1.92 �PS� 1.79 �black RGB� 1.73 �blue

RGB�
White layer:
Area of layer: 5.5% �PS� 9.1%
Noise: 0.031 �PS� 0.026 �PS, trimmed range� 0.026

�RGB�
LT: 3.91 cm �PS� 3.91 cm �RGB�
Lower dimension: 1.30 �PS� 1.39 �RGB�
Upper dimension: 1.82 �PS� 1.86 �RGB�
RGB color partition:
Blue=001, 011,
00-00-01, 00-01-01, 01-00-01,
010-010-011, 010-011-010, 010-011-011, 011-010-011,

011-011-011
0100-0100-0101, 0100-0101-0101, 0101-0100-0101
Black=010,
00-00-00, 00-01-00, 01-00-00,
010-010-001
0100-0100-0100, 0100-0101-0100, 0101-0100-0100,

0101-0101-0100,
0101-0101-0101
Red=101,
10-00-00, 10-00-01, 10-01-00, 11-00-00, 11-01-00,

11-01-01
111-100-011
White=111
Brown=10-01-01, 10-10-01
011-010-001, 011-011-001
011-010-010, 011-011-010
110-100-010, 110-100-011,
Yellow and orange=10-10-00, 11-10-00, 11-11-00,

11-11-01
110-101-010, 110-101-011, 111-100-010, 111-101-010,

111-101-011
Notes: in the PS analysis the blue and black layers were

analyzed as a composite. In the RGB analysis the horse’s
head was not fully excluded from the white layer; thus, the
PS analysis of the white layer is more accurate. The yellow
and orange layers in the RGB analysis were separated by
incorporating spatial information. If the pixels lay in the ap-
propriate region of RGB and real space they were deemed
yellow; otherwise orange.

Summary: Does not satisfy fractal authentication criteria.
Exhibits anomalous dimensions in the orange and yellow
layers.

5. Untitled: Pollock �1950� �JPCR 797� �enamel on pa-
per�.

Physical dimensions: 28.3�150.3 cm2

Digital images: 1145�5150 pixels �PS and RGB� 1145
�2908 �RGB-cropped�.

Range of box sizes: 0.1–2.7 cm �PS� 0.1–4.4 cm �RGB�
0.1–3.0 cm �RGB-cropped�

Black layer:
Area of layer: 5% �PS� 5% �RGB�
Noise: 0.020 �PS� 0.024 �RGB� 0.024 �RGB-cropped�
LT: 0.5 cm �PS� 0.5 cm �RGB� 0.5 cm �RGB-cropped�
Lower dimension: 1.73 �PS� 1.72 �RGB� 1.72 �RGB-

cropped�
Upper dimension: 1.36 �PS� 1.37 �RGB� 1.39 �RGB-

cropped�
RGB color partition:
Black=000
Summary: Does not satisfy fractal authentication criteria.

Exhibits anomalous dimensions.
6. Number 8, 2007: Ash and Hallen �2007� �oil on can-

vas�.
Physical dimensions: 122�152 cm2 �approximately�
Digital image: 1387�1668 pixels �PS� 1192

�1566 pixels �RGB�
Range of box sizes: 0.9–15.3 cm �PS� 0.3–6.0 cm �RGB�
Black layer:
Area of layer: 44.0% �PS� 58.3% �RGB�
Noise: 0.014 �PS� 0.022 �RGB�
LT: 3.8 cm �PS� 1.6 cm �RGB�
Lower dimension: 1.89 �PS� 1.81 �RGB�
Upper dimension: 2.08 �PS� 2.05 �RGB�
RGB color partition:
Black=000, 001, 010, 011, 100, 101, 110
Background=111
Comments: the discrepancy between the percentage area

of black obtained by the two color separation methods is due
to the different ways the painting was cropped before color
separation. The cropped image used in the Photoshop analy-
sis contained a margin that was largely white. The discrep-
ancy between the LT values is presumably due to the same
cause.

Summary: Satisfies fractal authentication criteria.
7. Composition with Red and Black: Ash and Hallen

�2007� �oil on canvas�.
Physical dimensions: 122�152 cm2 �approximately�
Digital image: 1288�1536 pixels
Range of box sizes: �PS� 0.3–16.4 cm �RGB�
Black layer:
Area of layer: 33.4% �PS� 37.2% �RGB�
Noise: 0.023 �PS� 0.021 �RGB�
LT: 1.75 cm �PS� 1.75 cm �RGB�
Lower dimension: 1.68 �PS� 1.64 �RGB�
Upper dimension: 2.02 �PS� 2.01 �RGB�
Red layer:
Area of layer: 17.0% �PS� 22.3% �RGB�
Noise: 0.020 �PS� 0.025 �RGB�
LT: 4.13 cm �PS� 1.59 cm �RGB�
Lower dimension: 1.48 �PS� 1.48 �RGB�
Upper dimension: 2.01 �PS� 1.98 �RGB�
RGB color partition:
Black=001, 010, 011,
00-00-00, 00-00-01, 00-01-00, 00-01-01, 01-01-00,

01-01-01
Red=100, 101, 110,
01-00-00, 01-00-01
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Background=111
Summary: Satisfies fractal authentication criteria.

APPENDIX C: ART GALLERY

In Figs. 6–9 we present a gallery of paintings and draw-
ings discussed in this paper.

FIG. 6. �Color online� Pollock and Matter Paintings I. Top,
Jackson Pollock, The Wooden Horse Number 10A, 1948 �1948� and
bottom, Untitled 14 �artist unknown�. Both paintings fail to satisfy
the fractal authentication criteria by having two of their six color
layers with DD�DL. Thus, according to fractal analysis, The
Wooden Horse, an undisputed Pollock painting, fails to be authen-
tic. Pollock images are reproduced by permission ©2009 The
Pollock-Krasner Foundation/Artists Right Society �ARS�, New
York. Reproduction, including downloading of Pollocks works is
prohibited by copyright laws and international conventions without
the express written permission of ARS, New York.

FIG. 7. �Color online� Pollock and Matter Paintings II. Left,
Jackson Pollock, Free Form (1946) and right, Untitled 1 �artist
unknown�. Both paintings pass the fractal authentication criteria
provided some force fitting is allowed. Thus, contrary to the find-
ings of Taylor et al. �1�, we find at least one Matter painting �i.e.,
Untitled 1� that satisfies the fractal authentication criteria. Pollock
images are reproduced by permission ©2009 The Pollock-Krasner
Foundation/Artists Right Society �ARS�, New York. Reproduction,
including downloading of Pollocks works is prohibited by copyright
laws and international conventions without the express written per-
mission of ARS, New York.

FIG. 8. �Color online� Paintings by Ash and Hallen. Number 8,
2007 �2007� �top left�, Composition with Red and Black �2007� �top
right�, and detail from Untitled �2007� �bottom�. Three paintings
from a series of nine, two of which �Number 8, 2007 and Compo-
sition with Red and Black� have been analyzed and found to satisfy
the fractal authentication criteria used to identify Pollock paintings.
All paintings are oil on canvas.

FIG. 9. Sketches Gross Pebbles �left� and Mixed Stars �right� by
Katherine Jones-Smith �2006�. Like Untitled 5 �7�, these crude
drawings satisfy the fractal authentication criteria used to identify
Pollock, although they are indisputably not works by Pollock. These
freehand drawings were created using Adobe Photoshop as de-
scribed in Ref. �7�.
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