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Fluctuations and oscillations in a simple epidemic model
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We show that the simplest stochastic epidemiological models with spatial correlations exhibit two types of
oscillatory behavior in the endemic phase. In a large parameter range, the oscillations are due to resonant
amplification of stochastic fluctuations, a general mechanism first reported for predator-prey dynamics. In a
narrow range of parameters that includes many infectious diseases which confer long lasting immunity the
oscillations persist for infinite populations. This effect is apparent in simulations of the stochastic process in
systems of variable size and can be understood from the phase diagram of the deterministic pair approximation
equations. The two mechanisms combined play a central role in explaining the ubiquity of oscillatory behavior
in real data and in simulation results of epidemic and other related models.
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Cycles are a very striking behavior of prey-predator sys-
tems also seen in a variety of other host-enemy systems—a
case in point is the pattern of recurrent epidemics of many
endemic infectious diseases [1]. The controversy in the lit-
erature over the driving mechanisms of the pervasive noisy
oscillations observed in these systems has been going on for
long [2], because the simplest deterministic models predict
damped, instead of sustained, oscillations. One of the aspects
of this controversy is whether these mechanisms are mainly
external or intrinsic, and the effects of seasonal forcing terms
[3.4] and of higher-order nonlinear interaction terms [5] have
been explored in the framework of a purely deterministic
description of well-mixed infinite populations. These more
elaborate models exhibit oscillatory steady states in certain
parameter ranges and have led to successful modeling when
external periodic forcing is of paramount importance [6], but
they fail to explain the widespread nonseasonal recurrent
outbreaks found, for instance, in childhood infectious dis-
eases [7].

During the last decade, important contributions have
come from studies that highlight the inherently stochastic
nature of population dynamics and the interaction patterns of
the population as important endogenous factors of recurrence
or periodicity [8]. A general mechanism of resonant amplifi-
cation of demographic stochasticity has been proposed to
describe the cycling behavior of prey-predator systems [9]
and applied recently to recurrent epidemics of childhood in-
fectious diseases [10]. The role of demographic stochasticity
modeled as additive Gaussian white noise of arbitrary ampli-
tude in sustaining incidence oscillations had long been ac-
knowledged in the literature [11]. The novelty in [9,10] was
that of providing an analytical description of demographic
stochasticity as an internal noise term whose amplitude is
determined by the parameters and the size of the system
using a method originally proposed by van Kampen [12].

Our goal is to extend this approach by relaxing the homo-
geneous mixing assumption to include an implicit represen-
tation of spatial dependence. We show that the inclusion of
correlations at the level of pairs leads to different quantita-
tive and qualitative behaviors in a region of parameters that
corresponds to infectious diseases which confer long lasting
immunity. Our motivation was twofold. On one hand, the
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homogeneous mixing assumption is known to give poor re-
sults for lattice or network structured population [13,14]. On
the other hand, systematic simulations of infection on small-
world networks have shown that the resonant amplification
of stochastic fluctuations is significantly enhanced in the
presence of spatial correlations [15]. Therefore, apart from
stochasticity, the correlations due to the contact structure are
another key ingredient to understand the patterns of recurrent
epidemics. One of the main difficulties in including this in-
gredient is that the relevant network of contacts for disease
propagation is not well known [14]. In this paper we shall
consider a stochastic susceptible-infective-recovered-
susceptible (SIRS) epidemic model that leads to the ordinary
pair approximation (PA) equations of [13] in the thermody-
namic limit as the simplest representation of the spatial cor-
relations on an arbitrary network of fixed coordination num-
ber k. The power spectrum of the fluctuations around the
steady state can be computed following the approach of
[9,12]. The combined effect of stochasticity and spatial cor-
relations has been much studied through simulations, but this
is an analytical treatment of a model that includes both these
ingredients.

Consider then a closed population of size N at a given
time 7, consisting of #n; individuals of type S, n, individuals
of type I, and (N—n,-n,) individuals of type R, modeled as
network of fixed coordination number k. Recovered indi-
viduals lose immunity at rate vy, infected individuals recover
at rate 6, and infection of the susceptible node in a
susceptible-infected link occurs at rate N. Let n; (respec-
tively, ny and ns) denote the number of links between nodes
of type S and I (respectively, S and R and R and I). In the
infinite population limit, with the assumptions of spatial ho-
mogeneity and uncorrelated pairs, the system is described by
the deterministic equations of the standard or uncorrelated
PA as follows [13]:

p1=Y(1=py—p1) = k\ps,

P2=k\p3 = p,,
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FIG. 1. (Color online) Phase diagram in the (\,y) plane for the
MFA and the PA deterministic models and parameter values for
measles (A), chicken pox (O), rubella ((J), and pertussis (<) from
data sources for the prevaccination period. The stars are the param-
eter values used in Fig. 3.
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In the above equations the variables stand for the limit values
of the node and pair densities p,=n;/N, p,=n,/N, ps
=n3/(kN), ps=n4/(kN), and ps=ns/(kN) as N—©. As ex-
pected, neglecting the pair correlations and setting p3=pp,
in the first two equations leads to the classic equations of the
randomly mixed or mean-field approximation (MFA) SIRS
model,

= Y1 =py—p1) —k\pips,

P2=kNppr— 6ps. (2)

The phase diagrams of the two models are plotted in Fig. 1
[solid lines for Eq. (1) and dashed line for Eq. (2), both with
k=4]. We have set the time scale so that 6=1. The critical
line separating a susceptible-absorbing phase from an active
phase where a stable steady state exists with nonzero infec-
tive density is given by )\MFA (dashed line) for the MFA,
and by )\PA('y) -}L [sohd orange (gray) line] for the PA. In
addition, in the actlve phase of the PA we find for small
values of y another phase boundary [solid blue (black) line]
that corresponds to a Hopf bifurcation and seems to have
been missed in previous studies of this model [13]. This
boundary separates the active phase with constant densities
(region I) from an active phase with oscillatory behavior (re-
gion II). The maximum of the curve is situated at A
~2.5, y=0.03, which means that the PA model predicts
sustained oscillations in the thermodynamic limit when loss
of immunity is much slower than recovery from infection.
According to published data for childhood infections in the
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prevaccination period [4], taking the average immunity wan-
ing time to be on the order of the length of the elementary
education cycles at that time (10 years for the data points in
Fig. 1) many of the estimated parameter values for these
diseases fall into oscillatory region II, and the others are in
region I close to the boundary. Different data points for the
same disease correspond to estimates for A based on different
data records. Although small enough to be missed in a coarse
grained numerical study, the oscillatory phase is large in the
admissible parameter region of an important class of dis-
eases. A systematic study of the dependence of this oscilla-
tory phase on the parameter k and of its relevance to under-
stand the behavior of simulations on networks will be
reported elsewhere [16]. Preliminary results indicate that the
oscillatory phase persists in the range 2<<k=<6, and that it
gets thinner as k increases. There are indications that this
oscillatory phase is robust also with respect to variations of
the underlying model [17].

Let us now study the combined effect of correlations and
demographic stochasticity in region I by taking N large but
finite. In the stochastic version of the MFA-SIRS model the
state of the system is defined by n; and n, which change
according to the transition rates as

T = (N =ny —ny),

T = Sy,

T”l_l o+l _ k)\ I’l2, (3)

associated to the processes of immunity waning, recovery,
and infection. Here 7"1*%1"2*%2 denotes the transition rate
from state (n,,n,) to state (n,+k,,n,+ky), k;e{-1,0,1},
where i=1,2. As in [9], the power spectrum of the normal-
ized fluctuations (PSNFs) around the active steady state of
system (2) can be computed approximately from the next-to-
leading-order terms of van Kampen’s system size expansion
of the corresponding master equation. Setting n,(t)=Np, (1)
+\Nx1(t) and n,(1)=Np,(1) + VNx,(1), the equations of mo-
tion for the average densities (2) are given by the leading-
order terms of the expansion. The next-to-leading-order
terms yield a linear Fokker-Planck equation for x;(¢), where
i=1,2. The equivalent Langevin equation for the normalized
fluctuations is x,(f)= 22 Jijx()+L(t), where J is the Jaco-
bian of Eq. (2) at the endemlc equilibrium and L,(f) are
Gaussian white noise terms whose amplitudes are given by
the expansion. Taking the Fourier transform we obtain for
the PSNF,

Pi(0) = (F(w)]*) = EM (@BM} (- w),  (4)

where M (w)=iwdy;—J; and <L(w)L (0'))=B;jdw+w’).
For k=4 and 6=1 this expression becomes

Bll(J%2+ »’)

PMFA ,
( D (1)2) 2 T2 2

5)
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; (6)

PMFA _ By + 1ty + 5, + o)
I (D - )+ TP’
where D and T are the determinant and the trace of J and
B 11=Bzz=—2812=—2321=%\%—;3 for the susceptible and the
infected PSNFs, respectively.

In a stochastic version of the PA-SIRS model the state of
the system is defined by the integers n;, where i=1,...,5,
and recovery, loss of immunity, and infection induce differ-
ent transitions according to the pairs or triplets involved in
the process. The simplest set of transitions and transition
rates compatible with Eq. (1) is

+1,ny,n3+k,ng,ns—k _ Z
Titlng.nything.ns _kns’

Tn|+1,n2,n3,n4—k,n5 — Zl’l

Kt
+1,n9,n3,ny+k,ns _ Z

T 5—k[k(N—n1—n2)—n4—n5],

1)
T11|,I12—1,n3—k,n4+k,ns =—ns,

]nl,nz—l,n3,n4,n5+k —

>

(kny —n3 —ns),

Inl,nz—l,n3,n4,n5—k — éi’l
= . 5,

)\n3

—1lny+1,n3—kngng _ =775
T Lt lna=kng.ns ns,
ki’l]
An
=Lyt Lng=Lng=(k=1)ns+(k=1) _ __3n4’
knl
)\n3
Tnl—l,n2+1,n3+(k—2),n4,n5: ——(kn —Na—n ) (7)
kn 1 3 4
1

This is a coarse grained description where the effect of the
change in state of a given node on the k pairs that it forms is
averaged over each pair type. For instance, the event of loss
of immunity occurs at a rate yng, where ny is the number of
recovered nodes, and changes the k pairs formed by the node
that switches from recovered to susceptible. On average,
each pair type will change by k units at a rate proportional to

its density, according to the equation ynR=ynR(,::—:R+%

2n . .
+ an;R)’ where ngg is the number of pairs of recovered nearest

neighbors. Taking this level of description and using kng
=ny+ns+2ngp and ny+n,+ng=N, we obtain the first three
equations of Eq. (7) for the rates of the three different pair
events associated with loss of immunity. A full microscopic
description would require considering separately all possible
five-node configurations for the central node that switches
from R to S and its four nearest neighbors. We have checked

PHYSICAL REVIEW E 79, 041922 (2009)

0.4 40
a) b)
0.3 30
_ _
S o2 S 2
o o
0.1 10
0 0
0 05 1 15 2 0 05 1
10° @ 015 o
c) ' d)
104 1
01} o
_
é_ 10° - : |
o
0 0.05/ |
10
1
v
107 ot
0 05 1 15 2 0 1 2 3 4
60 @ 10° A
e) f)
S o o000 ©
< 30/® © 000D O — — — — e — i< 10 @
o"’
3
0 10
10° 10° 10" 10° 10° 10’
N N

FIG. 2. (Color online) (a) Analytical and numerical PSNFs of
the infectives for model (3) with y=0.1 and A=2.5; (b) the same for
model (7); (¢) a similar plot for model (7) with y=0.034 and \
=2.5, notice the lin-log scale; (d) location of the parameter values
chosen for (a) and (b) (circle) and for (c) (square); and (e) and (f)
plots of the peak amplitude of the PSNF of the PA model as a
function of N for the parameter values chosen for (b) and (c).

that the detailed stochastic model involving 40 different tran-
sitions for k=4 gives essentially the same results [16] as the
coarse grained model (7) that we consider here.

For the fluctuations of the pair densities we set ns(t)
=Nkp;(1)+ \Nkx3 (1), ny()=Nkpy(t)+\Nkx,(t), and ns(?)
=Nkps(t)+ VNkxs(1). The leading-order terms of van Ka-
mpen’s system size expansion of the master equation associ-
ated to (7) yield the deterministic PA Egs. (1). An approxi-
mate analytic expression for the PSNF can be obtained as
before from the next-to-leading-order terms. Formula (4) is
still valid taking now J as the Jacobian of Eq. (1) at the
endemic equilibrium and the noise cross correlation matrix B
computed directly from the expansion.

In Fig. 2 the approximate PSNFs given by Eq. (4) are
plotted (black lines) and compared with the numerical power
spectra of stochastic simulations for N=10° [green (gray)
lines] for models (3) and (7) [Figs. 2(a) and 2(b)]. For this
system size, there is almost perfect agreement between the
analytical approximate expressions and the results of the
simulations across the whole region I. The plots show that
for the same parameter values the fluctuations are larger and
more coherent for model (7), in agreement with the results of
simulations reported in [15] for small-world networks on a
lattice and variable small-world parameter. This effect be-
comes much more pronounced as the boundary between re-
gions I and II, where the analytical PSNF of model (7) di-
verges, is approached. Close to this boundary [see Fig. 2(c)],
there is a significant discrepancy between the analytical
(black line) and the numerical [green (gray) line] PSNFs as-
sociated with the appearance of secondary peaks at multiples
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FIG. 3. (Color online) The steady-state infective density given
by the PA deterministic model (dashed lines) and by simulations of
the PA and the MFA stochastic models [solid black and green (gray)
lines, respectively] in regions II and I for N=107. Parameters are (a)
A=7.5,v=0.01 and (b) N\=9,y=0.01.

of the main peak frequency. This is a precursor of the oscil-
latory phase, and the breakdown of van Kampen’s approxi-
mation for this system size may be understood as an effect of
the loss of stability of the endemic equilibrium close to the
boundary. Relaxation toward equilibrium becomes slow
compared with the period of the damped oscillations, and a
significant part of the power spectrum energy shows up in
the secondary harmonics. For these parameter values, van
Kampen’s expansion becomes a good approximation only for
larger system sizes. Also shown in Fig. 2(e) [respectively,
Fig. 2(f)] is the scaling with system size of the peak ampli-
tude of the infective PSNF of the PA model [pink (black)
dots] for the parameter values considered in (b) [respectively,
(c)] and the peak amplitude (dashed line) of the approxi-
mated PSNF given by Eq. (4). Away from the phase bound-
ary of the oscillatory phase we find that the simulations ex-
hibit the amplitude and scaling predicted by Eq. (4) down to
system sizes of ~10°. By contrast, close to the phase bound-
ary the match is reached only for system sizes larger than
5% 10°.

Examples of typical time series predicted by the PA model
in the parameter region of childhood infectious diseases are
shown in Fig. 3 [dashed blue lines for the deterministic
model (1) and solid black lines for simulations of the sto-
chastic model (7)]. The results of simulations of the MFA
stochastic model (3) for the same parameter values are also
shown for comparison [solid green (gray) lines]. Figure 3(a)
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illustrates the regular high-amplitude oscillations of region
II. All over this region, simulations of the stochastic model
(7) reproduce the behavior of the solutions of Eq. (1) with
added amplitude fluctuations. The only limitation to observe
these oscillations in finite systems is that N has to be taken
large enough for the deep interepidemic troughs to be
spanned without stochastic extinction of the disease. In re-
gion I [Fig. 3(b)] there are no oscillations in the thermody-
namic limit but, in contrast to the stochastic MFA model, the
resonant fluctuations in the PA model are large and coherent
enough to provide a distinct cycling pattern, which is par-
tially described by van Kampen’s expansion (4).

In conclusion, we have considered a stochastic version of
the basic model of infection dynamics including a represen-
tation of the spatial correlations of an interaction network
through the standard PA. We have shown that in general the
resonant amplification and the coherence of stochastic fluc-
tuations are much enhanced with respect to the MFA model.
This quantitative difference becomes qualitative in a region
of parameter space that corresponds to diseases for which
immunity waning is much slower than recovery. In this re-
gion the nonlinearities of the model and demographic sto-
chasticity give rise either to oscillations that persist in the
thermodynamic limit or to high-amplitude coherent resonant
fluctuations, providing realistic patterns of recurrent epidem-
ics.

These results are relevant for other population dynamics
models in the slow driving regime that corresponds to small
v in our model, suggesting that in systems of moderate size
intrinsic stochasticity together with the simplest representa-
tion of spatial correlations may be enough to produce distinct
oscillatory patterns. This favors the view that, for a large
class of systems, noisy oscillations in population dynamics
data may be intrinsic, rather than externally driven.
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