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Recent literature has presented evidence that the study of navigation in complex networks is useful to
understand their dynamics and topology. Two main approaches are usually considered: navigation of random
walkers and navigation of directed walkers. Unlike these approaches ours supposes that a traveler walks
optimally in order to minimize the cost of the walking. If this happens, two extreme regimes arise—one
dominated by directed walkers and the other by random walkers. We try to characterize the critical point of the
transition from one regime to the other in function of the connectivity and the size of the network. Furthermore,
we show that this approach can be used to generalize several concepts presented in the literature concerning
random navigation and direct navigation. Finally, we defend that investigating the extreme regimes dominated
by random walkers and directed walkers is not sufficient to correctly assess the characteristics of navigation in

complex networks.
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I. INTRODUCTION

Recent literature has presented evidence that the study of
navigation is useful to understand the dynamics and topo-
logical properties of complex networks. In general, two main
different approaches have been considered, namely, naviga-
tion of random walkers and directed walkers in complex net-
works. In both approaches, a walk consists of stepping from
node to node of the complex network via the links between
them.

In the first approach, at each time step, a random walker
located at a specific node chooses one of the neighbors of
this node based on some transition matrix in order to con-
tinue the walk. This approach has introduced several differ-
ent concepts that were used to improve our understanding
about complex networks. In [1], the mean first passage time
is exactly derived for arbitrary networks and a quantity
known as random walk centrality is introduced. In [2], ran-
dom walk searches are considered and different possibilities
of the transition matrix are studied. In [3] networks are
sampled using different types of random walks and the prop-
erties of the sampled networks are compared to the original
networks.

The second approach takes the opposite direction and
considers that at each step the walker takes the shortest path
to the target. This walker is like a traveler in a new city who,
by asking questions about the way to his destination, arrives
there using the minimal number of steps. In this context, for
example, Sneppen et al. [4] defined the search information,
which is the total information needed to identify one shortest
path between a source and a target. In practice, what the
search information measures is the number of yes/no ques-
tions necessary for the walker to know which direction to
take in order to arrive closer to his target. Based on this, it
was possible to introduce the idea of the node with minimal
access information (the node which provides the best access
to the entire network) and the best node to be hidden (the
node which requires the maximum number of questions to be
found). These ideas were used to study a large class of com-
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plex networks [4—6]. In [7], the idea provided by the search
information was weighted according to the betweenness of
the links to consider the notion that the large roads usually
take you closer to the targets than small roads. Using these
two measures, in [7] the authors could deal directly with the
difference between targets located at small and large dis-
tances. In [8], the navigation with limited information is con-
sidered assuming that in each node the amount of informa-
tion that a traveler has access is limited. In this case, the
authors show that the walker usually travels distances sub-
stantially longer than the actual shortest path and the effect
of not choosing the correct link in a node depends on the
degree of the node.

In this paper, we consider that a traveler in a new city
wants to go from a given source to a specific target. How-
ever, differently from the above mentioned papers, in each
step of the walk, he can either ask other people which is the
correct path to follow or randomly follow one of the paths
available in this step. We assume that there are two constant
costs associated to the trajectory, namely, a cost associated to
the walk from one node to its neighbor and a cost associated
to get information about the trajectory from other people.
Thus, we suppose that the traveler will make the optimal
decision in order to minimize the sum of the costs associated
to the complete trajectory. If this happens, we show that two
different regimes arise. In one extreme, when the cost of
getting information is low when compared to the cost of
walking a step, the decision is made in order to minimize the
distance of the trajectory. Conversely, at the other extreme
when the cost of getting information is high, the walk con-
verges in the limit to a random walk. We try to characterize
the transition from one regime to the other in function of the
connectivity and the size of the network. Additionally, we
show that the solution of this problem can be used to char-
acterize complex networks and generalizes several measures
introduced in the context of random and direct navigation.

It is worth mentioning that this is not the first time that a
kind of optimization principle is used to understand the
structure and dynamics of complex systems. In [9-12], for
instance, it is shown that complex networks may arise from
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optimization principles. Furthermore, in [13,14] optimization
has been used to study the complex human dynamics of task
execution.

II. SETUP OF THE PROBLEM

Suppose that we have a city represented by a network G
with n nodes V(G)={1,2,...,t,...,n}, where t is a special
node called the target. In each node, a traveler has to choose
between making the next step of his walk randomly at a cost
Cy or using the link that will certainly approximate him to
the target ¢ with cost Cy+C;, where Cy is the constant cost of
one step navigation and C; is the constant cost of asking
people for the correct direction. Furthermore, we assume that
the traveler in each node of the network makes his decision
in order to find

J(i) = min E,T[

me

> g(k,uuc))/i], (1)

keP(i,t)

where P(i,7) is the path from node i to the target 7 [15], the
expectation E™-/{] is conditional on the policy 7 and node i,
a={u(1),u(2),...,u(t),...,u(n)} is an admissible policy be-
longing to the set of admissible policies II, and u(k) is an
admissible control belonging to the set of admissible controls
U(k)={0, 1}, Vk. In particular, here we assume that u(k)=0
if in node k he decides to randomly choose the next step of
his walk and u(k)=1 if in node k he decides asking other
people the correct path to follow, which implies that in this
case the traveler will follow the correct one. The cost per
stage g[k,u(k)] is the cost of using u(k) at node k given by

if u(k)=0,Vk#t
elku(i)] ={ O HuOZ0VEEE
CN+ C] if u(k) = 1, Yk+#t.

The intuition behind Eq. (2) is simply that if the traveler
did not reach the target, he will have to pay at least more Cy,.
If he additionally decides to ask for the right path, he has to
pay CN+ C[.

It is clear that a traveler in a new city in practice will
never exactly solve the problem presented in Eq. (1). In or-
der to solve this problem, he has to know a priori the struc-
ture of the network of the city given here by py(u), Vu
e U(k), and k,I € V(G)—the transition matrix from a node k
to a node [ if the control law u is used in node k. However,
the solution of this problem deserves to be studied for at least
three reasons: it is an upper bound of the quality of the be-
havior of the traveler, it is an interesting way to characterize
navigation in complex networks, and it overlaps the random
walk and the directed walk behaviors. Note that if the ratio
C,/ Cy is high enough, the traveler will never choose to ask
people the correct direction to follow. On the other hand, if
the ratio C;/Cy is low, it is always optimal to ask for the
correct direction since it avoids the deviation from the short-
est paths.

Since the set U(k) is finite for all k and assuming that the
network here has no isolated clusters, p,(u)=1 for all u
e U and g(t,u)=0 for all u € U, this problem can be formu-
lated as a stochastic shortest path problem [16]. Therefore, it
is easy to show that the solution of problem (1) is given by
the Bellman equation [17],
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FIG. 1. (a) shows jﬁgh (solid line) and jﬁiw (dashed line) for

several values of C;/Cy. (b) shows jﬁ/igh—jﬁl,w for several values of
C,/Cy.

J(i) = min {g(i,u) + Epij‘](j):| : 3)
ue U(i) j=1

Since by hypothesis g(r,u)=0 and p(z,/)=0, Vj#1, then

J(1)=0. Thus Eq. (3) says that J(i), the optimal cost that the

traveler being in node i € V(G) has to pay to reach node ¢, is

divided in two parts: the cost that the traveler has to pay in

node i plus the cost that the traveler has to pay in all the

other nodes before reaching ¢. Define M), Vi e V(G) as the
average of J(i) over all the targets ¢. If w={1,1,...,1} then

JV(i) is known to be the characteristic path length of the node
multiplied by the cost Cy+C;. On the other hand, if =
={0,0,...,0}, JV(i) is the mean first passage time from i
multiplied by Cy. Therefore, JV(i) measures in average the
difficulty to go from node i € V(G) to any another node j
€ V(G)—{i} if the traveler follows the optimal policy. This
variable extends the idea of the so-called minimal access
information defined in [4,6] for the case of directed walkers.

Define also J#(i), Vie V(G) as the average of all J(j), V
€ V(G)—{i}, when r=i. This measures the ability that a node
has to be hidden in a network generalizing the idea of the
so-called hide defined in [4,6] for directed walkers. Finally,

define J as the average of J over all nodes and all targets.
Hence, this variable measures the overall difficulty of navi-
gating in the network.

In the rest of this paper, we analyze some networks using
numerical solutions of the Bellman equation [Eq. (3)] found
by means of the value iteration algorithm [16,18].

III. SCALE-FREE NETWORKS

We have applied these ideas to a typical Barabasi-Albert
free-scale network [19] with 250 nodes. In order to have a
better understanding of the results, we have divided the
nodes of this network into two samples of 125 nodes accord-
ing to the size of J¥ when C;/Cy=0. jﬁgh (Jy.,) is meant to
be the average of J" for the fraction of nodes that have high-
est (lowest) JN when C;/Cy=0. One should note that since
this division is made when C;/ Cy=0, the nodes with lowest
(highest) JV are exactly the ones that have smallest (largest)
characteristic path lengths.

While Fig. 1(a) shows the evolution of j{:’igh and J)  for
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FIG. 2. This figure shows the average of the randomized ver-

sions of thigh (solid line) and Ji} , (dashed line) over ten realizations.

several values of C;/Cy, Fig. 1(b) shows the difference be-
tween these values jﬁgh—fféw for several values of C;/Cy.
One may identify two different regimes in this figure. The
transition from the first regime to the second regime occurs
when the optimal process of navigation is not dominated by
directed walkers anymore but rather by random walkers. It is
worth mentioning that the critical point C;/ Cy [located at the
beginning of the plateau in Fig. 1(b)] is the ratio C;/Cy
where ceases the existence of the directed walk regime.
Therefore, the process of navigation which takes place in
complex networks interpolates the process of navigation
driven by directed walkers which happens for low values of
C,/ Cy and the process of navigation driven by random walk-
ers which happens for high values of C;/Cy.

The difficulty of navigation in a node i € V(G) depends
strongly on the type of policy that is used. This is quite
intuitive. While in the regime low C;/Cy the level of diffi-
culty of navigation in a node is driven by the shortest paths
from this node to the others, in the regime high C;/Cy the
level of difficulty of navigation in a node is also influenced

by the degree of this node. While fféw accounts for the diffi-
culty of navigation from nodes with smallest characteristic

path lengths, jﬁgh accounts for the difficulty of navigation
from the nodes that have largest characteristic path lengths.
In general, there is a significant correlation between the
nodes of the network that formed the sample used to evaluate

j{:’igh and the nodes of the network that have smallest degrees.
Note that in order to take the phenomenon presented in

Fig. 1(b) into account one has to evaluate JN for nodes in a
typical network like we have done here. As shown in Fig. 2

the average of JV over several randomized networks that
conserves the degrees of the nodes and ensures the full con-
nectivity of the network [20,21] does not present this phe-

nomenon. This happens because the average of JV(i) for a
typical node i over the randomized networks in average de-
pends only on the degree of node i. In each realization of the
randomization process each node is located in a different
place in the network breaking down (or reducing) the corre-
lation between the degree of a node and its characteristic
path length.

The transition between regimes of directed walkers and
random walkers presented in Figs. 1(a) and 1(b) should arise
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FIG. 3. This figure shows jﬁgh (solid line) and Ji’ _ (dashed line)
for several values of C;/Cy.

in all types of networks where there is a positive correlation

between the sample of nodes used to build j{figh and the
nodes with the smallest degrees of the network. For different
networks, the important change in Fig. 1(b) is the value of
the critical C;/Cy, which depends on the topological charac-
teristics of the network such as size and connectivity.

We have also built fﬁgh and Ji!  using the same procedure
presented above, but the choice of the two samples was

based on the size of J*/. Figure 3 shows the evolution of jﬁgh

and jﬁl)w for several values of C;/Cy. The only phenomenon
in this case is the increase in the ability of being hidden
when the cost of navigation also increases.

A simple extension of the problem studied above, which
follows the same lines in [4—6], is to consider that the cost
provided by Eq. (2) is given by C;=c X degree(k) where c is
a constant, i.e., the cost of information is proportional to the
degree of a node. The results of this extension also present
the same pattern of Figs. 1(a) and 1(b) (not shown).

Figure 4 explores the difficulty of navigation in several
scale-free networks. In particular, Fig. 4(a) compares the cost
of navigation in a typical scale-free network with their maxi-
mally and minimally hierarchical versions built by the algo-
rithm presented in [22] and ensuring the full connectivity of
the network. Based on this figure, we have found that it is
easier to navigate in the maximally hierarchical version than

(2) (b)
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FIG. 4. (a) shows 7 for several values of C 1/ Cy for a typical
scale-free network (solid line), for its maximally hierarchical ver-
sion (dotted line), and for its minimally hierarchical version (dashed

line). (b) shows 7 for typical scale-free networks for several values
of C;/Cy and for different sizes: 100 (solid line), 150 (star), 200
(dotted line), and 250 (dashed line).
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FIG. 5. The relation between the critical ratio C;/Cy and the
size for typical scale-free networks.

in the original scale-free network. Additionally, it is easier to
navigate in the original scale-free network than in the mini-
mally hierarchical network. On the other hand, Fig. 4(b) in-
vestigates the relation between the difficulty of navigation in
a scale-free network and its size. As shown in this figure, it is
more difficult to navigate in larger networks.

Figure 5 presents the relation between the critical ratio
C;/Cy and the size of the scale-free networks. This figure
shows that we have found an almost straight line with posi-
tive slope coefficient between the critical ratio C;/ Cy and the
size of the scale-free network. This happens due to the pref-
erential attachment property present in scale-free networks.
If the decision of the traveler is u(i)=1 in a given node i with
a given degree in a neighborhood of the critical point, this
happens because this node has degree in average larger than
the rest of the network (since the ratio C,/Cy is relatively
high at this point). Furthermore, if new nodes are introduced
in this network, it is likely that this node (with degree in
average larger than the rest of the network) will be preferen-
tially attached by some of these nodes. Therefore, the degree
of this node will become larger and the traveler will accept to
pay more for information in this node.

IV. RANDOM NETWORKS

As already stated, the pattern presented in Figs. 1(a) and
1(b) also arises in random networks (not shown).
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FIG. 6. (a) 7 for typical random networks for several values of
C;/ Cy with different probabilities of connection among the nodes:
p=0.05 (solid line), p=0.1 (dotted line), and p=0.2 (dashed line).

(b) 7 for typical random networks for several values of C;/Cy with
different sizes: 100 (solid line), 150 (star), 200 (dotted line), and
250 (dashed line).
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FIG. 7. (a) shows the relation between the critical ratio C;/Cy
and the size of typical random networks. (b) shows the relation
between the critical ratio C;/Cy and the connectivity of typical
random networks.

Figure 6 evaluates the difficulty of navigation in several
random networks. While Fig. 6(a) shows that more con-
nected random networks have lower costs of navigation, Fig.
6(b) reinforces the results of Fig. 4(b) showing that it is more
costly to navigate in larger networks.

We have also characterized the value of the critical ratio
C,/ Cy for representative random networks. While Fig. 7(a)
presents the results of the investigation of the relation be-
tween the critical ratio and the size of a random network,
Fig. 7(b) explores the relation between the critical ratio and
the connectivity of a random network. Figure 7(a) reinforces
the results of Fig. 5. However, since the preferential attach-
ment property is not present in random networks, the relation
between the critical ratio C;/Cy and the size of the network
is not a straight line as the relation presented in Fig. 5. Figure
7(b) shows that the critical ratio C,/Cy decreases with the
increasing of the probability p of connection of typical ran-
dom networks until the stabilization of the critical ratio
C,/ Cy around a given value since now the network is almost
all connected. This happens because when the network be-
comes more connected the paths become shorter. In fact, in
more connected networks, if the traveler follows the wrong
path in a given node, he can correct his mistake in a closer
node.

V. REAL NETWORKS

We have also applied this methodology in order to study
the navigation in some real networks, namely, (a) the Boston
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FIG. 8. This figure compares the difficulty of navigation J in the
Boston underground transportation system (solid line) with the av-
erage of its randomized version over ten different realizations
(dashed line).

046103-4



OPTIMAL NAVIGATION IN COMPLEX NETWORKS

800

600

"~ 400

200

FIG. 9. This figure compares the difficulty of navigation J in a
representative subgraph with 250 nodes of the Swedish city Umea
mapped into an information network (solid line) with the average of
its randomized version over ten different realizations (dashed line).

underground transportation system [23], (b) representative
subgraphs [24] with 250 nodes of the Swedish city Umed
mapped into an information network [5], (c) representative
subgraphs with 250 nodes of the Swedish city Malmo
mapped into an information network [5], (d) representative
subgraphs with 250 nodes of the Swedish city Stockholm
mapped into an information network [5], (e) the US airlines
connections network [25], and (f) the Zachary Karate club
social network of friendships at a US university in 1970 [26].

Figures 8-13 compare the navigation in each network
with its randomized version [20,21]. In general these figures
show that in the original networks it is more difficult to
navigate than their random counterparts. The same idea is
shown in [5]. Some exceptions are the subgraphs of the in-
formation network of Stockholm. Therefore, in this case, we
could not find just one representative subgraph. Thus, we
have presented two representative subgraphs in Fig. 11. As
one can see in this figure, while in one of the representative
subgraphs it is more difficult to navigate than in the random
counterpart network, in the other it is easier to navigate. The
explanation for this phenomenon is the high heterogeneity of
this network and the presence of real “islands” in the city [5].
Depending on the part of the city (represented here by a
subgraph), the subgraphs of information network of this city
have totally different properties. In particular, this result em-
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FIG. 10. This figure compares the difficulty of navigation J in a
representative subgraph with 250 nodes of the Swedish city Malmo
mapped into an information network (solid line) with the average of
its randomized version over ten different realizations (dashed line).
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FIG. 11. This figure compares the difficulty of navigation J in
two representative subgraphs with 250 nodes of the Swedish city
Stockholm mapped into an information network (solid line) with
the average of its randomized version over ten different realizations
(dashed line).

phasizes the importance of investigating the accuracy of the
properties of the whole network inferred from the available
sampled information as considered in [3].

Figures 8-13 also reinforces the idea that in order to
quantify the difficulty of navigation in complex networks it
is not enough to look into one of the extremes (small C;/Cy
or large C,/Cy) or even both extremes. For instance, Fig. 12
for small values of C,;/Cy reinforces the results in [5] show-
ing that the cost of navigation in the US airline network is
close to the random counterpart. However, the difference in-
creases with the size of C;/Cy.

There is a great difference between the difficulty of navi-
gation in the original networks of the Boston underground
transportation system and the city of Umed and their ran-
domized counterparts in Figs. 8 and 9. This is likely to be
due to the real (geometric) constraints that the real networks
are subjected to as suggested in [5]. In fact, the only con-
straint that the randomized networks are subject to is the
degree distribution of the original network. In particular, in
the case of the Boston underground transportation system
(Fig. 8), as pointed out in [23], this transportation system
was built with a very low cost in the sense that only a small
number of edges was used. Furthermore, in real life, it is
expected that only navigation in the directed walk regime
occurs in this system, which according to [23] can be estab-
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FIG. 12. This figure compares the difficulty of navigation 7 in
the US airlines connection network (solid line) with the average of
its randomized version over ten different realizations (dashed line).
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FIG. 13. This figure compares the difficulty of navigation J in
the Zachary karate club social network of friendships at a US uni-
versity in 1970 (solid line) with the average of its randomized ver-
sion over ten different realizations (dashed line).

lished with a satisfactory level of efficiency. As one may note
in Fig. 8, even with strong geometrical constraints that this
transportation system is subjected, the difference of difficulty
of navigation between the original network and its random-
ized counterpart in the directed walk regime is not so large.

In this section, for comparison purposes, we also consid-
ered the issue of analyzing the difficulty of navigation in the
Zachary karate club social network. At first sight it can be
considered odd to analyze navigation in social networks, but
really, it is not. For instance, in the directed walk regime,

JH(i) in social networks may be interpreted as the difficulty
of accessing a member i of the network. On the other hand,

JH(i), in social networks in the random walk regime, may be
interpreted as the difficulty in finding a member i of the
network who performs a given role. The problem is that the
person who is looking for this member does not know who
this member is or where this member is hierarchically lo-
cated. In the intermediate regimes, the interpretation is a

combination of these ideas. JV(i) may be interpreted
analogously.

VI. FINAL REMARKS

This paper has discussed a framework to study optimal
navigation in complex networks. The main idea of this
framework is that unlike the usual approaches such as navi-

PHYSICAL REVIEW E 79, 046103 (2009)

gation of random walkers and navigation of directed walkers,
we assumed that a traveler walks optimally in order to mini-
mize the cost of walking. Furthermore, the cost of walking
was divided in the so-called cost of navigation Cy and cost
of information C,. Based on these very simple premises, we
showed that in the limits low C;/Cy and high C;/Cy the
solution of this problem converges to the directed walker
regime and the random walker regime, respectively.

The solution of the optimal navigation problem was
achieved through the numerical solution of the Bellman
equation associated to this problem. This solution was used
to characterize theoretical networks, real networks, and the
critical point of the transition from the directed walk regime
to the random walk regime. It was also used to generalize
several concepts presented in the literature in the context of
random navigation and direct navigation.

It is important to state that one limitation of the method-
ology proposed here is the so-called curse of dimensionality,
i.e., the huge computational cost associated to the numerical
solution of the Bellman equation [Eq. (3)] when the number
of states (nodes) is large. Because of that, as one might ob-
serve, the networks or the subgraphs of the networks ana-
lyzed in this work have a small number of nodes. Some
possible routes used to deal with this limitation are in general
based on approximations of the cost function J [16,18,27].
Therefore, to propose how to efficiently approximate the cost
function is an interesting path of research. These approxima-
tions would allow us, for instance, to analyze the navigation
in the actual networks of information of the Swedish cities
instead in the subgraphs as we have done here.

Although the framework presented in this paper can be
easily adapted to be valid for weighted networks [28], for
comparison purposes, we have considered all the networks in
this paper undirected and unweighted.
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