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The earthquake size-frequency distribution of individual seismic faults commonly differs from the
Gutenberg-Richter law of regional seismicity by the presence of an excess of large earthquakes. Here we
present a cellular automaton of the forest-fire model type that is able to reproduce several size-frequency
distributions depending on the number and location of asperities on the fault plane. The model describes a fault
plane as a two-dimensional array of cells where each cell can be either a normal site or a trigger site.
Earthquakes start on trigger sites. Asperities appear as the dual entities of the trigger sites. We study the effect
that the number and distribution of asperities �the dual of the set of trigger sites�, the earthquake rate, and the
aspect ratio of the fault have on the size-frequency distribution. Size-frequency distributions have been grouped
into subcritical, critical, and supercritical, and the relationship between the model parameters and these three
kinds of distributions is presented in the form of phase maps for each of the five asperity types tested. We also
study the connection between the model parameters and the aperiodicity of the large earthquakes. For this
purpose the concept of aperiodicity spectrum is introduced. The aperiodicity in the recurrence of the large
earthquakes in a fault shows an interesting variability that can be potentially useful for prediction purposes.
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I. INTRODUCTION

If there is a well-established fact regarding regional seis-
micity it is the relationship between the magnitude of an
earthquake and its frequency, known as the Gutenberg-
Richter law �1�. This law is of the power-law type when
magnitudes are expressed in terms of rupture area �2�, n
�S−b, where n is the number of observed earthquakes with
rupture area greater than S and b is the so-called b value,
which is a “universal constant” in the range of 0.5–1.5, al-
though b�1 is the commonest value �2–4�. The Gutenberg-
Richter law �1� implies that earthquakes are, on a regional or
world-wide scale, a self-similar phenomenon lacking a char-
acteristic scale �but see Ref. �5� for a different point of view�.

It is important to notice, however, that the Gutenberg-
Richter law �1� is a property of regional or global seismicity,
which appears when we average seismicity over big enough
areas and long enough time intervals. In the last ten years,
data have been collected to extract statistics on individual
systems of earthquake faults �6�. Interestingly, it has been
found that the distribution of earthquake magnitudes may
vary substantially from one fault to another and that, in gen-
eral, this type of size-frequency distribution is different from
the Gutenberg-Richter law �1�. Many single faults or fault
zones display power-law distributions for only small events
�small compared with the maximum earthquake size a fault
can support, given its area�, which occur in the intervals

between roughly quasiperiodic earthquakes of much larger
size which rupture the entire fault. These large and quasip-
eriodic earthquakes are termed “characteristic” �7�, and the
resulting size-frequency distribution is referred to as charac-
teristic earthquake distribution. It is important to note that
the concept of characteristic earthquake is not universally
accepted among seismologists �6,8,9�.

In any case, due to the short period of instrumental earth-
quake records and the scarcity of paleoseismic studies
�6,10–13�, the statistics of naturally occurring earthquakes in
single faults is poor. This fact justifies the development of
“synthetic seismicity” models �14�, in which long catalogs of
events are generated by computer models of seismogenesis.
Such models can be tuned by requiring that they reproduce
to a reasonable degree what is known of the statistics of past
seismicity and then used to make inferences about the behav-
ior of seismicity using much longer and homogeneous cata-
logs of synthetic events.

Here, we propose a modification of an existing cellular
automaton, the forest-fire model �FFM� �15,16�, as an
earthquake-cycle model. The link between cellular automata
models and seismicity works by discretizing a fault as a one-
dimensional �1D� or two-dimensional �2D� plane made up of
a large number of patches. These models are usually nonde-
terministic and neglect the details of both elasticity and fault
friction, substituting them by simple cellular automata rules.
Despite their simplicity, they are able to reproduce various
types of size-frequency statistics, including Gutenberg-
Richter �1� and characteristic earthquake distributions
�17–30�.

The model presented here is �i� two dimensions, �ii� for a
single fault, �iii� with a percolationlike stress-transfer mecha-
nism, �iv� quasistatic, �v� with a static and dynamic friction
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law with total stress drop, and �vi� dissipative. To this list we
would add that our model is inspired by the concept of as-
perity, as it is the presence of particularly strong elements in
the fault plane that actually controls its relaxation. In this
paper we use the term asperity in the sense in Ref. �31�, that
is, in its macroscopic sense and not in the microscopic one as
used in the Materials Science literature. Thus, an asperity is
an area on a fault that is stuck and large earthquakes unload
them. From this viewpoint, each fault has only one or few
asperities �32,33�; it is common that these high-strength ar-
eas occupy boundary positions on the fault plane, but not
necessarily so.

A one-dimensional version of this model has already been
successfully used by the authors as a renewal model to re-
produce important aspects of the seismic cycle of individual
faults �34� and for prediction purposes �35,36�. This 1D ver-
sion, also known as the minimalist model �MM� because of
its simplicity, has the important advantage that several prop-
erties of the model can be analytically obtained by means of
a Markovian chain approach �34�, but it has the disadvantage
of its low dimensionality and rigidity. The purposes of this
paper are precisely to present the 2D version of the MM and
to cast it in the already well-known framework of the FFM.
For obvious reasons, we will call 2D-MM the two-
dimensional version of the minimalist model although its
relationship to the FFM cannot be forgotten.

Apart from the score of papers addressing the connection
between heterogeneity and size-frequency statistics �37–45�,
the only previous work where the FFM has been directly
linked to seismicity and the earthquake cycle is that of New-
man and Turcotte �46�. Our model has in common with
theirs—the use of a percolationlike stress-transfer
mechanism—but differs in the way earthquakes are trig-
gered: in Ref. �46� a characteristic earthquake is an infinite
percolation cluster �i.e., a cluster of occupied sites spanning
the lattice east–west or north–south�. Because of this trigger-
ing mechanism, Newman-Turcotte �46� model is capable
only of generating characteristic earthquakes, but no smaller
ones in between. Our model generates earthquakes of all
sizes, with a specific size-frequency distribution.

The paper is set out as follows. In Sec. II we present the
model emphasizing its relationship to the forest-fire and
minimalist models. Then, we graphically show the different
types of asperity distributions and the type of two-
dimensional grids that will be studied in the numerical simu-
lations.

The results of the simulations are shown in Sec. III. First,
we present the resulting size-frequency profiles and phase
maps where the type of size-frequency distribution is related
to the parameters of the model. Then, the recurrence prob-
ability of the large earthquakes is analyzed emphasizing the
role of the aperiodicity as a useful compact index that evalu-
ates the predictability of the large events. Section III con-
cludes with a quantitative evaluation of the goodness of sev-
eral prediction strategies.

Finally, in Sec. IV we come back to the nature of the
model, its quantitative differences with the forest-fire model,
discuss the results, and remark on the most relevant conclu-
sions.

II. MODEL AND ITS SIMULATION

The FFM was introduced in Ref. �47� and modified in
Ref. �15� to make it self-organized critical. The Drossel-
Schwabl FFM �DS-FFM� �15� is defined in a hypercubic
lattice of dimensionality 1�d��, although we will concen-
trate here on the d=2 case because of its immediate rel-
evance to two-dimensional fault planes. The model can be
boiled down to four cellular automaton rules �30�: �i� a green
tree catches fire if any of its four nearest neighbors is burn-
ing; �ii� a burning tree turns into an empty site; �iii� at an
empty site a green tree grows with a given probability p; and
�iv� a green tree becomes a burning tree with a probability f
even if none of its neighbors is burning �sparking probabil-
ity�. This fourth rule is the modification that Drossel and
Schwabl �15� introduced in the original model. To make the
implementation on a computer more feasible, a separation of
time scales is imposed by assuming that the growth and
spontaneous ignition cease as long as any trees are burning.
In other words, the time scale of fires is much shorter than
the time scale of tree growth and also than the time between
sparks. In practical terms a realization of the DS-FFM
chooses at random a site for ignition. If the site is occupied
by a tree, this tree and all trees connected to it are instanta-
neously burnt down �i.e., the corresponding sites become
empty�; in the next time step, a tree is planted in a randomly
chosen site of the lattice.

The DS-FFM can be easily “translated” into earthquake
terminology: the 2-d lattice is the fault plane �horizontal size
N and vertical size M�; a site on the lattice is a small patch of
the fault plane; a site with a tree becomes a loaded patch in
the fault; and a fire is an earthquake. Time is measured by the
planting of trees in the DS-FFM and by the addition of load
�or stress� in our model. This slow stress buildup simulates
the remote stress that plate motion adds to real faults. In the
model it is added in discrete units �particles� that can be
thought of as stress quanta �48�. What about the sparking
probability? Here is where the concept of trigger site enters
into the model. In the standard FFM any lattice site can be
ignited if it is occupied by a tree. In the 2D-MM, and this is
the key difference with the standard model, only specific
lattice sites, the trigger sites, can be “ignited” and start an
earthquake. So, we divide the lattice into two sets of sites:
normal sites and trigger sites. Both types of sites can be
unloaded �empty� or loaded �tree�, but only trigger sites can
start an earthquake. The earthquake starts at the very moment
a trigger site becomes loaded. In other words, the more trig-
ger sites the lattice has, the higher the sparking probability is.
If a fraction f of sites is occupied by trigger sites then, on
average, once every 1 / f time steps an earthquake will be
triggered. As in the standard model, the size of the resulting
earthquake will depend on the number of occupied sites that
belong to the same cluster as the ignited trigger site. After an
earthquake, this cluster is emptied �unloaded� and in the next
time step another particle is randomly deposited in the lat-
tice. Clusters are identified and counted with the Hoshen-
Kopelman algorithm �49�.

It is important to stress that a trigger site is not an asperity.
In a sense it is just its dual, as Fig. 1�a� shows. The relation-
ship between trigger sites and asperities is based on the idea
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of a zone of influence or catchment area around each trigger
site �Fig. 1�b��. Sites close to a trigger site are commonly
unloaded upon failure of the trigger site. On the other hand,
sites far from trigger sites tend to accumulate load and are
only unloaded when the total load on the lattice is high and
the probability of finding a percolation path from a trigger
site to a distant nontrigger site has increased. Thus, asperities
are the set of sites outside the catchment area of any trigger
site in the lattice �black areas in Fig. 1�b��. The unloading of
asperities gives rise to large earthquakes. The area occupied
by asperities increases when the number of trigger sites de-
creases, making thus clear the dual relationship between as-
perities and trigger sites.

Figure 1�a� shows the five types of trigger site distribu-
tions that have been used in the simulations and the corre-
sponding asperity maps on the fault plane. Type 1 is an end
asperity and can be regarded as the main geometrical and/or
mechanical heterogeneities that terminate a fault or divide it
into segments. Type-2 and type-3 asperities are central as-
perities, i.e., particularly strong patches in the fault plane that

control the way the fault relaxes. Type 4 is a boundary as-
perity, in a sense the opposite of a central asperity, where the
weakest part of the fault is the central one. Finally, type-5
asperities are randomly distributed over the fault plane. This
classification of asperity types does not intend to be exhaus-
tive. It only includes extreme cases to better appreciate the
influence of the number and distribution of asperities on the
size-frequency statistics.

Because the sparking probability f depends on the number
of trigger sites and the size of the lattice, it is not an inde-
pendent parameter. For type-1 trigger sites f =1 /N, for type-2
triggers, f =2 /N, for type-3 triggers f = �2�M +N−2�� / �MN�,
for type-4 triggers, f =1 / �MN�, and for type-5 triggers, f
=1 /N because we select M sites as trigger sites.

Apart from the number and distribution of asperities
�which fixes the sparking probability f , i.e., the earthquake
rate�, the other parameters of the model are the size N�M of
the lattice, N being the horizontal dimension and M being the
vertical one, and the aspect ratio of the fault plane r=N /M.
Only three of the four parameters r, f , N, and M are inde-
pendent. The aspect ratio is important in real faults because it
is related to the overall size of the fault plane, small faults
being square �circular�—with r�1—and big faults being
rectangular—with r�1—due to the depth limit that the
brittle-ductile transition imposes on the Earth crust �around
15 km for vertical strike-slip faults but can be more for
subduction-type faults�. Considering this depth limit and the
range of surface fault trace lengths �from few kilometers for
small earthquakes to 103 km for great earthquakes�, a rea-
sonable range of aspect ratios for real faults is 1�r�50.

We want to explore the impact that the asperity distribu-
tion and the fault plane aspect ratio have on �i� the size-
frequency distribution, �ii� the time between characteristic
earthquakes, and �iii� the aperiodicity of the earthquake
cycle. All three characteristics are important in assessing the
predictability of the large earthquakes in the model.

III. RESULTS

A. Size-frequency distributions

To appreciate at a glance the type of size-frequency dis-
tributions that the model is able to produce, Fig. 2 shows
several examples as a function of asperity type �upper panel�,
fault plane aspect ratio �middle panel�, and fault size �lower
panel�. All three panels plot the noncumulative size-
frequency distribution P�k�, where k is the size of an earth-
quake �i.e., the number of loaded patches connected to the
trigger site�. Figure 2�a� shows the effect of changing the
type of asperity for a square system of size 50�50. Here we
can already see the three main different types of size-
frequency distributions �27�: supercritical �or characteristic
earthquake type�, critical �or Gutenberg-Richter type �1��,
and subcritical. Type-1, 2, and 4 asperities produce super-
critical size-frequency distributions, although the degree of
supercriticality is not constant, increasing from type 2 to type
1 to type 4. Asperities of type 3 �boundary asperities� pro-
duce an almost-critical size-frequency distribution and
type-5 asperities give a subcritical size-frequency distribu-
tion. In general terms, the degree of criticality is related to
the size of the “bump” at the large-earthquake size end.

FIG. 1. �a� Types of trigger site distributions used in the simu-
lations �left column� and their corresponding asperity maps on a
fault plane �right column�. From top to bottom, type 1: end asperity;
type 2: central vertical asperity; type 3: central horizontal asperity;
type 4: boundary asperities; and type 5: dispersed asperities. �b�
Concept of zone of influence or catchment area. Each trigger site
�light gray� is surrounded by an area �white circles� which is com-
monly unloaded upon failure. Regions of the lattice outside the
catchment area of any trigger site �black� are the asperities. Here
load accumulates and only when the lattice is highly loaded can it
be depleted.

EARTHQUAKE SIZE-FREQUENCY STATISTICS IN A… PHYSICAL REVIEW E 79, 046102 �2009�

046102-3



How the size-frequency distribution changes with the as-
pect ratio r for a type-1 asperity system which is shown in
Fig. 2�b�. The black curve is the size-frequency distribution
for an N=100 one-dimensional MM �34�, and the rest of the

curves are for 2D systems with decreasing r, from 100 �elon-
gated faults� to 1 �square faults�. We see that the slope of the
power-law part is the same for all aspect ratios and, more
surprisingly, that the 1D and the 2D systems also have the
same slope. An important difference between the 1D and the
2D versions of the MM is that in the 1D-MM a strict defi-
nition of a characteristic earthquake can be given, as only the
biggest earthquakes �k=100 in the example� depart from the
power-law curve. On the contrary, the 2D-MM has a broad
range of large earthquakes that do not follow the power-law
curve and which can thus be considered characteristic �7�.
This will have important implications when discussing the
predictability of the model. Notice, also, how the maximum
that marks the characteristic size of the large earthquakes
decreases as r decreases �f is constant and equal to 0.01 in all
the curves� implying a dependence of the degree of criticality
on the aspect ratio.

Finally, Fig. 2�c� depicts the change in size-frequency dis-
tribution as the size of a square system �i.e., N=M� is in-
creased from N=5 to N=500. Here, r is constant and f varies
from 0.2 �smallest lattice� to 0.002 �largest lattice�. The basic
observation is that the distribution is very robust, and little
change can be appreciated as the size increases although the
sparking probability decreases by 2 orders of magnitude. Al-
though small, the change in the size-frequency distribution is
apparent, with an increase in the degree of supercriticality as
the sparking probability decreases �30�.

This qualitative survey of the range of size-frequency dis-
tributions is insufficient to quantitatively relate the type of
asperity to the parameters of the model. For that purpose,
extensive numerical simulations have been carried out to re-
construct the phase space of the model. As already said, the
model has four parameters, N, M, r, and f , although only
three are independent. Cuts of the global phase space for
each type of asperity are displayed in Fig. 3. Phase maps are
shown with N in the horizontal axis and M in the vertical
axis, together with r and f as isolines. Lines of constant
aspect ratio are dashed, while lines of constant sparking
probability are dotted. The type of size-frequency distribu-
tion is shown in yellow �light gray� for supercritical behav-
ior, pale blue �middle gray� for critical behavior, and navy
blue �dark gray� for subcritical behavior. Due to the difficulty
in defining some transitional cases, two intermediate behav-
iors have been introduced for the transition from �pure� su-
percritical to �pure� critical behavior and for the transition
from �pure� subcritical to �pure� critical behavior. We will
now describe the behavior of the model for each asperity
type.

1. Asperity type 1 (end asperity)

All the simulations carried out with trigger sites of the
first type give a supercritical size-frequency relation �Fig. 3,
first graph�. Examples of specific size-frequency curves have
already been given in Figs. 2�b� and 2�c�. They clearly show
the positive departure from the power law for large earth-
quakes that is the hallmark of supercritical behavior. The
sparking probability �a proxy of earthquake rate� is indepen-
dent of M, and so isolines are vertical �four are shown in the
figure, from 0.01 on the left to 0.0025 on the right�. Careful

FIG. 2. �Color online� Size-frequency distribution for the
2D-MM as a function of type of asperity �upper panel�, aspect ratio
�middle panel�, and system size �lower panel�.
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observation of specific size-frequency curves indicates that
the degree of supercriticality varies more rapidly with the
aspect ratio than with the sparking probability. The highest
degree of supercriticality is connected in type-1 asperity
simulations with elongated systems �large r� and small
sparking probabilities. This is logical if we resort to the con-
cept of catchment area introduced before �Fig. 1�b��. If the
aspect ratio is large �very elongated faults�, trigger sites in a
vertical edge are few and most of the lattice is outside their
aggregated catchment area. Because of the elongated charac-
ter of the lattice, few percolation paths are possible between
trigger sites and the opposite end of the lattice, facilitating
thus the storage of load in the asperities by simultaneously
depleting the load in the catchment areas of the trigger sites.
Few trigger sites also mean a low earthquake rate, favoring
again the accumulation of load in the system and supercriti-
cality.

2. Asperity type 2 (vertical central asperity)

This case has a unique large central asperity, elongated in
the vertical direction, which is the dual of two sets of trigger
sites occupying the two vertical edges of the lattice. The
behavior of the system for asperities of the second type
matches closely that of the previous case, although the de-
gree of supercriticality is lower because the sparking prob-

ability is higher for the same N, M, and r. This is shown in
the figure by the small area with critical behavior near the
left corner of the triangle. For these simulations the positive
excess of large earthquakes has disappeared. Obviously, the
higher earthquake rate implied by the larger value of f pre-
cludes the complete filling of the lattice, inhibiting in this
way the occurrence of system-wide earthquakes in this area
of the phase space.

3. Asperity type 3 (horizontal central asperities)

Type-3 asperity systems have one or several central as-
perities elongated in the horizontal direction, far from all the
edges of the fault plane as a consequence of the location of
the trigger sites. The earthquake rate has increased again
compared with type-1 and type-2 systems, so that f values
are larger. This is clearly shown in Fig. 3, where almost half
the area of the graph is below the f =0.01 isoline. Also, f
isolines are now near horizontal, whereas in the two previous
cases they are vertical, intersecting r isolines at high angles.
This increase in the sparking probability gives rise to a richer
variability of behavior, exhibiting the full range of size-
frequency distributions, from subcritical for large-f , large-r
lattices to supercritical for small-f , small-r lattices. The de-
gree of supercriticality increases from the lower left corner to
the upper right corner in the graph and depends both on f and

FIG. 3. �Color online� Phase maps for the five different asperity types. The four parameters of the model are explicitly shown in each
graph. N increases from left to right and M from bottom to top. The other two parameters of the model are included as isolines �dashed lines
for the aspect ratio r and dotted lines for the sparking probability f�. The resulting type of size-frequency distribution is color coded in yellow
�light gray� for supercritical behavior, cyan �middle gray� for critical behavior, and navy blue �dark gray� for subcritical behavior. Interme-
diate behaviors between supercritical and critical and between subcritical and critical are also included.
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r. The smallest degree of supercriticality is found at the base
of the triangle near its left corner. Here the earthquake rate is
largest and so is the aspect ratio. A large aspect ratio tends to
overlap the catchment areas of the upper and lower rows of
trigger sites, making asperities very small or even nonexist-
ent; this configuration inhibits the accumulation of load �fa-
vored also by the large-earthquake rate� and the system pro-
duces only small and medium earthquakes, but no large ones.
This is the definition of subcritical behavior.

The upper right corner of the phase map has the opposite
values of r and f , both being small. A square lattice maxi-
mizes the size of the central asperities and a small f mini-
mizes the earthquake rate. Both effects facilitate the accumu-
lation of load in the central part of the lattice and the
production of system-wide earthquakes �supercritical behav-
ior�.

4. Asperity type 4 (boundary asperity)

Although this type of asperity distribution cannot be con-
sidered too realistic for surface-braking faults �the upper
horizontal edge of these faults is always a free boundary� it
can have some bearing on blind faults �those that do not
reach the surface and are pinned at all four edges�. Leaving
aside the appropriateness of type-4 asperities in relation to
real faults, they are interesting additions to the model, as
they allow the exploration of very small values of f for a
wide range of system sizes. Because of this, the sparking
probability is very low compared with the other types of
asperities. This sole characteristic makes the behavior uni-
versally supercritical, although supercriticality decreases to-
ward the lower left corner of the graph. Isolines of f are
straight lines with negative slope.

5. Asperity type 5 (distributed asperities)

This last type of asperity distribution differs from all the
others in its stochastic nature. M trigger sites are randomly
�but homogenously� located on the lattice. Homogeneously
means that each row of the lattice has one and only one
trigger site and no trigger site can share the same column.
This assignment assures that all trigger sites are surrounded
by nontrigger sites. Lines of constant f and r are identical to
those of type-1 asperities, but the resulting phase map is
completely different. Again, as was the case with type-3 as-
perities, the behavior is rich and size-frequency distributions
of the three types are represented in different parts of the
map. There is a clear dependence on r and f . Subcritical
behavior is restricted to the small-r and large-f region, and
supercritical behavior is found only in the lower part of the
phase map, for large values of r �i.e., for elongated faults�.
Compared with type-3 systems, we see that now the subcriti-
cal region is restricted to square systems. This is a conse-
quence of the way trigger sites are dispersed in the lattice
�one per row and no two trigger sites in the same column�.
When the lattice is very elongated, few trigger sites are
seeded and the probability is high of finding areas devoid of
trigger sites �i.e., with asperities�. On the other hand, when
the lattice is square, many more trigger sites are seeded, and
the probability of finding large asperities is consequently
smaller; thus, the behavior of the system becomes less and
less supercritical as r tends to 1 �for constant N�.

B. Aperiodicity spectrum and interevent time distribution

A compact way of assessing the predictability of the large
earthquakes in the 2D-MM model is by means of their ape-
riodicity �. The aperiodicity is a quantitative measure of the
regularity of a time series. If � is the average time between
two consecutive characteristic earthquakes �i.e., the mean du-
ration of the earthquake cycle� and � is the standard devia-
tion of the duration around the mean, then �=� /�. The ape-
riodicity is otherwise known as the coefficient of variation.
Molchan �50� showed that the predictability of a nonperiodic
sequence of events is determined by the coefficient of varia-
tion rather than the interevent time distribution itself.

We have computed the aperiodicity of the large earth-
quakes in the 2D-MM and an example of its behavior is
shown in Fig. 4 as the thick gray line in the main plot.
Because the definition of a characteristic earthquake in the
2D-MM is not as straightforward as in the 1D case �34�, we
have calculated, for completeness, the whole spectrum of
aperiodicities, taking as the target of observation any earth-
quake bigger than k, from k=1 to k=MN. This is what the
gray curve means in Fig. 4. The aperiodicity spectrum for the
2D-MM has several interesting properties: it starts �k=1� and
ends �k=MN� at ��1; from k=1 it decreases to a minimum
value ���0.3 for a 10�100, type-1 asperity system�; and
then it starts increasing until reaching again ��1 for earth-
quakes close to the maximum allowable size. This behavior
is similar for other sizes, aspect ratios, and asperity types and
can thus be considered general.

Thus, we see how the aperiodicity spectrum evolves from
pure Poissonian ��=1� to quasiperiodic ���1� to ��1
again �but clearly non-Poissonian� as the minimum size of
the target earthquakes changes from 1 to M �N. In the same
panel of Fig. 4 we have drawn the size-frequency distribu-
tion �black curve� to see how the increase in aperiodicity
near the right-hand side of the plot relates to the deviation
from the power law in the size-frequency distribution. Note
that while the size-frequency curve P�k� corresponds to in-
dividual �nonaccumulated� values of the size k, the curve of
aperiodicities corresponds to accumulated �	k� values of its
size.

The decrease in aperiodicity in the first part of the aperi-
odicity spectrum is easily explained. The time series of the
2D-MM can be considered as the superposition of two dif-
ferent processes: one process, the generation of events of any
size, is random in time; the other, the generation of interme-
diate and large earthquakes, is quasiperiodic. So, when
events of random origin are eliminated from a time series,
what remains has, necessarily, a lower aperiodicity. This is
why the aperiodicity decreases from 1 toward a minimum
value. This minimum value depends on the asperity distribu-
tion, system size, and system aspect ratio. In particular, the
regularity is enhanced as the aspect ratio r grows. It is clear
that the elongated form favors the storing of many particles
in the system �highly loaded fault� before one of the few
trigger sites is hit, which will frustrate the formation of a big
cluster of occupied sites. This low � value remains almost
constant up to k	k3, where k3=550 �see the caption of Fig.
4�. The reason for this lies in the fact that the middle-sized
events k2�k�k3 have only a small impact on the complete
range k	k2, as they are scarce and their absence �when we
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consider only the range of sizes k	k3� is not so important
from the aperiodicity point of view.

The reason for the increase in aperiodicity when consid-
ering only the final fraction of the largest earthquakes �k
�k3� is due to the fact that, in this model, the enhanced
regularity �low �� corresponds to the inclusive consideration
of all the large relaxations k	k3 �that is, all the relaxations
under the hump in the size-frequency distribution�. Thus,
when the target of observation does not take into account this
unity but focuses only on sizes k	k4, the regularity is lost
and � grows. This is clearly seen in Fig. 5, where a particular
although representative section of a time series coming from
the 2D-MM is shown: the regularity in the occurrence of
events is greater when all events above 550 are considered. If
this lower limit of 550 is steadily increased, more and more
large events �all belonging to the same group� are excluded
from the time series and their aperiodicity increases. Near the
maximum of the hump in the size-frequency distribution
�k4=850 in Fig. 5� the regularity of the sequence of events
drops as the quasiperiodic process that generates these large
earthquakes is split into its random components �each par-
ticular size�.

The shape of the aperiodicity spectrum, as depicted in
Fig. 4 is not unique to the 2D-MM. We have verified that the
Abelian sandpile model �18,51,52� also has an aperiodicity
spectrum which is qualitatively similar, with a high aperiod-

icity �close to one� both for all the events and only the largest
ones and a minimum in between. The same is true for
Burridge-Knopoff slider-block automata models �37,53�.

Figure 4 also shows how the interevent time probability
distribution changes with the definition of characteristic
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FIG. 4. Aperiodicity spectrum of a 10�100 system with a type-1 asperity �thick gray curve in main panel�. The aperiodicity is plotted
as a function of the minimum earthquake size k included in the time series. The main panel also shows the size-frequency distribution �black
curve�. The four smaller plots are interevent time distributions for specific points on the aperiodicity spectrum, k	k1=1, k	k2=40, k
	k3=550, and k	k4=850. Point k2 has been chosen inside the power-law section of the size-frequency distribution; point k3 is located just
where scaling breaks down �typically this occurs when more than half of the sites in the lattice participate in an earthquake�, and point k4 is
located near the maximum on the characteristic earthquake hump. Time in these plots is dimensionless, measured in number of particles
added to the system.

FIG. 5. �Color online� Time series for one realization of a 10
�100 type-1 asperity system. 5�105 time units are shown �time is
dimensionless, measured in number of particles added to the sys-
tem�. Each vertical line is an earthquake, whose height represents
its size. Three sizes are highlighted by horizontal lines, k2=40, k3

=550, and k4=850.

EARTHQUAKE SIZE-FREQUENCY STATISTICS IN A… PHYSICAL REVIEW E 79, 046102 �2009�

046102-7



earthquake. Time t is discrete and is measured in units of
particles added since the last characteristic earthquake. Four
interevent time probability distributions have been included,
corresponding to four points on the aperiodicity spectrum
�k1	1, k2	40, k3	550, and k4	850�. The first point, k1
	1, includes all the events generated by the dynamics of the
2D-MM; the second point, k2	40, is located where the ape-
riodicity levels off after the initial decrease; the third point,
k3	550, coincides with the deviations from the power law
in the size-frequency distribution; and the fourth point, k4
	850, is at the summit of the hump that defines the charac-
teristic earthquakes of the model.

The interevent time distribution for k	1 is purely geo-
metric, reflecting the Poissonian nature of the model when
all earthquakes are included; the distribution for k	40 has a
maximum for t�0 and faster than geometric decay for large
times. The most important difference between this and the
k	550 distribution is that the former lacks a stress shadow.
A stress shadow is the time period at the beginning of an
earthquake cycle where the probability of having another
great earthquake is zero and is a basic ingredient of all seis-
mic faults. The k	550 interevent time distribution corre-
sponds to the end of the power-law section of the size-
frequency distribution and is the most reasonable choice for
the definition of characteristic earthquakes in the 2D-MM.

If we focus on just the largest earthquakes, k	850, near
the tip of the hump in the size-frequency distribution, we see
that the interevent time distribution is not a exponential, al-
though for longer times the decay is indeed exponential.
Apart from the exponential tail, the interevent time distribu-
tion for the k	850 case has a stress shadow for short time
intervals and a maximum, followed by the exponential decay.
Both elements of the interevent time distribution are impor-
tant for the predictability of these earthquakes, as Sec. III C
will clarify.

C. Forecasting

A convenient way to assess the predictability of a time
series is by trying to forecast events �called target events� by
declaring alarms at particular times. The aim is to declare
alarms before all target events in order not to miss any, but to
declare them just before the events in order to minimize the
total alarm time. Many strategies can be devised to declare
the alarms but there is a reference strategy to which all others
can be compared �46,54,55�. This strategy consists of setting
the alarm a fixed time interval �waiting time� after each tar-
get event and maintaining it until the occurrence of the event.
If the following target event in the time series occurs before
the alarm is raised, it is counted as a prediction error; if the
following target event in the time series occurs after the
alarm is raised, it is counted as a prediction success and the
alarm is then canceled.

The fraction of errors fe �number of missed events divided
by the total number of events� and the fraction of alarm time
fa �total alarm time divided by the total duration of the time
series� can be computed as a function of the waiting time t
and the purpose is to find the optimum waiting time. This
optimum waiting time depends on the relative importance
that failing to predict an event has compared to keeping the

alarm on. An objective function, called loss function, L, can
be defined that incorporates this trade-off in each particular
case. Here we will use the simplest of them, L= fe+ fa, where
failure to predict and a long alarm time are equally penal-
ized. Obviously the aim is to find the waiting time t= t� that
minimizes L�t�. This minimum value is denoted by L�

=L�t��. The best way to graphically display this is by means
of an error diagram, where the fraction of errors fe runs
along the horizontal axis and the fraction of alarm time fa
runs along the vertical axis �Fig. 6�. Error diagrams were
introduced in earthquake forecasting by Molchan �50� who
contributed with rigorous mathematical analysis to the opti-
mization of the earthquake prediction strategies. In an error
diagram L=0 means a perfect prediction �all the events have
been predicted and the alarm was raised just before each
event, so that fa→0� and L=1 means no prediction at all,
either because we “predicted” all the events �fe=0� by keep-
ing the alarm always on �fa=1� or because the alarm was
always off �fa=0� and we missed all the events �fe=1�.

With these tools in hand, we return to the question raised
at the beginning of the section about the predictability of the
characteristic earthquakes in the 2D-MM model. Figure 6
shows the predictability of the same 10�100 2D-MM sys-
tem whose aperiodicity spectrum and interevent time distri-
butions were depicted in Fig. 4. Four error diagrams have
been constructed with the reference strategy for events of
sizes k	1, k	40, k	550, and k	850. Several observa-
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FIG. 6. �Color online� Error diagrams for the assessment of the
predictability of large earthquakes in a 10�100 2D-MM system.
The four panels show the outcome of the reference strategy for the
four event sizes depicted in Fig. 4, i.e., for earthquakes with sizes
k	1, 	40, 	550, and 	850. L� is the minimum value of the loss
function L�t�= fe�t�+ fa�t�. Note that the best predictability corre-
sponds to the case when all the earthquakes in the scaling break-
down section are taking into account �large hump in the size-
frequency distribution in Fig. 4� and that this predictability is
diminished when only part of the hump is chosen as the prediction
target.
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tions are worth commenting on. For the k	1 case, i.e., when
all the earthquakes are taken into account, irrespective of
their size, the interevent time distribution is an exponential
distribution �see Fig. 4� and its error diagram for the refer-
ence forecasting strategy coincides with the fe+ fa=1 line, as
it should be. In other words, the 2D-MM model is a realiza-
tion of a Poisson process when all the events are included
and the occurrence of earthquakes of any size is random in
time.

Things get more interesting when small earthquakes are
excluded and the focus is placed on the forecasting of larger
events. When all earthquakes k2	40 are included, the error
diagram is no longer along the diagonal line. The minimum
loss function is L�=0.50, with fe�0.11 and fa�0.39. This
diagram and the one for k3	550 are quite similar, with a
minimum loss function of L�=0.47, slightly lower, and fe
�0.04 �fewer events are missed, although the alarm time
increases from 39% to 41%�. This is compatible with the
aperiodicity spectrum, as both sizes belong to the section of
low aperiodicity �around 0.35� in Fig. 4. The main difference
is in the width of the stress shadow region �zero in the k2
case and different from zero in the k3 case� which has its
consequence in the error diagram in a reduction in the frac-
tion of errors when the stress shadow is different from zero
�only 4% of the events are missed compared with 11% in the
former case�. Finally, when a point is selected inside the
characteristic earthquake hump �k4	850�, where the aperi-
odicity has again started to increase toward one, the error
diagram has a minimum loss function considerably greater
�L�=0.65�, meaning that the predictability of this fraction of
characteristic earthquakes is lower than when all the charac-
teristic earthquakes are taken as a group. These results agree
with what we have seen in the aperiodicity spectrum in Fig.
4 and the qualitative explanation given in Sec. III C.

IV. DISCUSSION AND CONCLUSIONS

The 2D-MM tries to capture the basic functioning of an
isolated seismic fault subjected to a long-term accumulation
of stress �due to the plate motions� and a sudden release of
stress by earthquakes. In this context, the separation of time
scales is even more obvious than in the original DS-FFM
because earthquakes have durations of seconds whereas
times between earthquakes in the same fault are measured in
terms of years or hundreds of years. The model is dissipative
because a particle that hits a loaded site just disappears from
the system. Time is discrete and ticks at the pace of the
addition of particles, one per time step.

We have analyzed the 2D-MM in the light of the original
FFM. The key difference with the DS-FFM is that ignition is
limited to a subset of sites on the lattice, the trigger sites, and
the topology of this subset controls the way the model be-
haves, as in real seismic faults �31,56�. Asperities are the
dual of trigger sites and can be defined as the set of lattice
sites outside the aggregated catchment area of all trigger
sites. In particular, the model shows that faults can display
both a Gutenberg-Richter �1� and a characteristic earthquake
distribution depending on the number and location of asperi-

ties in the fault plane, as pointed out by several authors.
�6,8,57�. The 2D-MM suggests that there is no specific dis-
tribution, and that it is the distribution of the asperities that
controls the stress relaxation during the seismic cycle: one or
few big compact asperities tend to give a characteristic earth-
quake distribution �i.e., type-1, type-2, and type-4 asperity
systems�, whereas small and/or distributed asperities tend to
promote a Gutenberg-Richter �1� or subcritical one �type-3
and type-5 systems�. This is compatible with what is known
about real asperities in seismic faults �58–60�.

The types of size-frequency distributions of the 2D-MM
and DS-FFM are very similar but with an important differ-
ence: the slope of the power-law section. This slope reflects
the distribution of cluster �fire, earthquake� sizes and is given
by kN�k��k1−
, where N�k� is the number of clusters of size
k and 
 is a critical exponent whose value is not yet well
known for the DS-FFM but ranges from 
=2.08 �61� to 

=2.15 �62�. In the 2D-MM 
�2.67 for large lattices, well
above the upper limit accepted for the DS-FFM. The change
in critical exponent is clearly due to the topology of the
subset of sites that can trigger avalanches. Precisely, the as-
perity of type 5 �Fig. 1� has been devised to simulate the way
the DS-FFM relaxes and, as Fig. 2 demonstrates, the critical
exponent changes from 
�2.67 to 
�2.25, approaching the
value that characterizes the DS-FFM.

A useful element that has been introduced in this paper for
the analysis of the predictability of discrete threshold sys-
tems is the aperiodicity spectrum. The aperiodicity spectrum
quantifies the predictability of a time series as the definition
of the events to be predicted changes. In other words, it
summarizes the predictability of all the time series that can
be constructed from the basic one when the minimum event
size changes from 1 to the maximum allowable size
�N�M�. The usefulness stems from the fact that the aperi-
odicity spectrum allows us to see important changes in the
behavior of the “pruned” time series, changes that are related
to the dynamics of the system. A similar plot in the context
of spring-block models has also been used in Ref. �53�.

Although the aperiodicity of a time series is by no means
a rigorous proxy of its predictability, we have shown that a
combination of the aperiodicity spectrum and error diagrams
constructed for the reference strategy for specific points in
the aperiodicity spectrum is a powerful graphical tool for the
analysis of the predictability of the 2D-MM. Because we
have observed that the behavior of the 2D-MM is more the
rule than the exception as far as the aperiodicity spectrum is
concerned �because the Abelian sandpile model has a quali-
tatively similar spectrum�, it could be a useful tool for the
analysis of the predictability of a whole group of threshold
cellular automata �18,23,24,26,38,63�. A more in-depth
analysis of the predictability of all these models is currently
under way.
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