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Many physical and physiological signals exhibit complex scale-invariant features characterized by 1/f
scaling and long-range power-law correlations, indicating a possibly common control mechanism. Specifically,
it has been suggested that dynamical processes, influenced by inputs and feedback on multiple time scales, may
be sufficient to give rise to 1/f scaling and scale invariance. Two examples of physiologic signals that are the
output of hierarchical multiscale physiologic systems under neural control are the human heartbeat and human
gait. Here we show that while both cardiac interbeat interval and gait interstride interval time series under
healthy conditions have comparable 1/f scaling, they still may belong to different complexity classes. Our
analysis of the multifractal scaling exponents of the fluctuations in these two signals demonstrates that in
contrast to the multifractal behavior found in healthy heartbeat dynamics, gait time series exhibit less complex,
close to monofractal behavior. Further, we find strong anticorrelations in the sign and close to random behavior
for the magnitude of gait fluctuations at short and intermediate time scales, in contrast to weak anticorrelations
in the sign and strong positive correlation for the magnitude of heartbeat interval fluctuations—suggesting that
the neural mechanisms of cardiac and gait control exhibit different linear and nonlinear features. These findings
are of interest because they underscore the limitations of traditional two-point correlation methods in fully
characterizing physiological and physical dynamics. In addition, these results suggest that different mecha-
nisms of control may be responsible for varying levels of complexity observed in physiological systems under

neural regulation and in physical systems that possess similar 1/f scaling.
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I. INTRODUCTION

Many dynamic systems generate outputs with fluctuations
characterized by 1/f-like scaling of the power spectra, S(f),
where f is the frequency. These fluctuations are often asso-
ciated with nonequilibrium dynamic systems possessing
multiple degrees of freedom [1,2], rather than being the out-
put of a classic “homeostatic” process [3-5]. It is generally
assumed that the presence of many components interacting
over a wide range of time or space scales could be the reason
for the 1/f spectrum in the fluctuations [6,7]. Fluctuations
exhibiting 1/f-like behavior are often termed ‘“complex,”
since they obey a scaling law indicating a hierarchical fractal
organization of their frequency (time scale) components
rather than being dominated by a single frequency. 1/f be-
havior is common in a variety of physical, biological, and
social systems [7-15]. The ubiquity of the 1/f scale-
invariant phenomenon has triggered in recent years the de-
velopment of generic mechanisms describing complex sys-
tems, independent of their particular context, in order to
understand the “unifying” features of these systems [16—19].

To evaluate whether fluctuations in signals generated by
integrated physiological systems exhibit the same level of
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complexity, we analyze and compare the time series gener-
ated by two physiologic control systems under multiple-
component integrated neural control—the human gait and
the human heartbeat. We chose these two particular examples
because human gait and heartbeat control share certain fun-
damental properties, e.g., both originate in oscillatory cen-
ters. In the case of the heart, the pacemaker is located in the
sinus node in the right atrium [20]. For gait, pacemakers
called central pattern generators are thought to be located in
the spinal cord [21].

However, these two systems are distinct suggesting pos-
sible dynamical differences in their output. For example,
heartbeat fluctuations are primarily controlled by the invol-
untary (autonomic) nervous system. In contrast, while the
spontaneous walking rhythm is an automaticlike process,
voluntary inputs play a major role. Further, gait control re-
sides in the basal ganglia and related motor areas of the
central nervous system, while the heartbeat is controlled by
the sympathetic and parasympathetic branches of the auto-
nomic nervous system [20,22].

Previous studies show comparable two-point linear corre-
lations and 1/f power spectra in heart rate [23-27] and hu-
man gait [28-31] suggesting that differences in physiologic
control may not be manifested in beat-to-beat and interstride
interval fluctuations. Recent studies focusing on higher order
correlations and nonlinear properties show that the human
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heartbeat exhibits not only 1/f fractal but also multifractal
properties [32]. Since multifractal signals require many scal-
ing indices to fully characterize their scaling properties, they
may be considered to be more complex than those character-
ized by a single fractal dimension such as classical 1/f noise.
Although the origins of the multifractal features in heartbeat
dynamics are not yet understood, there is evidence that they
relate to the complex intrinsic neuroautonomic regulation of
the heart [32,33]. Human gait, e.g., free unconstrained walk-
ing, is also a physiological process regulated by complex
hierarchical feedback mechanisms involving supraspinal in-
puts [21]. Moreover, recent findings indicate that the scaling
properties of gait fluctuations relate to neural centers on the
higher supraspinal level rather than to lower motor neurons
or environmental inputs [34,35]. Thus, it would be natural to
hypothesize that the fluctuations in healthy unconstrained hu-
man gait exhibit similar fractal and multifractal features as
heartbeat fluctuations, and that human gait dynamics may
belong to the same “complexity class” as cardiac dynamics.

We employ two techniques—magnitude and sign decom-
position analysis [36,37], and multifractal analysis
[38,39]—to probe long-term nonlinear features, and to com-
pare the levels of complexity in heartbeat and interstride in-
terval fluctuations. To this end, we analyze interstride inter-
val time series from ten young healthy men (mean age 22
years) with no history of neuromuscular disorders [40]. Sub-
jects walked continuously for 1 h at a self-selected usual
pace on level ground around a flat, obstacle-free, approxi-
mately oval, 400 m long path. The interstride interval was
measured using a ground reaction force sensor—ultrathin
force-sensitive switches were taped inside one shoe and data
were recorded on an ambulatory recorder using a previously
validated method [41]. We compare the results of our gait
analysis with results we have previously obtained
[32,36,42,43] from 6-h-long heartbeat interval records from
18 healthy individuals (13 female and 5 male, mean age 34
years) during daily activity (12:00 to 18:00) [40].

As described below, we systematically compare the scal-
ing properties of the fluctuations in human gait with those in
the human heartbeat using power spectral analysis, detrended
fluctuation analysis (DFA), magnitude, and sign decomposi-
tion analysis, and wavelet-based multifractal analysis, and
we quantify linear and nonlinear features in the data over a
range of time scales.

II. METHODS
A. DFA

The DFA method was developed because conventional
fluctuation analyses such as power spectral, R/S and Hurst
analysis cannot be reliably used to study nonstationary data
[44—48]. One advantage of the DFA method is that it allows
the detection of long-range power-law correlations in noisy
signals with embedded polynomial trends that can mask the
true correlations in the fluctuations of a signal. The DFA
method has been successfully applied to a wide range of
research fields in physics [49-52], biology [53-56], and
physiology [57-60].

The DFA method involves the following steps [44]:
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(i) Given the original signal s(i), where i=1,...,N, and
Npax 1 the length of the signal, we first form the profile
function y(k)EEi;l[s(i)—{s)], where (s) is the mean. One
can consider the profile y(k) as the position of a random walk
in one dimension after k steps.

(ii) We divide the profile y(k) into nonoverlapping seg-
ments of equal length n.

(iii) In each segment of length n, we fit y(k), using a
polynomial function of order € which represents the polyno-
mial trend in that segment. The y coordinate of the fit line in
each segment is denoted by y, (k). Since we use a polynomial
fit of order ¢, we denote the algorithm as DFA-{.

(iv) The profile function y(k) is detrended by subtracting
the local trend y,(k) in each segment of length n. In DFA-¢,
trends of order €—1 in the original signal are eliminated.
Thus, comparison of the results for different orders of DFA-{
allows us to estimate the type of polynomial trends in the
time series s(i).

(v) For a given segment of length 7, the root-mean-square
(rms) fluctuation for this integrated and detrended signal s(i)
is calculated:

N,

max

L 2
v > (k) -y, (0. (1)

max k=1

F(n) =

(vi) Since we are interested in how F(n) depends on the
segment length, the above computation is repeated for a
broad range of scales n.

A power-law relation between the average root-mean-
square fluctuation function F(n) and the segment length n
indicates the presence of scaling:

F(n) ~ n®. (2)

Thus, the DFA method can quantify the temporal organiza-
tion of the fluctuations in a given signal s(i) by a single
scaling exponent a—a self-similarity parameter which rep-
resents the long-range power-law correlation properties of
the signal. If @=0.5, there is no correlation and the signal is
uncorrelated (white noise); if @<<0.5, the signal is anticorre-
lated; if @>0.5, the signal is correlated. The larger the value
of a, the stronger the correlations in the signal.

For stationary signals with scale-invariant temporal orga-
nization, F(n) is related to the Fourier power spectrum S(f)
and to the autocorrelation function C(n). For such signals,

S(f) ~ fP, where [B=2a-1] (3)

and « is the DFA scaling exponent [Eq. (2)] [44]. Thus,
signals with 1/f scaling in the power spectrum (i.e., B=1)
are characterized by DFA exponent a=1. If 0.5<a<1, the
correlation exponent y describes the decay of the autocorre-
lation function:

C(n)=(s(i)s(i+n)y~n"% where [y=2-2a]. (4)

B. Magnitude and sign decomposition method

Fluctuations in the dynamical output of physical and
physiological systems can be characterized by their magni-
tude (absolute value) and their direction (sign). These two
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quantities reflect the underlying interactions in a given
system—the resulting “force” of these interactions at each
moment determines the magnitude and the direction of the
fluctuations. To assess the information contained in these
fluctuations, the magnitude and sign decomposition method
was introduced [36,37]. This method involves the following
steps:

(i) Given the original signal s(i) we generate the incre-
ment series, As(i)=s(i+1)-s(i).

(ii) We decompose the increment series into a magnitude
series |As(i)| and a sign series sign[As(i)].

(iii) To avoid artificial trends we subtract from the mag-
nitude and sign series their average.

(iv) We then integrate both magnitude and sign series,
because of limitations in the accuracy of the DFA method for
estimating the scaling exponents of anticorrelated signals
(< 0.5).

(v) We perform a scaling analysis using second-order de-
trended fluctuation analysis (DFA-2) on the integrated mag-
nitude and sign series.

(vi) To obtain the scaling exponents for the magnitude and
sign series, we measure the slope of F(n)/n on a log-log plot,
where F(n) is the root-mean-square fluctuation function ob-
tained using DFA-2 and n is the scale.

Fluctuations following an identical 1/f scaling law can
exhibit different types of correlations for the magnitude and
the sign—e.g., a signal with anticorrelated fluctuations can
exhibit positive correlations in the magnitude. Positive cor-
relations in the magnitude series indicate that an increment
with large magnitude is more likely to be followed by an
increment with large magnitude. Anticorrelations in the sign
series indicate that a positive increment in the original signal
is more likely to be followed by a negative increment. Fur-
ther, positive power-law correlations in the magnitude series
indicate the presence of long-term nonlinear features in the
original signal, and relate to the width of the multifractal
spectrum [37]. In contrast, the sign series relates to the linear
properties of the original signal [37]. The magnitude and sign
decomposition method is suitable to probe nonlinear proper-
ties in short nonstationary signals, such as 1 h interstride
interval time series.

C. Wavelet-based multifractal analysis

Previously, analyses of the fractal properties of physi-
ologic fluctuations revealed that the behavior of healthy,
free-running physiologic systems may often be characterized
as 1/f-like [19,23-27,29,35,41,61-72]. Monofractal signals
(such as classical 1/f noise) are homogeneous, i.e., they have
the same scaling properties throughout the entire signal
[73-75]. Monofractal signals can therefore be indexed by a
single exponent: the Hurst exponent H [76].

On the other hand, multifractal signals are nonlinear and
inhomogeneous with local properties changing with time.
Multifractal signals can be decomposed into many subsets
characterized by different local Hurst exponents h, which
quantify the local singular behavior and relate to the local
scaling of the time series. Thus, multifractal signals require
many exponents to fully characterize their properties [77].
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The multifractal approach, a concept introduced in the con-
text of multiaffine functions [78—81], has the potential to
describe a wide class of signals more complex than those
characterized by a single fractal dimension.

The singular behavior of a signal s(¢) at time #, — |s(t)
—P,(t)| ~ |t=1,/"" for t— ty—is characterized by the local
Hurst exponent h(zy) where n<h(ty)<n+1 and P,(f) is a
polynomial fit of order n. To avoid an ad hoc choice of the
range of time scales over which the local Hurst exponent / is
estimated, and to filter out possible polynomial trends in the
data which can mask local singularities, we implement a
wavelet-based algorithm [39]. Wavelets are designed to
probe time series over a broad range of scales and have re-
cently been successfully used in the analysis of physiological
signals [82-90]. In particular, recent studies have shown that
the wavelet decomposition reveals a robust self-similar hier-
archical organization in heartbeat fluctuations, with bifurca-
tions propagating from large to small scales [43,91,92]. To
quantify hierarchical cascades in gait dynamics and to avoid
inherent numerical instability in the estimate of the local
Hurst exponent, we employ a “mean-field” approach—a con-
cept introduced in statistical physics [ 1 |—which allows us to
probe the collective behavior of local singularities through-
out an entire signal and over a broad range of time scales.

We study the multifractal properties of interstride interval
time series by applying the wavelet transform modulus
maxima (WTMM) method [38,39,93] that has been proposed
as a mean-field generalized multifractal formalism for fractal
signals. We first obtain the wavelet coefficient at time 7, from
the continuous wavelet transform defined as

N
W,(to) = a™' 2 s( Yl (1 15)/al, (5)
=1

where s(¢) is the analyzed time series, ¢ is the analyzing
wavelet function, a is the wavelet scale (i.e., time scale of the
analysis), and N is the number of data points in the time
series. For ¢ we use the third derivative of the Gaussian, thus
filtering out up to second-order polynomial trends in the
data. We then choose the modulus of the wavelet coefficients
at each point ¢ in the time series for a fixed wavelet scale a.
Next, we estimate the partition function

Z@ =3 W0, ©)

where the sum is only over the maxima values of |W,(#)|, and
the powers ¢ take on real values. By not summing over the
entire set of wavelet transform coefficients along the time
series at a given scale a but only over the wavelet transform
modulus maxima, we focus on the fractal structure of the
temporal organization of the singularities in the signal [93].

We repeat the procedure for different values of the wave-
let scale a to estimate the scaling behavior

Z,(a)~a™®. (7)

Analogous to what occurs in scale-free physical systems, in
which phenomena controlled by the same mechanism over
multiple time scales are characterized by scale-independent
measures, we assume that the scale-independent measures,
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FIG. 1. Representative records of (a) interstride interval (IST)
time series from a healthy subject and (b) consecutive heartbeat
(RR) intervals from a healthy subject.

7(¢q), depend only on the underlying mechanism controlling
the system. Thus, by studying the scaling behavior of
Z(a,q)~a™ we may obtain information about the self-
similar (fractal) properties of the mechanism underlying gait
control.

For certain values of the powers ¢, the exponents 7(g)
have familiar meanings. In particular, 7(2) is related to the
scaling exponent of the Fourier power spectra, S(f) ~ 1/f%,
as B=2+1(2) [39]. For positive g, Z,(a) reflects the scaling
of the large fluctuations and strong singularities in the signal,
while for negative g, Z,(a) reflects the scaling of the small
fluctuations and weak singularities [74,77,94]. Thus, the
scaling exponents 7(g) can reveal different aspects of the
underlying dynamics.

In the framework of this wavelet-based multifractal for-
malism, 7(g) is the Legendre transform of the singularity
spectrum D(h) defined as the Hausdorff dimension of the set
of points 7 in the signal s(r) where the local Hurst exponent is
h. Homogeneous monofractal signals—i.e., signals with a
single local Hurst exponent 4 —are characterized by linear
7(q) spectrum:

mq)=qH-1, (8)

where H=h=d(q)/dq is the global Hurst exponent. On the
contrary, a nonlinear 7{g) curve is the signature of nonhomo-
geneous signals that display multifractal properties—i.e., h(z)
is a varying quantity that depends upon t.

III. RESULTS

In Fig. 1 we show two example time series: (i) an inter-
stride interval time series from a typical healthy subject dur-
ing =1 h (N=3000 steps) of unconstrained normal walking
on a level, obstacle-free surface [Fig. 1(a)] [40]; (ii) consecu-
tive heartbeat intervals from =1 h (N=3000 beats) record of
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FIG. 2. (Color online) Power spectra of the gait ISI series (A)
and heartbeat RR series (@) displayed in Fig. 1, indicating a similar
1/f-type behavior.

a typical healthy subject during daily activity [Fig. 1(b)]
[40]. Both time series exhibit irregular fluctuations and non-
stationary behavior characterized by different local trends; in
fact it is difficult to differentiate between the two time series
by visual inspection.

We first examine the two-point correlations and scale-
invariant behavior of the time series shown in Fig. 1. Power
spectra S(f) of the gait and heartbeat time series (Fig. 2)
indicate that both processes are described by a power-law
relation S(f) ~ 1/f# over more than 2 decades, with exponent
B=1. This scaling behavior indicates self-similar (fractal)
properties of the data over a broad range of time scales,
suggestive of an identical level of complexity as quantified
by this linear measure. We obtain similar results for the in-
terstride interval time series from all subjects in our gait
database: 8=0.9+0.08 (group mean = std. dev.) in agree-
ment with previous results [35].

A. DFA

Next, to quantify the degree of correlation in the inter-
stride and heartbeat fluctuations we apply the DFA method,
which also provides a linear measure: plots of the root-mean-
square fluctuation function F(n) vs time scale n (measured in
stride or beat number) from a second-order DFA analysis
(DFA-2) [44-46] indicate the presence of long-range power-
law correlations in both gait and heartbeat fluctuations [Fig.
3(a)]. The scaling exponent &= 0.95 for the heartbeat signal,
shown in Fig. 1(b), is very close to the exponent a= 0.9 for
the interstride interval signal, shown in Fig. 1(a), estimated
over the scaling range 6 <n <600, where n,,,, ~N/5=600 is
the maximal time scale for which the DFA scaling analysis is
reliable [45,46]. We obtain similar results for the remaining
subjects: @=0.87*0.03 (group mean * std. dev.) for the
gait data (in agreement with [35]) and a=1.01%0.06 for the
heartbeat data (in agreement with [42]). The results of both
power spectral analysis and the DFA method indicate that
gait and heartbeat time series have similar scale-invariant
properties suggesting certain parallels in the underlying
mechanisms of neural regulation.

B. Magnitude and sign decomposition method

To probe for long-term nonlinear features in the dynamics
of interstride intervals we employ the magnitude and sign
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FIG. 3. (Color online) Plots of the root-mean-square fluctuation
function F(n) vs time scale n (measured in interstride or heartbeat
number) from second-order DFA-2 analysis for (a) the gait ISI (A)
and heartbeat RR (@) time series, (b) the magnitude series, and (c)
sign series of the interstride and heartbeat increments AIST and
ARR. The results shown in (a), (b), and (c) are obtained for the gait
and heartbeat signals displayed in Figs. 1(a) and 1(b). While both
gait and cardiac dynamics exhibit similar power-law and correla-
tions, the magnitude and sign series of interstride and heartbeat
increments in (b) and (c) follow significantly different scaling rela-
tions. Open symbols (A, O) represent the results of a Fourier
phase-randomization test indicating high degree of nonlinearity
(@mag=0.7>0.5) in cardiac dynamics, in contrast to a linear behav-
ior (@ae=0.5) for gait dynamics.

decomposition analysis [36,37]. Previous studies have dem-
onstrated that information about the nonlinear properties of
heartbeat dynamics can be quantified by long-range power-
law correlations in the magnitude of the increments in heart-
beat intervals [36]. Further, positive correlations in the mag-
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nitude are associated with nonlinear features in the
underlying dynamics. In contrast, linear signals are charac-
terized by an absence of correlations (random behavior) in
the magnitude series. To quantify the correlations in the mag-
nitude of the interstride increments we apply the DFA-2
method to the gait data displayed in Fig. 1(a). Our results
show that the magnitude series of the interstride increments
exhibits close to random behavior with correlation exponent
@ae=~0.5 [denoted by (A) in Fig. 3(b)] suggesting linear
properties of the underlying dynamics. In contrast, for the
heartbeat data displayed in Fig. 1(b), we find that the mag-
nitude series of the interbeat interval fluctuations exhibits
strong positive correlations over more than two decades
characterized by exponent @,,,~0.7 [denoted by (®) in Fig.
3(b)] suggesting nonlinear features in cardiac control. Thus,
the striking difference in the magnitude correlations of gait
and heartbeat dynamics (both of which are under multilevel
neural control) raises the possibility that these two physi-
ologic processes belong to different classes of complexity
whereby the neural regulation of the heartbeat is inherently
more nonlinear, over a range of time scales, than the neural
mechanism of gait control. Our observation of a low degree
of nonlinearity in the gait time series is supported by the
remaining subjects in the group: over time scales 6<n
<600, we obtain exponent a,,,=0.51+0.03 (group mean *
std. dev.) for the gait time series, which is significantly lower
than the corresponding exponent ay,,=0.71=0.09 obtained
for the heartbeat data (p=2.7 X 1077, by the Student’s ¢ test).
We note however, in the short-range region for time scales
6<n<16 we obtain a group average exponent Qp,,
=0.62x0.05 for the gait data, and ay,,,=0.57*£0.12 for the
heartbeat data (Table I), indicating a very similar (and rela-
tively low) degree of nonlinearity in both gait and cardiac
dynamics at short time scales of up to =15 s (with p
—value=0.16 by the Student’s ¢ test). This nonlinear behavior
changes significantly at intermediate and large time scales,
where cardiac dynamics is characterized by a high degree of
nonlinearity (@, =0.8), in contrast to gait dynamics which
exhibits practically linear behavior (a,,,~0.5) (see Table I).

To further test for nonlinear features in the mechanisms of
neural control generating heartbeat and gait dynamics we
perform a Fourier phase-randomization surrogate test
[95,96]. We first perform a Fourier transform of the original
data. Next we eliminate the nonlinearity in the data by ran-
domizing the Fourier phases while preserving the Fourier
coefficients, and thus keeping the linear properties (power
spectrum and correlation) of the original signal unchanged.
An inverse Fourier transform leads to a linearized surrogate
signal with identical correlations as in the original data.

The results of Fourier phase-randomization test for gait
and heartbeat data are shown in Fig. 3. While the DFA scal-
ing curves remain as expected, unchanged after the test for
both gait and heartbeat signals [Fig. 3(a), open symbols], the
scaling curve for the magnitude of heartbeat fluctuations
changes dramatically to @=0.5, in contrast to the gait data,
where the magnitude scaling curve remains practically un-
changed [Fig. 3(b), open symbols]. These findings confirm
our results from the magnitude analysis indicating that the
multilevel neural control mechanism of gait surprisingly gen-
erates close to linear dynamics.
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TABLE 1. Results of the DFA analysis of the original gait ISI
and heartbeat RR interval signals, and the magnitude and sign of
interstride and heartbeat interval increments, AISI and ARR for | h
gait recordings from ten healthy subjects and 6 h ECG recordings
from 18 healthy subjects. We calculate the scaling exponents « over
a broad range of time scales 6 <n =600, as well as in three differ-
ent regions: (i) the short-range regime for time scales 6<n<16
with scaling exponent «, (ii) the intermediate regime for time
scales 16 =n =64 with scaling exponent a, (iii) and the long-range
regime for time scales 64 <n =600 with scaling exponent as. For
each measure, the group average =1 standard deviation is

presented.
Measure Original Magnitude Sign
Gait
a 0.87%0.03 0.51%0.03 0.41=*0.05
a) 0.71%=0.08 0.62*=0.05 0.05*0.03
a 0.84=0.06 0.53*+0.07 0.40*+0.03
ay 0.89=0.06 0.50*+0.08 0.48=0.12
Heartbeat

a 1.01 £0.06 0.71=0.09 0.35+0.03
a 1.34+0.22 0.57=0.12 0.45*+0.13
a 0.97*0.12 0.67=0.09 0.23+0.08
a3 1.02x0.10 0.80=0.12 0.45*0.05

Previous studies have shown that the time series com-
posed of the sign of the consecutive increments in the origi-
nal signal contain information about the underlying dynam-
ics which is complementary and independent from the
original and the magnitude series [36,37,97,98]. Our DFA
scaling analysis of the sign series shows a complex and sig-
nificantly different behavior for heartbeat and gait dynamics.
A very strong anticorrelated behavior at small time scales
with ag,, = 0.05 is followed by a crossover to much weaker
anticorrelations with ag,,~0.45 as shown in Fig. 3(c) for
the gait data displayed in Fig. 1(a). This is in contrast to the
scaling behavior of the heartbeat sign series, which exhibits
weak anticorrelations (cag;,,~0.45) at both short and long
time scales with a crossover region at intermediate scales
[Fig. 3(c)]. These observations are supported by the remain-
ing subjects in the group: over time scales 6 <<n<<16, we
obtain exponent ag;,,=0.05*0.03 (group mean * std. dev.)
for gait, which is significantly different from the correspond-
ing exponent a;,,=0.45*0.13 for heartbeat data (p—value
=107 by the Student’s ¢ test). At long time scales of n
>100 both interstride and heartbeat intervals are character-
ized by a group average exponent a;,,=0.45 with a p
—value=0.46 by the Student’s 7 test (see Table I).

Further, our analysis of the sign series from surrogate data
obtained after Fourier phase randomization of the original
gait and heartbeat signals indicates no change in the scaling
behavior [Fig. 3(c), open symbols], suggesting that, in con-
trast to the magnitude series, correlations in the sign series
reflect linear properties in the original data.

Our DFA, and magnitude and sign decomposition analy-
ses show a consistent scaling behavior of gait dynamics for
all 10 subjects in our database. All individual scaling curves
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FIG. 4. (Color online) DFA-2 analysis of the gait interstride
intervals (ISI) series, the magnitude series |AISI| and the sign series
sign(AISI) for (a) all ten subjects in our database and (b) six 10 min
segments of a 1 h recording from one individual subject. A consis-
tent scaling behavior is observed for all subjects as well as for
different segments from individual recordings despite certain differ-
ences in the average and standard deviation of ISI among subjects
and across segments.

for the interstride interval signals, magnitude and sign series
practically collapse onto a single curve [Fig. 4(a)]. To further
test the validity of our results for gait dynamics, and that
they indeed represent the internal mechanics of gait control,
and are not an artifact of external/random factors of the en-
vironment, we have segmented each 1 h gait recording into
10 min segments, and have separately analyzed each seg-
ment. While the average gait rate and standard deviation
change for different segments with some subjects reporting a
certain degree of fatigue or tiredness near the end of the
recording, our results demonstrate a remarkable stability of
the scaling results with no statistically significant change in
the exponent @, Q. and ag, for different segments [Fig.

4(b)].
C. Wavelet-based multifractal analysis

To further test the long-term nonlinear features in gait
dynamics we study the multifractal properties of interstride
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time series. We apply the WTMM method [39,93]—a
“mean-field” type approach to quantify the fractal organiza-
tion of singularities in the signal. We characterize the multi-
fractal properties of a signal over a broad range of time
scales by the multifractal spectrum 7(g). Gait and heartbeat
time series contain densely packed, nonisolated singularities
which unavoidably affect each other in the time-frequency
decomposition. Therefore, rather than evaluating the distri-
bution of the inherently unstable local singularity exponents
[14,43]), we estimate the scaling of an appropriately chosen
global measure: the ¢ moments of the probability distribution
of the maxima of the wavelet transform Z,(a) (using the
third derivative of the Gaussian function as the analyzing
wavelet).

We first examine the time series shown in Fig. 1. For the
gait time series, we obtain a 7(g) spectrum which is practi-
cally a linear function of the moment g suggesting that the
gait dynamics exhibit monofractal properties [Figs. 5(a) and
5(c)]. This is in contrast with the nonlinear 7(¢) spectrum for
the heartbeat signal [Figs. 5(b) and 5(c)] which is indicative
of nonlinear multifractal behavior [38,39]. Further, when
analyzing the remaining interstride interval recordings, we
find close to linear 7(q) spectra for all subjects in the gait
group [Fig. 6(a)]. Calculating the group averaged 7(¢q) spec-
tra we find clear differences: multifractal behavior for the
heartbeat dynamics and practically monofractal behavior for
the gait dynamics [Fig. 6(b)]. Specifically, we find significant
differences between the gait and heartbeat 7(g) spectra for
negative values of the moment ¢; for positive values of g, the
scaling exponents 7(g) take on similar values. This is in
agreement with the similarity in power spectral and DFA
scaling exponents for gait and heartbeat data, which corre-
spond to 7(g=2) (Fig. 3). However, the heartbeat 7(q) spec-
trum is visibly more curved for all moments g compared
with the gait 7(g) spectrum which may be approximately fit
by a straight line, indicative of a low degree of nonlinearity
in the interstride time series. Thus, our results show consis-
tent differences between the nonlinear and multifractal prop-
erties of gait and heartbeat time series.

Previous studies have shown that reducing the level of
physical activity under a constant routine protocol does not
change the multifractal features of heartbeat dynamics, while
blocking the sympathetic or parasympathetic tone of the neu-
roautonomic regulation of the heart dramatically changes the
multifractal spectrum, thus suggesting that the observed fea-
tures in cardiac dynamics arise from the intrinsic mecha-
nisms of control [33]. Similarly, by eliminating polynomial
trends in the interstride interval time series corresponding to
changes in the gait pace using DFA and wavelet analyses, we
find scaling features which remain invariant among individu-
als. Therefore, since different individuals experience differ-
ent extrinsic factors, the observed lower degree of nonlinear-
ity (as measured by the magnitude scaling exponent) and the
close-to-monofractal behavior (characterized by practically
linear 7(g) spectrum) appear to be a result of the intrinsic
mechanisms of gait regulation. These observations suggest
that while both gait and heartbeat dynamics arise from layers
of neural control with multiple component interactions, and
exhibit temporal organization over multiple time scales, they
nonetheless belong to different complexity classes. While
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FIG. 5. (Color online) Multifractal analysis: Scaling of the par-
tition function Zq(a) of the wavelet-transform modulus maxima ob-
tained using the third derivative of the Gaussian as a wavelet func-
tion for (a) an individual ISI gait recording, and (b) an individual
RR heartbeat recording. (¢) Multifractal spectrum 7(gq) for the indi-
vidual records shown in (a) and (b), where 7 is a scaling index
associated with different moments g [Eq. (7)]. A monofractal signal
corresponds to a straight line for 7(q), while for multifractal signals
7(g) is a nonlinear function of g. Thus, our results indicate
multifractal/nonlinear behavior in heartbeat dynamics in contrast to
monofractal/linear behavior in gait. Note that the values of (g
=2) for both gait and heartbeat time series are very close, in agree-
ment with our findings based on DFA-2 correlation analysis [Fig.

3(a)].
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FIG. 6. (Color online) Multifractal analysis: (a) Multifractral
spectra 7(g) for all ten subjects in our gait database [40] exhibit
close to linear dependence on the moment ¢, suggesting monofrac-
tal behavior, in contrast to the nonlinear 7(g) spectra reported for
heartbeat recordings [99]. (b) Group average multifractal spectra
7(g) for the gait and heartbeat subjects in our database [40]. The
results show a consistent monofractal (almost linear) behavior for
the gait time series, in contrast with the multifractal behavior of the
heartbeat data.

both gait and heartbeat dynamics may be a result of compet-
ing inputs interacting through multiple feedback loops, dif-
ferences in the nature of these interactions may be imprinted
in their nonlinear and multifractal features: namely, our find-
ings suggest that while these interactions in heartbeat dy-
namics are of a nonlinear character and are represented by
Fourier phase correlations encoded in the magnitude scaling
and the multifractal spectrum, feedback mechanisms of gait
dynamics lead to decreased interactions among the Fourier
phases.

D. Further validation of gait results

These findings are supported by our analysis of a second
group of gait subjects. We analyze interstride intervals from
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an additional group of seven young healthy subjects (six
male, one female, mean age 28 years) recorded using a por-
table accelerometer [100]. Subjects walked continuously for
~] h at a self-selected pace on an unconstrained outdoor
walking track in a park environment allowing for slight
changes in elevation and obstacles related to pedestrian traf-
fic. The stride interval time series in this case were obtained
from peak-to-peak intervals in the accelerometer signal out-
put in the direction of the subjects’ vertical axis. The accel-
erometer device we used (9X6X2 cm, weight 140 g) was
developed by Sharp Co. The device, attached to subjects’
back, measures the vertical and anteroposterier acceleration
profile during walking. The output signals are digitized at a
sampling frequency of 10* Hz, and are stored on a memory
card. When the subjects’ heel strikes the ground, a clear peak
in the acceleration along the vertical axis is recorded. The
positions of these peaks in time are also verified indepen-
dently through matching steepest points in the anteropos-
terier acceleration signal output. Our analysis indicates a
compatibility of the ground reaction force sensor, used for
the gait recordings of the first group [40,41], with the accel-
erometer device used for the second group [100], as well as
a strong correlation between the outputs of the two devices.

We find that for the second gait group the two-point cor-
relation exponent @=0.90* 0.1 (group mean = std. dev.), as
measured by the DFA-2 method in the range of time scales
6<n<<600 is similar to the group average exponent of the
first gait group (@=0.87*=0.03) and also to the heartbeat
data (@=1.01%0.08). In contrast, we find again a signifi-
cantly lower degree of nonlinearity, as measured by the
group average magnitude exponent ,,,=0.5720.04 in the
range of time scales 6 <<n<<600 and by the 7(¢) spectrum,
compared with heartbeat dynamics a,,,=0.71=0.06 (p
=1.3X1073, by the Student’s 7 test). On the other hand, the
group averaged value of ay,,,=0.57*0.04 for the second
gait group is slightly higher compared to ay,,=0.51+0.03
for the first gait group, and this is associated with slightly
stronger curvature in the 7{(g) spectrum for the second gait
group. This may be attributed to the fact that the second
group walked in a natural park environment where obstacles,
changes in elevation and pedestrian traffic may possibly re-
quire the activation of higher neural centers of gait control.

To test to what extent our results depend on the order of
polynomial detrending used in the DFA method, we have
repeated our analyses using different orders DFA: DFA-1
which removes constant trends in the analyzed signal, DFA-2
which removes both constant and linear trends, and DFA-3
removing constant, linear and quadratic trends. While there
is a measurable difference in the results for the scaling ex-
ponent « obtained from DFA-1 compared to DFA-2 (=3%
difference, with higher values for @ from DFA-1), we find
practically identical results for the exponent « obtained from
DFA-2 and DFA-3 (=1% difference in «), suggesting that
removing polynomial trends of second and higher order in
the recordings does not lead to significantly different scaling
results (see Fig. 7). The same is also valid when wavelets
with higher than third-order derivatives of the Gaussian are
used for the multifractal analysis in Sec. III C.

The present results are related to a physiologically-based
model of gait control where specific interactions between
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FIG. 7. (Color online) Results of DFA-/ analysis with different
order [=1,2,3 of polynomial detrending for (a) gait and (b) heart-
beat data. Note that DFA-/ removes trends of order up to (/1) in
the time series. Considering the group average (Aa); of the differ-
ences Aa"lyz = o&/(DFA-1)-a/(DFA-2), where i indicates different
subjects, we obtain the following: for the original interstride signal
(A 5);=0.030.03 and (Aa,3);=0.007=0.009, indicating that
the results obtained from DFA-2 and DFA-3 are not significantly
different. Thus, using higher order of polynomial detrending does
not change the scaling result, i.e., compared to constant and linear
trends, quadratic trends do not contribute significantly to the non-
stationarity of gait. These observations remain valid also for the
magnitude and sign scaling analysis as shown in (a) and (b).

neural centers are considered [12,13]. In this model a lower
degree of nonlinearity (and close-to-linear monofractal 7(q)
spectrum) reflects increased connectivity between neural
centers, typically associated with maturation of gait dynam-
ics in adults. The present results are also consistent with
studies that used a different approach to quantify the dynam-
ics of gait, based on estimates of the local Hurst exponents,
and reported only weak multifractality in gait dynamics
[14,15].

IV. SUMMARY

In summary, we find that while the fluctuations in the
output of both gait and heartbeat processes are characterized
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by similar two-point correlation properties and 1/f-like
power spectra, they belong to different classes of
complexity—human gait fluctuations exhibit practically lin-
ear 7(g) spectrum and close to monofractal properties char-
acterized by a single scaling exponent, while heartbeat fluc-
tuations exhibit nonlinear multifractal properties, which in
physical systems have been connected with turbulence and
related multiscale phenomena [32,38,43,80,81,101]. Our
analyses indicate that while two systems—cardiac and loco-
motion, both under integrated neural control and with multi-
component feedback interactions over a range of time
scales—can be characterized by long-range power-law cor-
relations of 1/f-type, other linear and nonlinear scaling fea-
tures of their dynamics can be markedly different. This study
demonstrates that different combinations of scaling behavior
for the magnitude and sign of the fluctuations can lead to
similar scaling behavior over a broad range of time scales in
the correlations of the fluctuations in the output of these
systems. Specifically, we find strong anticorrelations in the
sign and close to random behavior for the magnitude of gait
fluctuations at short and intermediate time scales, in contrast
to weak anticorrelations in the sign and strong positive cor-
relation for the magnitude of heartbeat interval
fluctuations—suggesting that, despite certain similarities,
these physiologic systems belong to different subclasses of
complexity.

We note that, our observations of higher than 0.5 values
for the gait magnitude exponent ay,,=~0.6 at short time
scales of up to 15 s (Table I) are in agreement with earlier
reports of slightly nonlinear/multifractal behavior in gait dy-
namics based on estimates of the local Holder exponents
[14]. This slightly multifractal behavior at short time
scales—which may result from (i) the inherent instability of
nonisolated local singularities in gait fluctuations as quanti-
fied by the local Holder exponents or (ii) may be intrinsically
related to local nonlinear Fourier-phase correlations in gait
dynamics—appears to be lost at time scales above 15 s,
where the global scaling exponent @, ~0.5 (Table I), and
the multifractal spectrum 7{(g) appears linear for different
moments ¢ (Fig. 5). Our observation of a transition in gait
dynamics from slightly nonlinear (at short time scales) to
linear/monofractal behavior (at long time scales) relates to
earlier empirical and modeling studies reporting (i) a de-
crease in long-term gait nonlinearity, as measured by ap,,g,
with maturation from childhood to adulthood, and (ii) that
this decrease in nonlinearity/multifractality with age may be
related to increased connectivity (i.e., ability to operate over
a broader range of frequency/time scales) among the central
pattern generators responsible for gait control at different
frequency modes [13].

We further note that different mechanisms may be in-
volved in various aspects of locomotor control. For example,
in contrast to gait dynamics where we observe a,,=~0.5
indicating linear behavior, our prior studies of forearm mo-
tion [102,103] show a,,~0.8, indicating high degree of
nonlinearity in wrist activity dynamics, although both gait
and wrist dynamics are characterized by identical long-range
power-law  correlations with an exponent a=0.9
[12,13,102,103]. Thus, comparing the “mosaic” of scaling,
nonlinear, and multifractal measures of gait interstride inter-
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vals with similar measures of other physiologic systems is
necessary for better understanding the dynamics of these sys-
tems and for further developing more adequate models of
integrated neural control [104-106].

The findings reported here are of interest because they
underscore the limitations of traditional two-point correlation
methods in characterizing physiological and physical time
series. In addition, these results suggest that feedback on
multiple time scales is not sufficient to explain different
types of 1/f scaling and scale invariance, and highlight the
need for the development of new models [107-110] that

PHYSICAL REVIEW E 79, 041920 (2009)

could account for the scale-invariant outputs of different
types of feedback systems.
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