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We present the results of a numerical study of flow past an inclined flat plate and reveal a route of the
transition from steady to chaotic flow. We find that the chaotic flow regime can be reached through the
sequential occurrence of successive period-doubling bifurcations and various incommensurate bifurcations.
The results provide physical insight into the understanding of fundamental flow behaviors underlying in this
flow system and complement the transition phenomenon from steady to chaotic flow.
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Transition from a laminar to chaotic flow through diverse
routes is of significance in fundamentals and applications. In
the general theory of nonlinear dynamics, the dynamical sys-
tem may become chaotic via period-doubling bifurcations
�Feigenbaum scenario �1,2��, various incommensurate bifur-
cations �Ruelle-Takens-Newhouse scenario �3,4��, or inter-
mittency regime �Manneville and Pomeau scenario �5��.
Based on previous studies in closed and open flows, such as
Rayleigh-Bénard convection, Taylor-Couette flow, and bi-
nary mixture convection, we have noticed that the transi-
tional routes of these flows to chaotic states may solely take
the period-doubling bifurcations �6,7� or the various incom-
mensurate bifurcations �8–10�.

Flow of a fluid past a body, e.g., cylinder and flat plate, is
a well-known phenomenon in daily life and engineering, and
involves complicated flow dynamics. A most important pa-
rameter to characterize this kind of flow is the Reynolds
number �Re� �11�. When Re is over a critical value in the
flow past a cylinder or an inclined flat plate, the transition
from steady to periodic flow marked by a Hopf bifurcation
was exhibited �11�. As Re increases further, the flow behind
a circular cylinder transforms to chaos following the period-
doubling bifurcations �12�. However, the transition route
from steady to chaotic state for flow past an inclined flat
plate has never been studied but is highly desirable for un-
derstanding the fundamental flow behaviors. Here we show
this transition route and reveal a transition process with both
the period-doubling and various incommensurate scenarios
occurring sequentially.

We consider the flow system as an incompressible fluid
with free-stream speed U past an inclined flat plate of length
L shown in Fig. 1. Two control parameters are the inclined
angle � with respect to the free-stream flow and the Rey-
nolds number Re=UL /� with � as the kinematic viscosity of
the fluid. Here, a systematical study was carried out for 0
���45° and Re�800. The methodology is a direct nu-
merical simulation using a multiblock lattice Boltzmann
method �13,14� with second-order accurate treatment for the
boundary conditions �15�. No-slip boundary condition is
used on the body surface. Our code has been validated care-
fully �16,17�. Following our extensive tests, the computa-

tional domain is chosen as −10�x�30L and −10�y
�10L with the finest lattice spacing 0.005L in the near re-
gion of the plate. To reliably identify the flow states, the
computed time elapses to 3000L /U.

We first summarize our findings in the Re-� plane for the
transition route of the flow system from steady to chaotic
state. When Re or � increases in Fig. 2�a�, the flow from
steady in region I to periodic state in region II occurs via a
Hopf bifurcation. Figure 2�b� shows the basic frequency f1
normalized by U /L, corresponding to the boundary of I and
II �Fig. 2�a��. The frequency f1 decreases with the increase in
�. As a validation, the present results shown in Figs. 2�a� and
2�b� agree well with previous data predicted by Jackson �11�
who only dealt with the Hopf bifurcation. For subsequent
motions in the periodic state in Fig. 2�a�, the first period-
doubling bifurcation is generated from regions II to III,
where subharmonic frequency f1 /2 is excited via a spectral
analysis shown below. Then, a sequence of successive
period-doubling bifurcations is detected in region III.

Based on our fine numerical experiments, we have no-
ticed that, unlike a usual transitional route of the period-
doubling bifurcations in some flows �6,7�, the present flow
system does not enter chaotic state at the “end” of the period-
doubling bifurcations. In Fig. 2�c� for an enlarged view of
region III, two- and three-frequency quasiperiodic flow states
are identified in the quasiperiodic region. The flow subse-
quently becomes chaotic state via the various incommensu-
rate bifurcations, similar to the Ruelle-Takens-Newhouse
scenario. As an example, Fig. 2�d� shows the successive
period-doubling and various incommensurate bifurcations
leading to chaos as the increase in Re at �=25°. Here we
find that the period-doubling and various incommensurate
bifurcations coexist in a flow system.
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FIG. 1. Sketch of free-stream flow of a fluid past an inclined flat
plate. Cartesian coordinate system �x ,y� with the origin o at the
leading edge of the plate is used.
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According to the overview of the flow states in the Re-�
plane, we then discuss the relevant behaviors in detail using
Fourier power spectra, vortical structures, and phase-space
trajectories. To clearly present the results in Figs. 2�a� and
2�c�, we will exhibit the transition processes from steady to
chaotic flow via a fixed �=25° varying with Re and via a
fixed Re=600 varying with �, respectively.

Figure 3 shows the Fourier power spectra of the velocity
at point x=L and y=−0.45L for �=25°, corresponding to
Fig. 2�d�. The power spectrum contains a series of peaks at
the primary frequency f1 and its harmonic frequencies 2f1,
3f1, etc. for Re=315 �Fig. 3�a��. The flow system is a
frequency-locking phenomenon. To understand the bifurca-
tion behaviors, the corresponding vortical structures in the
physical space are shown in Fig. 4. It is seen that regular von
Kármán vortex street is formed in the wake for Re=315 �Fig.
4�a��. As Re increases to 320, subharmonic frequency f1 /2 is
excited in Fig. 3�b�. We have identified that the transitional
process via the period-doubling bifurcation exists up to Re
=575. The occurrence of a period-doubling can be explained
as follows. In the development of vortices in the wake �Fig.
4�b��, the vortices have the trend of pairing over twice pri-
mary periods 2T1 with T1=1 / f1, consistent with the findings
of flow past a circular cylinder �12�. It is worth mentioning

that the period-doubling bifurcation does not lead to vortex
merging and the wake retains its basic spatial structure �12�.
In contrast, the appearance of a subharmonic phenomenon in
shear layer flow does imply vortex merging �18�.

With the increase of Re, two- and three-frequency quasi-
periodic flow states are generated. For Re=580 �Fig. 3�c��,
the second basic frequency f2 is excited in the power spec-
trum, where the winding number, W= f2 / f1 �19�, is irrational.
Spectral peaks in Fig. 3�d� occur in linear combinations of
the two frequencies related by m1�f1 /2�+m2f2, with m1 and
m2 as integers. Correspondingly, Fig. 4�c� shows the vortical
pattern, similar to a well-organized vortical structure in the
wake of an transversely oscillating circular cylinder �20�,
characterized by both lines of vortex-pairs moving down-
ward due to their induced velocity and of vortices ranked by
opposite signs alternately, resulting in f2 in the vortices evo-
lution. With the increase in Re, e.g., Re=700 �Fig. 3�e��, the
third basic frequency f3 is excited with the irrational winding
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FIG. 2. Sketches of the transition from steady to chaotic flow.
�a� Boundaries of critical parameters for the Hopf bifurcation plot-
ted by the line plus � and the first period-doubling bifurcation by
the line plus �. I represents steady-state region, II one frequency-
locking region, and III complicated region. � represents the data in
�11�. �b� The basic frequency f1 corresponding to the boundary
between I and II. � is the data in �11�. �c� Enlarged view of region
III. D represents the period-doubling region. The region marked by
symbols is a fine calculation zone with dense selected parameters
Re and �. These symbols represent period-doubling regime ���,
quasiperiodic regime ���, and chaotic regime ���. Flow past an
elliptic airfoil at Re=600 exhibits periodic ��� and period-doubling
state ��� at �=0.3, and period-doubling ���, quasiperiodic ���,
and chaotic state �	� at �=0.1. �d� Schematics of the successive
bifurcations leading to chaos versus Re at �=25°.
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FIG. 3. Power spectrum density �PSD� of the velocity compo-
nent in the y direction at point x=L and y=−0.45L for �=25° and
�a� Re=315, �b� 320, �c� and �d� 580, �e� 700, and �f� 800. Here, �d�
is an enlarged view of �c�.
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FIG. 4. Instantaneous vorticity contours at �=25° and �a� Re
=315, �b� 320, �c� 580, and �d� 800. Solid lines represent positive
values and dashed lines negative values.
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numbers f2 / f1 and f3 / f1, and peaks in the power spectrum
are related to the linear combinations of f1 /2, f2, and f3.
From the above analysis, we can reasonably understand that
the route of the transition from steady to chaotic flow is
closely associated with the vortices evolution behind the
plate.

When Re is further increased to 800, an aperiodic behav-
ior occurs. The broadband continuous spectrum in Fig. 3�f�
clearly depicts the chaotic behavior, and the vortex structure
in Fig. 4�d� shows complex aperiodic interactions. The dy-
namical nature of the transition process from order to chaotic
state may be diagnosed by calculating the largest Lyapunov
exponent, �E �21�, from the time-dependent data obtained
numerically. Using the treatment �9�, near zero values of the
Lyapunov exponents are predicted for nonchaotic flows up to
Re=730 approximately in Fig. 2�d�. Positive Lyapunov ex-
ponents are obtained for Re�730, e.g., �E�0.38 for Re
=800, and verify chaotic flow character.

Further, we briefly describe the transition processes vary-
ing with � at a fixed Reynolds number Re=600. The power
spectra and the phase-space plots of the velocity components
�u ,v� are shown in Fig. 5, respectively. At �=21° �Fig. 5�a��,
the flow lies in periodic region with a primary frequency f1
in the power spectrum and one limit cycle in the phase-
space. With the increase in �, a period-doubling bifurcation
occurs at �=24° �Fig. 5�b��, resulting in a peak of f1 /2 and
branching into two connected limit cycles. When �=25°
�Fig. 5�c��, a second frequency f2 is excited in the power

spectrum and spectral peaks occur in a relation of m1�f1 /2�
+m2f2. The corresponding phase-space exhibits two limit tori
which depict the quasiperiodic behavior. Further, as � in-
creases to 26° �Fig. 5�d��, the broadband continuous spec-
trum is generated and an extremely tangled plot clearly pre-
sents that the flow has resulted in a chaotic state, which is
confirmed by �E�0.26.

Following the above transition process, we have noticed
that the flow state is sensitive to the change of � in the local
region around Re=600 and �=26° shown in Fig. 2�c�. When
� increases from 26 to 26.3°, and further to 26.5°, the flow
changes from chaotic to quasiperiodic and to period-
doubling state. For �=26.3° �Fig. 5�e��, the power spectrum
exhibits a second frequency f2; the subharmonic primary fre-
quencies f1 /2, f1 /4, and f1 /8; and the peaks related to linear
combinations m1�f1 /8�+m2f2. It means that both the period-
doubling and incommensurate bifurcations coexist in this
flow system. The phase-space plot depicts two limit tori, rep-
resenting that the flow behavior is dominated by the quasip-
eriodic state. Then, at �=26.5° �Fig. 5�f��, a sequence of
successive period-doubling bifurcations happens in view of
the subharmonic primary frequencies and eight limit cycles.
When � increases further, the system dynamics at �=28 and
30° in Figs. 5�g� and 5�h� are similar to the cases at �=24
and 21°, respectively. We also notice that, as typically shown
in Fig. 5, one period-doubling event occurs as ��26° ap-
proximately and several period-doubling events happen as
��26°.
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FIG. 5. Power spectrum density of the velocity and phase-space plot of the velocity components �u ,v� at point x=L and y=−0.45L for
Re=600 and �a� �=21, �b� 24, �c� 25, �d� 26, �e� 26.3, �f� 26.5, �g� 28, and �h� 30°.
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Finally, flow past an elliptic airfoil with different thick-
ness ratios ��� is briefly studied to examine the influence of
the geometry of body on the transition process. Typical re-
sults are shown in Fig. 2�c� for Re=600. At �=0.1, the tran-
sition process is similar to the flat plate flow shown in Fig. 5.
As � increases, say, �=0.3, only the period-doubling bifur-
cations occur. Based on extensive results �not shown here�,
we find that the regions of chaotic state and various incom-
mensurate bifurcations shrink gradually with the increase
in �.

In summary, the transition route from steady to chaotic

state for flow past an inclined flat plate has been studied. A
transition process via the sequential occurrence of the period-
doubling bifurcations and the various incommensurate bifur-
cations is revealed. The results obtained in this study
complement the transition phenomenon from steady to cha-
otic flow.
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