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We study the effect of latency on binary-choice opinion formation models. Latency is introduced into the
models as an additional dynamic rule: after a voter changes its opinion, it enters a waiting period of stochastic
length where no further changes take place. We first focus on the voter model and show that as a result of
introducing latency, the average magnetization is not conserved, and the system is driven toward zero magne-
tization, independently of initial conditions. The model is studied analytically in the mean-field case and by
simulations in one dimension. We also address the behavior of the majority-rule model with added latency, and
show that the competition between imitation and latency leads to a rich phenomenology.
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I. INTRODUCTION

Binary-choice opinion formation models address the
emergence of ordered �disordered� states, i.e., consensus or
coexistence of different opinions �1–5�. In these models,
opinions of agents are influenced by those of other agents.
This influence is captured by dynamic rules which are iter-
ated until some stable state is reached. The voter model �1,6�
can be considered as an archetypal binary opinion formation
model. It has found applications in many fields going from
social dynamics and population genetics to chemical kinet-
ics. The model consists of N agents, each endowed with a
binary variable s=↑ or s=↓. The agents can be fully mixed,
so that each agent can interact with all the others, or located
on a lattice or network, which then mediates the interactions.
At each time step, an agent i is selected along with one of its
neighbors j and the agent adopts the opinion of the neighbor,
si=sj. By construction, agents therefore imitate their neigh-
bors and are subject to peer pressure in the average sense,
changing their opinion with a probability equal to the frac-
tion of neighbors that disagree with them. This simple rule
implies that the average opinion, analogous to magnetization
in spin models, is conserved �7�. This renders the voter
model soluble in all dimensions �8,9� and makes it a para-
digmatic model for the emergence of an ordered state in a
nonequilibrium system.

Over the last years, the voter model has gained much
attention in the physics community, especially regarding the
role of different interaction network topologies �10,11�, e.g.,
scale-free and small-world ones, on the opinion dynamics.
Several generalizations have also been proposed in order to
allow for more complicated agent interactions, such as the
majority rule �12–14�, nonlinear voter models �15–17�, or
multistate voter models �18,19�. In most of these models,
agents interact with each other whatever their history,
namely, at each time step of the dynamics, voters change
opinion with a probability that depends only on the configu-
ration of their neighbors. Hence, the opinions of individual
agents can be very volatile over time. Note that there are also

models which consider the spreading of, e.g., a fashion over
a susceptible agent population, such as the threshold model
�20�, where the state of an agent is frozen once it has adopted
the opinion. This feature is also incorporated in extensively
studied epidemiological models such as the susceptible-
infected �SI� and susceptible-infected-recovered �SIR� mod-
els �21�, which can also be applied in the context of social
influence, e.g., in studies of information diffusion �22�.

Here, we study opinion formation dynamics between
these two extremes, by introducing latency to binary-choice
models. Instead of the Markovian assumption where an
agent’s past choices have no influence to its present, we
regulate the frequency of its opinion changes by applying a
latency period. Consider, e.g., the adoption of a new technol-
ogy, such as choosing between a Blu-ray or a HD-DVD
player. It is likely that the choice of a customer is influenced
by his acquaintances. However, it is unlikely that the cus-
tomer will replace his equipment immediately after
purchase—rather, a new acquisition is made only after the
previous device is broken or obsolete. Similar memory ef-
fects take place in the competition between mobile phone
operators, as customers are usually bound to 1- or 2-year
contracts. In general, memory effects are important in situa-
tions where there is some cost or restriction associated with
switching opinions. Better understanding of the effects of
memory on opinion formation dynamics is therefore of inter-
est �23,24�.

In this paper, we study the effects of a simple modifica-
tion applicable to several opinion formation models: agents
cannot be influenced by their neighbors for some �stochastic�
period of time after they change opinion. Note that this bears
close resemblance to the immunity time in susceptible-
infected-recovered-susceptible �SIRS� models of epidemic
spreading �see, e.g., �21��. In Sec. II, we incorporate this
mechanism to the voter model. The model is first analytically
studied in the mean-field case and it is shown that average
magnetization is not conserved by the dynamics, contrary to
the original voter model, and that latency drives the system
toward zero magnetization. In the one-dimensional �1-D�
case, computer simulations show that the dynamics also has
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a tendency toward zero magnetization but that the exit prob-
ability, i.e., the probability to reach a consensus state, exhib-
its a nontrivial dependence on the initial condition, even in
the limit of infinitely large systems. In Sec. III, we focus on
a generalization of the majority rule and show that the com-
petition between imitation and latency leads to much richer
phenomenology. In Sec. IV, finally, we conclude and discuss
possible generalizations that might be of interest.

II. LATENT VOTERS

We propose a simple variation of the voter model that
incorporates a memory for the agent. Here we assume that
voters are not only characterized by their opinion s, but also
by their activity, I �inactive� or A �active�. The system is
governed by the following discrete-time-step rules:

�i� A random voter is picked �the focal voter�.
�ii� If the focal voter is active �A�, it adopts the state of a

randomly chosen neighbor with a probability p. If this leads
to a change of his opinion, the focal voter becomes inactive.

�iii� If the focal voter is inactive �I�, it is reactivated with
probability q.

These steps are repeated ad infinitum or until consensus is
reached. The model therefore incorporates a latent time be-
tween two opinion switches of the same agent. For the sake
of simplicity, let us first focus on a fully mixed system �i.e.,
a fully connected network�, where everybody is connected to
everybody and hence a mean-field description is justified.
Moving to continuous time, it is straightforward to derive the
system of equations governing the dynamics. As an example,
let us explicitly describe the dynamics of the number Na↑ of
active nodes of opinion ↑. The discrete-time-step equation
for Na↑ of such nodes can be written as

Na↑�t + �t� = Na↑�t� − p�N − N↑

N
�Na↑ + q�N↑ − Na↑� , �1�

where N is the system size, and N↑ is the number of nodes of
opinion ↑ irrespective of their status �active/inactive�. Taking
the continuous time limit, we get

�tNa↑ = lim
�t→0

Na↑�t + �t� − Na↑�t�
�t

= lim
�t→0

−
p

�t
�N − N↑

N
�Na↑ +

q

�t
�N↑ − Na↑� . �2�

We can now take the limit such that lim�t→0 p /�t=1, i.e., p
determines the time scale. Thus lim�t→0 q /�t=lim�t→0 q / p
�� determines the average latent time, ��	
1 /�. It is now
straightforward to show that the system dynamics is deter-
mined by the following system of equations:

�t�↑ = �a↓�↑ − �a↑�1 − �↑� ,

�t�a↑ = − �a↑�1 − �↑� + ���↑ − �a↑� ,

�t�a↓ = − �a↓�↑ + ��1 − �↑ − �a↓� , �3�

where �↑ is the density of nodes of opinion ↑ and �a↑ is the
density of active nodes of opinion ↑, and similarly for �↓�. In

the first equation of Eq. �3�, the gain term accounts for situ-
ations where the focal node is active with a ↓ opinion, while
the randomly selected neighbor �whatever his activation� has
a ↑ opinion, and similarly for the loss term. In the second
equation of Eq. �3�, the loss term accounts for situations
where an active ↑ voter switches opinion, while the gain term
comes from the reactivation of voters with rate �.

In the limit �→�, voters reactivate infinitely fast and we
recover the classical mean-field equations for the voter
model,

�a↑ = �↑,

�a↓ = 1 − �↑, �4�

and

�t�↑ = �1 − �↑��↑ − �↑�1 − �↑� = 0, �5�

thereby confirming that the density of ↑ voters is conserved
in the voter model.

When � is finite, in contrast, the density of ↑ voters is not
conserved but it goes to the zero-magnetization solution
�↑=1 /2 for any initial condition, with �a↑=�a↓= �

�2+�� . This
attractor of the dynamics can be found by using the second
and third equations of Eq. �3� in order to express �a↑ and �a↓
as functions of �↑,

�a↑ =
��↑

�1 − �↑ + ��
,

�a↓ =
��1 − �↑�
��↑ + ��

. �6�

The first equation of Eq. �3� therefore leads to the condition

��↑��↑ − 1��2�↑ − 1�
�1 − �↑ + ����↑ + ��

= 0, �7�

from which one sees that �↑=1 /2, �↑=0, and �↑=1 are the
stationary solutions of the problem. It is straightforward to
show that the consensus solutions �↑=0 and �↑=1 are un-
stable. To do so, let us look at small deviations around the
stationary solution �↑=0: �↑=�↑+o��2�, �a↑=�a↑+o��2�, and
�a↓=1−�a↓+o��2�. In that case, the first two equations of Eq.
�3� become

�t�↑ = �↑ − �a↑,

�t�a↑ = ��↑ − �� + 1��a↑. �8�

This set of linearized equations has one positive eigenvalue
for any values of �, except in the voter model limit �→�,
where both eigenvalues go to zero. One can similarly show
that the consensus �↑=1 is unstable, while �↑=1 /2 is a stable
solution for any value of �. Thus a population is driven away
from consensus toward the only stable solution, i.e., the zero-
magnetization state. It should be stressed that such a drift
toward zero magnetization also takes place in other models
for opinion formation, but due to different mechanisms. For
instance, in the vacillating voter model �17�, formation of
consensus is hindered by the uncertainty of the agents, and in
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the general sequential probabilistic model �25�, hindering
originates from the tendency of voters to conform to the
minority instead of the majority. In the present model, in
contrast, it is only memory that forestalls consensus.

As for the voter model, the dynamics for a finite popula-
tion differs from this mean-field description because consen-
sus is ultimately always reached, as it is the only absorbing
state of the stochastic dynamics. This implies that the aver-
age magnetization does not fluctuate forever around the
asymptotic value �↑=1 /2 but that it asymptotically reaches
the state �↑=0 or �↑=1, even if those solutions are unstable.
To characterize the evolution to this state, we focus therefore
on the exit probability E�n ,N�, defined as the probability that
a population of N voters ultimately reaches ↑ consensus
when there are initially n=�↑N ↑ voters. Since the density of
↑ voters and the exit probability are related through
�↑���=E�n� and �↑=1 /2 is the only stable solution, it is
straightforward to show that the exit probability is equal to
E�n ,N�= 1

2 for sufficiently large systems. The exit probability
is therefore independent of the initial density of ↑ voters.
This is expected because almost all initial states are driven to
the potential well at �↑=1 /2 and initial conditions are rapidly
“forgotten” by the dynamics. This is indeed what we observe
by performing computer simulations of the model �see Fig.
1�; i.e., E��↑� gets closer and closer to 1/2 when N increases.
This interpretation is also confirmed by looking at the time to
reach consensus tn. Computer simulations suggest that the
consensus time scales exponentially with the number of
agents N. This anomalously long time is due to the fact that
the system has to escape a potential well in order to reach
consensus.

Let us now focus on the latent voter model dynamics on a
one-dimensional lattice. In that case, numerical simulations
�see Fig. 2� show that, unlike above, the exit probability does
not depend on the number of agents but exhibits a nontrivial
dependence on the initial conditions. One should stress that
such a qualitative change between the mean-field description
and one-dimensional dynamics also takes place for other
models that do not conserve the average magnetization, such

as the majority rule �26�, the Sznajd model �16,27,28�, and
nonconservative voter models �16,17�. For small systems
�N=50�, we directly measure the probability E�n ,N� that the
population ultimately reaches a ↑ consensus when there are
initially n ↑ voters, averaging over 5000 realizations of the
dynamics. In the case of larger systems �N=1000 nodes�, we
use a different approach by running the dynamics for very
long times �up to 1000 time steps per agent� and measuring
the magnetization at this time. We then average over 100
realizations of the process to evaluate �↑���. The exit prob-
ability E��↑� is obtained by using the relation E��↑�=�↑���,
i.e., the probability to reach a ↑ consensus in one realization
is equal to the average density of ↑ voters when t→� for an
ensemble of realizations.

III. MAJORITY RULE

In Sec. II, we have focused on a generalization of the
voter model, a model whose dynamics is particularly trivial
in the mean-field case. There are, however, many other mod-
els for opinion formation, most of which do not preserve
average magnetization. In this section, we will incorporate
latency to the majority rule �13,14,26� as follows. At each
step, the system obeys the following discrete-time-step rules:

�i� A random voter is picked �the focal voter�.
�ii� If the focal voter is active, two of its neighbors are

randomly picked. The focal voter adopts the state of those
neighbors with a probability p if they both have identical
opinions. If the focal voter switches opinion, it becomes in-
active.

�iii� If the focal voter is inactive, it is reactivated with
probability q.

These steps are repeated ad infinitum or until consensus is
reached. Similarly as with the voter model, for a fully mixed
system, moving to continuous time and by introducing �
=q / p, it is straightforward to show that the system dynamics
is determined by
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FIG. 1. Exit probability E��↑� versus the density of ↑ voters, �↑,
for N=6, N=12, N=18, and N=24 in the mean-field case, with
�=1. Simulation results are averaged over 5000 realizations of the
random process.
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FIG. 2. Exit probability E��↑� versus the density of ↑ voters �↑
for N=50 and N=1000, in the case of a one-dimensional system.
The exit probability has a nontrivial dependence on the initial con-
dition, with a trend toward zero magnetization. When � is de-
creased, the dynamics loses its dependence on the initial conditions
and E��↑�=1 /2.
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�t�↑ = �a↓�↑
2 − �a↑�1 − �↑�2,

�t�a↑ = − �a↑�1 − �↑�2 + ���↑ − �a↑� ,

�t�a↓ = − �a↓�↑
2 + ��1 − �↑ − �a↓� , �9�

where unnecessary constants have been absorbed in the time
scale. In the limit �→� of infinitely fast reactivation, one
finds a closed equation for �↑,

�t�↑ = �1 − �↑��↑
2 − �↑�1 − �↑�2 = − ��↑ − 1��↑�2�↑ − 1� ,

�10�

whose only stable solutions are easily seen to be consensus
�↑=0 or �↑=1.

When � is finite, in contrast, the system exhibits a com-
petition between two opposite effects, i.e., an attraction to-
ward consensus due to the majority rule and a tendency to-
ward zero magnetization due to memory effects. Thus one

may expect that the system exhibits critical phenomena for
some value of �. The stationary solutions of Eq. �9� are
easily found by expressing �a↑ and �a↓ as a function of �↑:

�a↑ =
��↑

�1 − �↑�2 + �
,

�a↓ =
��1 − �↑�

�↑
2 + �

. �11�

The first equation of Eq. �9� leads to the condition

��↑�1 − �↑��2�↑ − 1��� − �↑ + �↑
2�

��↑
2 + ���1 + � − 2�↑ + �↑

2�
= 0, �12�

whose stationary solutions may be zero magnetization
�↑=1 /2, consensus �↑=0 and �↑=1, or �↑= �1	�1−4�� /2
�see Fig. 3�. The system clearly exhibits a qualitative change
at �=1 /4. To show so, let us perform stability analysis of the
zero-magnetization solution �↑=1 /2. The largest eigenvalue
is

r =
− �1 − 4��2 + ��1 − 4���− 1 + 44� + 80�2 + 64�3�

8�1 + 4��
.

�13�

One finds that the real part of r is positive when �
1 /4,
which implies that the zero-magnetization solution is stable
only when ��1 /4. This is expected, as one knows that
�↑=1 /2 is unstable when �→�. The stability analysis of the
consensus solution �↑=0 and �↑=1 leads to a more surpris-
ing result, as it shows that consensus is stable for any value
of �. One can also show that �↑= �1	�1−4�� /2 is always
unstable. Thus the system exhibits a transition from a regime
where only consensus is a stable solution ��
1 /4� to a re-
gime where consensus and zero magnetization are stable so-
lutions ���1 /4�. In that case, the system may reach either of
those solutions depending on its initial condition �Fig. 4�.
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Before concluding, one should stress that the transition
that we observe differs from the usual order-disorder transi-
tion that would take place if noise was added to the system.
Indeed, let us consider a system without memory where
agents may perform majority steps with probability �1−q� or
switch their state randomly with probability q. In this case,
the system also exhibits a competition between a mechanism
that drives the system to zero magnetization, i.e., the random
flips, and a mechanism that drives it toward consensus, i.e.,
majority rule. It is easy to show that this system also exhibits
a transition at qc=1 /3, but the transition is now from a dis-
ordered state to an ordered state. Above qc, the only stable
solution is zero magnetization. Below qc, in contrast, zero
magnetization ceases to be stable and the system goes to the
ordered solution �↑=1 /2	��1−3q� / �1−q�.

IV. CONCLUSIONS

To summarize, we have studied the effects of latency on
binary-choice opinion formation models. The motivation for
introducing latency has been to strive for more realistic “so-
ciodynamic” models of situations where there are costs or
restrictions associated with switching opinions, limiting the
frequency of opinion changes. We have shown that a simple
additional dynamic rule representing latency leads to rich,
nontrivial behavior. In the voter model, magnetization is not
conserved—instead, the system is driven toward zero mag-
netization. Computer simulations indicate an anomalously
long consensus time for finite-size systems as the system has
to escape a potential well; although consensus is ultimately

reached, the two opinions coexist in the system for very long
times. For finite-size one-dimensional systems, the exit prob-
ability shows a nontrivial dependence on the initial condi-
tion. For the majority-rule model, introducing latency leads
to a rich behavior: depending on the latency period, the sys-
tem exhibits a transition from a consensus regime to a re-
gime where both consensus and zero magnetization are
stable solutions.

We expect that the proposed latency rule is likely to sig-
nificantly alter the dynamics of other opinion formation
models as well �16,17,27,28�. Furthermore, a natural next
step is to study the effects of latency beyond the mean-field
or 1-D cases: is even richer behavior to be found for higher-
dimensional systems, or when complex networks are medi-
ating the interactions? For complex networks, it would be
also interesting to study the effects that more realistic
network structures have on the latent voting dynamics,
e.g., networks with community structure �29,30�. We hope
that the above results for the simplest opinion formation
models and interaction topologies will stimulate further re-
search.
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