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We present a theoretical study of adhesion-induced lateral phase separation for a membrane with short
stickers, long stickers, and repellers confined between two hard walls. The effects of confinement and repellers
on lateral phase separation are investigated. We find that the critical potential depth of the stickers for lateral
phase separation increases as the distance between the hard walls decreases. This suggests confinement-
induced or force-induced mixing of stickers. We also find that repellers with stronger repulsive potential tend
to enhance, while repellers with weaker repulsive potential tend to suppress adhesion-induced lateral phase
separation.
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I. INTRODUCTION

Biological membranes are lipid bilayers with different
types of embedded or absorbed macromolecules. They serve
a number of general functions in our cells and tissues �1,2�.
Because of its biological importance, the physics of mem-
brane adhesion has received considerable attention both
theoretically and experimentally �3–10�. For instance, helper
T cells mediate immune responses by adhering to antigen-
presenting cells �APCs� which exhibit foreign peptide frag-
ments on their surface �11�. The APC membranes contain the
ligands MHCp and ICAM-1, while the T cells contain the
receptors TCR and LFA-1. The experiments �11� show the
formation of domains into shorter TCR/MHCp receptor-
ligand complexes and the longer LFA-1/ICAM-1 receptor-
ligand complexes. The dynamics of adhesion-induced phase
separation has been studied theoretically �12–14�. For ex-
ample, the Monte Carlo study by Weikl and Lipowsky �14�
showed that the height difference between different junctions
causes a lateral phase separation, and the formation of tar-
getlike immunological synapse is assisted by the motion of
cytoskeleton.

The equilibrium studies of adhesion-induced phase sepa-
ration of multicomponent membranes are also important for
a complete understanding of the physics of membrane adhe-
sion. For instance, in recent papers �15,16�, the general case
of two membranes binding to each other with two types of
stickers is considered and the equilibrium phase behavior of
such a system is studied at the mean-field and Gaussian level
by including the effects of sticker flexibility difference,
sticker height difference, and thermally activated membrane
height fluctuations. More recently, Asfaw et al. �17� pre-
sented a theoretical study that characterized the phase dia-
gram and the scaling laws for the critical potential depth of
unbinding and lateral phase separation. These studies show
that membranes are unbound for small potential depths and
bound for large potential depths. In the bound state, the
length mismatch leads to a membrane-mediated repulsion
between stickers of different lengths and this leads to lateral

phase separation depending on the concentrations and
strengths of the receptor-ligand bonds. Furthermore, the flex-
ibilities of the stickers play nontrivial roles in the location of
phase boundaries.

Most of these recent works deal with membranes with one
or two types of stickers. However, biological membranes
usually contain glycoproteins which are repulsive to another
membrane or tissue; i.e., they act as repellers. This important
fact motivates us to study adhesion-induced lateral phase
separation of membranes with short stickers, long stickers,
and repellers. Another important but unexplored issue on
adhesion-induced lateral phase separation in biomembranes
is the effect of external pressure or confinement on the phase
diagram. For example, cell adhesions often occur in the pres-
ence of external force field due to external flow, or the ex-
ternal force may be a result of the occurrence of cell adhe-
sions in highly confined geometry during the development of
multicellular organisms. To study the effect of repellers and
confinement on adhesion-induced lateral phase separation, in
this paper we first consider a membrane with short stickers
and long stickers which are in contact with another planer
surface �substrate� in the absence of repellers. The membrane
and the substrate are confined between two hard walls. We
find that the critical binding energies of the stickers for lat-
eral phase separation increase as the distance between the
hard walls decreases due to the steric repulsion of the mem-
brane with the hard walls. Then the effects of repellers are
considered and we find that repellers with strong repulsive
potential tend to enhance phase separation, while repellers
with weak repulsive potential tend to suppress phase separa-
tion. Our study has revealed the possibility of manipulating
the lateral distribution of stickers in future experiments.

This paper is organized as follows. In Sec. II we present
the model of membranes with short stickers, long stickers,
and repellers. By tracing out sticker and repeller degrees of
freedom, we get membranes that interact with an effective
double-well potential. The adhesion-induced lateral phase
separation in the presence of stickers and repellers is studied
by mean-field theory and Monte Carlo simulations in Sec.
III. First we consider membranes without repellers to study
the effect of confinement on the phase behavior of the sys-
tem. After that we study how repellers affect the state of the*Present address: APCTP, Pohang 790-784, Korea.
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system. Section IV is the summary and conclusion.

II. MODEL

We consider a tensionless multicomponent membrane
with short and long receptor-ligand bonds that interacts with
a substrate as shown in Fig. 1. Let us denote the short and
long receptor-ligand bonds as short and long stickers, respec-
tively. To study the effect of confinement on the system, we
include a fixed upper surface at a distance zd from the sub-
strate. In our model, the membrane is discretized into a two-
dimensional square lattice with lattice constant a �8,17�. We
choose a=6 nm, the smallest length scale for membrane
continuum elasticity theory to be valid. The separation field
l�0 describes the vertical distance between the membrane
and the substrate. An additional field ni=0, 1, 2, or 3 denotes
the occupation state of the ith site. ni=0 indicates the ab-
sence of stickers and repellers at lattice site i, while ni=1 �2�
denotes the presence of a type-1 �2� sticker at lattice site i.
ni=3 denotes the presence of a repeller at a site i.

The grand canonical Hamiltonian of the system under
consideration is given by

H�l,n� = Hel�l� + �
i

�1,ni
�V1�li� − �1� + �

i

�2,ni
�V2�li� − �2�

+ �
i

�3,ni
�V3�li� − �3� . �1�

here Hel�l�=�i
�

2a2 ��dli�2 denotes the discretized bending en-
ergy of the membrane with bending rigidity �. The typical
magnitude of � is �10–20�kBT. The discretized Laplacian �d
is given by �dli= li1+ li2+ li3+ li4−4li, where li1 to li4 are the
four nearest-neighbor membrane separation fields of the
membrane patch i. The second and third terms on the right-
hand side of Eq. �1� are interaction potentials between the
stickers and the substrate. �1 and �2 denote the chemical
potentials of stickers 1 and 2, respectively. The parameters
V3�li� and �3 represent potentials and the chemical potentials
of the repellers, respectively. We consider the following
sticker potentials: for �=1,2,

V� = �U� if l� � l � l� + lwe�

0 otherwise,
� �2�

where U1 and U2 are both negative and l1� l2. That is, type-1
stickers are shorter than type-2 stickers. The repulsive poten-
tial of the repellers is V3=U3	0 for 0� l� l3.

The equilibrium properties of the system can be obtained
from the grand partition function Z,

Z = �
i
	

0

zd

dli �
ni=0

3

exp
− H�l,n�
kBT

� . �3�

Absorbing the Boltzmann constant kB into the temperature T
and tracing out the sticker degrees of freedom, one gets

Z = 	
0

zd

�
i

dli exp�− Hel�l���1 + exp
− V1�li� + �1

T
�

+ exp
− V2�li� + �2

T
� + exp
− V3�li� + �3

T
��

= 	
0

zd

dli�
i

exp
− Hel�l� + �i
Veff�li�

T
� , �4�

where the effective potential Veff�l� is given by

Veff =�
Uba for 0 � l � l1

U1
eff for l1 � l � l1 + lwe1

Uba for l1 + lwe1 � l � l2

U2
eff for l2 � l � l2 + lwe2

Uba for lwe2 � l � l3

0 otherwise,


 �5�

where

U1
eff =

− T ln�1 + exp
− U1 + �1

T
� + exp
�2

T
� + exp
�3

T
�

1 + exp
�1

T
� + exp
�2

T
� + exp
�3

T
� � ,

�6�

U2
eff =

− T ln�1 + exp
�1

T
� + exp
− U2 + �2

T
� + exp
�3

T
�

1 + exp
�1

T
� + exp
�2

T
� + exp
�3

T
� � ,

�7�

and

FIG. 1. �Color online� Schematic figure of a membrane with
short stickers, long stickers, and repellers confined vertically be-
tween a substrate and an upper surface. The upper surface is located
at a distance zd above the substrate.
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Uba
eff =

− T ln�1 + exp
�1

T
� + exp
�2

T
� + exp
− U3 + �3

T
�

1 + exp
�1

T
� + exp
�2

T
� + exp
�3

T
� � ,

�8�

as shown in Fig. 2.
In Sec. III, the phase behavior of membranes under the

effective potential given by Eq. �5� will be studied by mean-
field approximation and Monte Carlo simulations.

III. MEAN-FIELD THEORY AND
MONTE CARLO SIMULATION

It is convenient to introduce the rescaled separation field

z= �l /a��� /T and the rescaled effective potential V̄eff

=Veff /T. In equilibrium state the rescaled separation field z
fluctuates around its average value zmin. When the fluctuation
is not very strong, mean-field approximation can be applied
to the discretized Laplacian such that Hl�z�=�i�4�zmin−zi��2.
In this approximation zi at different sites are decoupled.
Hence Eq. �4� becomes

Z = �	
0

zd

dz exp�− 8�zmin − z�2 − V̄eff�z���N

, �9�

and the mean-field free energy of the membrane is given by

G = − NT ln�	
0

zd

dz�exp�− 8�zmin − z�2 − V̄eff�z���� .

�10�

Minimizing free energy �10� with respect to zmin leads to the
following self-consistence equation for zmin,

zmin =

	
0

zd

z exp�− 8�zmin − z�2 − V̄eff�z��dz

	
0

zd

exp�− 8�zmin − z�2 − V̄eff�z��dz

. �11�

A. Membranes without repellers

Let us consider the effect of confinement, i.e., the finite-
ness of zd, on the phase behavior of this system. For this
purpose we first ignore repellers; i.e., we let Uba

eff=0 �see also
Fig. 3�. The effect of repellers will be discussed later. Since
the critical phenomenon for this system belongs to Ising uni-
versality class, for sufficiently strong potential depths the
system is in two-phase state with two possible separations,
one is closer to z1, and another one is closer to z2 �18�. For
weak potential wells, the membrane can tunnel through the
energy barrier between the wells and takes one average sepa-
ration field zmin.

As an example, Fig. 4 shows the relation between Ū2
eff

versus zmin given by Eq. �11� for z1=0.1, zd=1.2, zwe1=zwe2
=0.2, and zba=0.4. The effective binding energy of type-1

stickers, �Ū1
eff�, is chosen to be �Ū1

eff�=4 for the upper curve

and �Ū1
eff�= �Ū1c

eff�=1.095 for the lower curve. Intuitively, one

expects that zmin increases as �Ū2
eff� increases, and this is the

case for �Ū1
eff�
 �Ū1c

eff�. However, when �Ū1
eff�	 �Ū1c

eff� there is a

range of Ū2
eff with multiple solutions for zmin which indicates

two-phase coexistence and a first-order phase transition. The

FIG. 2. Schematic effective potential Veff versus l. The potential

has two square wells of depths �Ū1
eff� and �Ū2

eff� and widths lwe1 and
lwe2, respectively. There is a barrier Uba

eff due to the repellers and a
hard wall located at ld which represents the upper surface.

FIG. 3. Model potential for a membrane without repellers. The
two wells representing the long and short stickers are separated by
a potential barrier of width zba.
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FIG. 4. The effective potential depth �Ū2
eff� versus zmin for z1

=0.1, zd=1.2, zwe1=zwe2=0.2, and zba=0.4. �Ū1
eff�=4 for the upper

curve and �Ū1
eff�= �Ū1c

eff�=1.095 for the lower curve. The phase coex-

istence region for �Ū1
eff�=4 can be determined by Maxwell’s equal-

area construction.
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two-phase state ends at the critical point �Ū1C
eff , Ū2C

eff�, which

can be found by varying Ū1
eff until �U2

eff /�zmin and
�2U2

eff /�2zmin have common zero for given z1, zd, zba, zwe1,
and zwe2. The equation of state in the two-phase state, i.e., the

relation between Ū2
eff and zmin for �Ū1

eff�	 �Ū1c
eff�, and the phase

coexistence curve can be obtained by Maxwell’s equal-area
construction �19�.

To study such systems experimentally, one makes a lipid
membrane that contains both long and short stickers which
can adhere to the substrate, then put an upper surface to
confine the height of the membrane. For given species of
stickers, z1, z2, zwe1, and zwe2 are fixed, although the binding
energies between the stickers and the substrate are also fixed.

Ū1
eff and Ū2

eff can be adjusted by changing the density of the
stickers in the membrane. Thus the phase behavior of the

system is determined by the two parameters Ū1
eff and Ū2

eff.
For systems with sufficiently strong effective binding ener-

gies, Ū1
eff and Ū2

eff depends on the relative strength of these
effective binding energies, the membrane can have mem-
brane height close to either z1+zwe1 /2 or z2+zwe2 /2, or the
membrane can be phase separated into two domains, one
with membrane height close to z1+zwe1 /2 and another one
with membrane height close to z2+zwe2 /2. The two-phase
state disappears as the effective binding energies of the stick-

ers become weaker than the critical strengths Ū1c
eff and Ū2c

eff,
respectively. With Maxwell’s equal-area construction, we can
determine the phase boundaries and critical points for such
systems. Figure 5�a� shows how the confinement affects the

critical point �Ū1c
eff , Ū2c

eff� for z1=0.1, zba=0.4, zwe1=0.2, and
zwe2=0.2. The effect of confinement becomes important for

zd
1.5, where �Ū1c
eff� and �Ū2c

eff� increase as zd decreases. Thus
we find that lateral phase separation induced by membrane
adhesion is suppressed by compressing the membrane to-
ward the substrate with an upper plate. This is because the
entropic repulsion between the membrane and the hard wall

located at zd increases as zd decreases, and the membrane is
forced to tunnel through the barrier more often when zd de-
creases. The phase coexistence curves for several magnitudes
of zd are shown in Fig. 5�b�. Systems on the left side of the
phase coexistence curves are richer in type-2 stickers �i.e.,
with greater zmin� than systems on the right side of the phase
coexistence curves. Besides the fact that the critical points
shift toward greater �Ū1

eff� and �Ū2
eff� as zd decreases, we also

find that by decreasing zd, the phase coexistence curves shift
toward greater �Ū2c

eff�. This is because smaller zd enhance bar-
rier crossing for the membrane to go from well 2 to well 1.
Thus besides suppressing lateral phase separation, another
effect of confinement is to suppress phase that is richer in
type-2 stickers.

Mean-field theory is also convenient for studying how

Ū1c
eff and Ū2c

eff vary as the length difference between the stick-
ers changes. Figure 6�a� shows that when the effect of con-
finement is negligible, as the length difference between short
and long stickers increases, lateral phase separation occurs at

lower �Ū1c
eff� and �Ū2c

eff�, as one expects. Furthermore, for zwe1

=zwe2, �Ū1c
eff�	 �Ū2c

eff� due to collisions between the membrane
and the substrate. On the other hand, Fig. 6�b� depicts that

when zwe2=1 /2zwe1, �Ū2c
eff�	 �Ū1c

eff� when zba is small due to
the potential width difference. However, for large zba the
steric repulsion between a membrane in the second well and

the substrate becomes unimportant; thus �Ū2c
eff�� �Ū1c

eff� even
though zwe2�zwe1. These results demonstrate that our mean-
field theory can be applied in analysis of various physical
effects on the adhesion-induced lateral phase separation. A
more detailed study will likely require time-consuming
large-scale numerical simulations.

To check whether the physics revealed by our simple
mean-field analysis holds when fluctuations are taken into
account, we compare the mean-field result with Monte Carlo
simulation. In the simulations partition function �4� is evalu-
ated by the standard Metropolis algorithm �20,21� for mem-
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�b� FIG. 5. �a� The critical poten-
tial depths versus zd for z1=0.1,
zba=0.4, zwe1=0.2, and zwe2=0.2.

When zd is small, �Ū1c
eff� and �Ū2c

eff�
increases as zd decreases. �b� The
phase coexistence curves for the
system shown in �a�. zd=0.9 �top�,
zd=1 �middle�, and zd=1.2 �bot-
tom�. Phase rich in type-2 stickers
is suppressed as zd decreases.
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�b� FIG. 6. �a� The critical poten-
tial depths versus zba for z1=0.1,

zd=6, and zwe1=zwe2=0.2. �Ū1c
eff�

	 �Ū2c
eff� for all zba and both �Ū1c

eff�
and �Ū2c

eff� decrease as zba in-
creases. �b� The critical potential
depths versus zba for z1=0.1, zd

=6, zwe1=0.2, and zwe2=0.1.

�Ū2c
eff�	 �Ū1c

eff� for small zba, and

�Ū1c
eff�	 �Ū2c

eff� for large zba.
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branes of sizes L=10�10, L=20�20, and L=30�30. The
simulation is performed with up to 108 attempted local
moves per site.

When zd and z1 are both large, the effect of the walls is
insignificant. Hence when zwe1=zwe2, the membrane is effec-
tively in a symmetric double-well potential �17�. In this case,
the critical potential depths Ū1c

eff= Ū2c
eff= Ūeff can be obtained

from Binder cumulants C2= �z̄2� / ��z̄��2 and C4= �z̄4� / �z̄2�2. z̄
= 1

N�i=1
N designates the spatial average of the separation field,

while �¯� represents thermal average. When the potential
barrier between the wells that represent the stickers is very
low, the correlation length � of membrane height is small
compared to system size L, and C2=
 /2 and C4=3. When
the barrier between the wells is very high, again ��L but the
cumulants take different limiting values: C2=1 and C4=1.
When the system is located at the critical point, � diverges
and C2 and C4 take values between these limiting cases, and
these values are independent of system size L. Therefore the
critical point can be found from the common intersection
points of the cumulants C2 and C4 at different values of L
�21�. As an example, Figs. 7�a� and 7�b� show C2 and C4

versus Ūeff for z1=0.8, zd=3.1, z2=1.8, zwe1=zwe2=0.5, and

zba=1.2. It is clear that the critical point is located at Ūeff

�−0.41.
The effect of confinement on lateral phase separation of

membrane is important when zd is small. In this case the
walls affect the phase coexistence curve and the critical po-
tential depths. Thus the phase coexistence curve and the criti-
cal potential depths in the simulations are determined by
measuring the binding probability P1 of the membrane in
well 1, and the binding probability P2 of the membrane in
well 2. Membranes of size L=120�120 patches are simu-
lated and the simulation is performed with up to 107 Monte
Carlo steps. The simulation starts in the regime when both
potential wells are deep and the membrane stays in well 2.

Then we decrease �Ū2
eff�; P2 decreases continuously until the

membrane switches from well 2 to well 1. This discontinu-
ous transition signals a first-order phase transition �22�. The
location of the critical point can be determined by repeating
the above procedure for systems with progressively smaller

�Ū1
eff�. Below the critical point, the plot P2 versus Ū2

eff is
continuous.

Figure 8 shows the phase coexistence curves from Monte
Carlo simulations for z1=0.1, zba=0.4, zwe1=0.2, and zwe2

=0.2. Similar to the phase coexistence curves constructed by
mean-field theory, for small zd the critical points are located
at greater potential depths, and the phase coexistence curves

shift toward greater �Ū2c
eff� in the vicinity of the critical points

as membrane confined in well 2 feels higher entropic repul-
sion with the hard wall at zd than membrane confined in well
1. Thus although quantitatively the critical points in the

simulations are located at higher �Ū1
eff� and �Ū2

eff� than those in
the mean-field theory due to fluctuations, simulations also
show that confinement suppresses phase separation and con-
finement suppresses the phase that is richer in type-2 stick-
ers. Thus, although mean-field theory cannot provide accu-
rate prediction of the critical points, it provides good

prediction about the shape of phase boundary in �Ū1
eff�

− �Ū2
eff� plane and the entropic effect of confinement on the

phase boundary.

B. Membranes with repellers

Now we discuss the effect of repellers on adhesion-
induced lateral phase separation. First notice that adding re-
pellers to a system means for given sticker species and den-
sities �U1, �1, U2, and �2 are not changed�, repellers with
given U3, �3, and l3 are added to the system. Therefore we
need to see how effective potentials associated with the
stickers change as repellers are added to the system.

For membranes containing repellers, the effective poten-
tial of the membrane takes the form

V̄eff =�
Ūba

eff for 0 � z � z1

Ū1
eff � �Ū1

eff�trans for z1 � z � z1 + zwe1

Ūba
eff for z1 + zwe1 � z � z2

Ū2
eff � �Ū2

eff�trans for z2 � z � z2 + zwe2

Ūba
eff for z2 + zwe2 � z � z3

0 for z3 � z � zd,


 �12�

as shown in Fig. 9. Here Ū1
eff�0 and Ū2

eff�0, while Ūba
eff

	0.
The presence of repellers contributes to the effective po-

tentials of the stickers in Eq. �12�. To make this point more
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FIG. 7. �a� The cumulant C2 versus Ūeff for z1=0.8, zd=3.1,
z2=1.8, zwe1=zwe2=0.5, and zba=0.5. The intersection point for L
=10, L=20, and L=30 denotes the location of the critical potential

depth ŪC
eff. �b� The cumulant C4 versus Ūeff for z1=0.8, zd=3.1,

z2=1.8, zwe1=zwe2=0.5, and zba=0.5.
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FIG. 8. Phase coexistence curves in Ū1
effŪ2

eff space constructed
from Monte Carlo simulations for membranes without repellers. In
the simulations z1=0.1, zba=0.4, zwe1=0.2, and zwe2=0.2. zd=0.9
�top�, zd=1 �middle�, and zd=1.2 �bottom�.
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transparent, let the effective potentials of sticker i �i=1 or 2�
in the absence of repellers be

�Ū1
eff�0 = − T ln

1 + e�−U1+�1�/T + e�2/T

1 + e�1/T + e�2/T , �13�

and

�Ū2
eff�0 = − T ln

1 + e�1/T + e�−U2+�2�/T

1 + e�1/T + e�2/T . �14�

In the presence of repellers, the effective potentials become

�Ū1
eff�trans = − T ln

1 + e�−U1+�1�/T + e�2/T + e�3/T

1 + e�1/T + e�2/T + e�3/T , �15�

�Ū2
eff�trans = − T ln

1 + e�1/T + e�−U2+�2�/T + e�3/T

1 + e�1/T + e�2/T + e�3/T , �16�

and the effective potential of the repellers is

Ūba
eff = − T ln

1 + e�1/T + e�2/T + e�−U3+�3�/T

1 + e�1/T + e�2/T + e�3/T . �17�

Intuitively, adding repellers to the system reduces the affinity
of the stickers; this can verified by straightforward algebra.
Indeed, from Eqs. �13�–�16�, one finds

��Ū1
eff�trans� = ��Ū1

eff�0� + T ln
1 + e�3/T/�1 + e�−U1+�1�/T + e�2/T�

1 + e�3/T/�1 + e�1/T + e�2/T�

� ��Ū1
eff�0� , �18�

and

��Ū2
eff�trans� = ��Ū2

eff�0� + T ln
1 + e�3/T/�1 + e�1/T + e�−U2+�2�/T�

1 + e�3/T/�1 + e�1/T + e�2/T�

� ��Ū1
eff�0� , �19�

because U1�0 and U2�0.
The above discussion suggests that to see if the presence

of repellers enhances or suppresses adhesion-induced lateral
phase separation of different species of stickers, one needs to

compare the critical potentials �Ūic
eff� in the presence of repel-

lers with ��Ūic
eff�trans�, the potentials that are transformed from

��Ūic
eff�0� by Eqs. �18� and �19�.
As demonstrated in Sec. III A, although quantitatively not

accurate, mean-field approximation gives us correct physical
picture of the system under consideration. Since the precise
magnitude of the critical potential depths is not the key issue
of this section, we use mean-field theory to study the effect
of repellers. First we check if the effect of confinement in the
presence of repellers is the same as that in the absence of
repellers. The critical potential depths in the presence of re-
pellers versus zd for z1=0.1, z3=1.0, zba=0.4, zwe1=0.2,

zwe2=0.2, and �Ūba
eff�=0.1 in the mean-field approximation are

shown in Fig. 10�a�. Indeed, like the no-repeller case, the

critical potential depths �Ū1c
eff� and �Ū2c

eff� decrease as zd in-
creases. Furthermore, the confinement effect is negligible for
large values of zd; this is also the same as no-repeller case.

To see the effect of repellers on adhesion-induced phase
separation, we compare the numerical solutions of the criti-

cal potentials of the stickers ��Ūic
eff�� with ��Ūic

eff�trans�. Figure

10�b� shows the curves on which �Ūic
eff�= ��Ūic

eff�trans� for z1
=0.1, zd=6, zwe1=zwe2=0.2, and zba=0.4. In Fig. 10�b�, re-
pellers suppress phase separation on the left of the curves,
and enhance phase separation on the right of the curves.

Between the curves �Ū2c
eff�− ��Ū2c

eff�trans��0, and �Ū1c
eff�

− ��Ū1c
eff�trans�	0. This indicates that repellers with stronger

repulsive potential enhance, while repellers with weaker re-
pulsive potential suppress adhesion-induced lateral phase
separation. Although there is no analytical expression for the
critical strengths of U3 and �3 for the repellers to enhance
lateral phase separation, the effect of repellers on the phase
behavior of the system can be understood by the following
simple analysis. When membrane-membrane collisions is not
important, adding repellers should not significantly change
the height of energy barrier between the wells of the stickers.
Thus the critical potentials of the stickers in the presence of
repellers are related to those in the absence of repellers by

�Ūic
eff�+ Ūba

eff���Ūic
eff�0�. Repellers enhance phase separation as

long as ��Ūic
eff�trans�	 �Ūic

eff����Ūic
eff�0�− Ūba

eff. From Eqs.
�17�–�19�, this condition leads to

FIG. 9. Schematic potential for a membrane with short stickers,
long stickers, and repellers. The membrane is confined between z

=0 and z=zd. There are two square wells of depths �Ū1
eff� and �Ū2

eff�
and widths zwe1 and zwe2, and one barrier of height Ūba

eff due to the
repellers.
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FIG. 10. �a� The critical potential depths versus zd for z1=0.1,

z3=1.0, zba=0.4, zwe1=0.2, zwe2=0.2, and �Ūba
eff�=0.1. For small zd,

�Ūc
eff� decreases as zd increases. �b� Upper curve: �Ū2c

eff�− ��Ū2c
eff�trans�

=0; lower curve: �Ū1c
eff�− ��Ū1c

eff�trans�=0. On the left of the curves,
repellers suppress lateral phase separation; on the right of the
curves, repellers enhance lateral phase separation; between the

curves, �Ū2c
eff�− ��Ū2c

eff�trans��0 and �Ū1c
eff�− ��Ū1c

eff�trans�	0. The curves
are plotted for z1=0.1, z3=1, zd=2, zwe1=0.2, zwe2=0.2, and zba

=0.4.
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ln
1 + e�3/T/�1 + e�−U1+�1�/T + e�2/T�
1 + e�−U3+�3�/T/�1 + e�1/T + e�2/T�� 	 0 �20�

for type-1 stickers. Since U3	0, we find that at given �3 for
sufficiently large U3 the above inequality is satisfied; simi-

larly when U3 is sufficiently large, �Ū2c
eff�− ��Ū2c

eff�trans��0.
Thus repellers with sufficiently strong repulsive potentials
tend to enhance lateral phase separation.

IV. SUMMARY AND CONCLUSION

We have developed a mean-field analysis that is conve-
nient for studying the phase behavior of membrane adhesion-
induced lateral phase separation. Our study shows that verti-
cal confinement tends to suppress adhesion-induced phase
separation because long-sticker-rich state is suppressed due
to the entropic loss. We also find that adding repellers re-
duces the effective binding energies of the stickers, and re-
pellers play a nontrivial role in adhesion-induced phase sepa-
ration: repellers with strong repulsive potential tend to
enhance phase separation, whereas repellers with weak re-
pulsive potential tend to suppress phase separation.

The main predictions of our theory are not difficult to
check in experiments. For example, consider vesicle adhe-
sion to supported membranes via two types of stickers. Our
analysis predicts that it is possible to mix the phase-separated
stickers by simply compressing the vesicle against the sup-
porting substrate. The effect of repellers can be checked by
incorporating nonadhesive flexible polymers and stiff rodlike
molecules to the vesicle surface, and examining the adhesion
zone. Flexible polymers should tend to suppress lateral phase
separation, while stiff molecules should tend to enhance lat-
eral phase separation. We believe that these effects could be
useful in the development of new sensitive soft materials
with possible applications in future biotechnologies.

ACKNOWLEDGMENTS

M.A. would like to thank Professor R. Lipowsky, T. R.
Weikl, and B. Rozycki for discussions he had during his stay
at Max Planck Institute for Colloids and Interfaces, Potsdam,
Germany. M.A. would also like to thank the Asian Pacific
Center for Theoretical Physics, Korea, as part of the paper
was written during his visit there. This work was supported
by National Science Council of Taiwan, Republic of China,
under Grant No. NSC 96-2628-M-008-001-MY2.

�1� R. Lipowsky and E. Sackmann, Structure and Dynamics of
Membranes: Generic and Specific Interactions, Handbook of
Biological Physics Vol. 1B �Elsevier, Amsterdam, 1995�.

�2� B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P.
Walter, Molecular Biology of the Cell, 3rd ed. �Garland, New
York, 1994�.

�3� S. Komura and D. Andelman, Eur. Phys. J. E 3, 259 �2000�.
�4� R. Bruinsma, A. Behrisch, and E. Sackmann, Phys. Rev. E 61,

4253 �2000�.
�5� A. Albersdfer, T. Feder, and E. Sackmann, Biophys. J. 73, 245

�1997�.
�6� T. R. Weikl, R. R. Netz, and R. Lipowsky, Phys. Rev. E 62,

R45 �2000�.
�7� J. Nardi, T. Feder, and E. Sackmann, Europhys. Lett. 37, 371

�1997�.
�8� T. R. Weikl and R. Lipowsky, Phys. Rev. E 64, 011903 �2001�.
�9� H. Strey, M. Peterson, and E. Sackmann, Biophys. J. 69, 478

�1995�.
�10� D. Zuckerman and R. Bruinsma, Phys. Rev. Lett. 74, 3900

�1995�.

�11� C. R. F. Monks, B. A. Friedberg, H. Kupfer, N. Sciaky, and A.
Kupfer, Nature �London� 395, 82 �1998�; G. Grakoui et al.,
Science 285, 221 �1999�; D. M. Davis et al., Proc. Natl. Acad.
Sci. U.S.A. 96, 15062 �1999�.

�12� S. Y. Qi, J. T. Groves, and A. K. Chakraborty, Proc. Natl.
Acad. Sci. U.S.A. 98, 6548 �2001�.

�13� N. J. Burroughs and C. Wülfing, Biophys. J. 83, 1784 �2002�.
�14� T. R. Weikl and R. Lipowsky, Biophys. J. 87, 3665 �2004�.
�15� H.-Y. Chen, Phys. Rev. E 67, 031919 �2003�.
�16� J.-Y. Wu and H.-Y. Chen, Phys. Rev. E 73, 011914 �2006�.
�17� M. Asfaw, B. Rozycki, R. Lipowsky, and T. R. Weikl, Euro-

phys. Lett. 76, 703 �2006�.
�18� R. Lipowsky, J. Phys. II 4, 1755 �1994�.
�19� K. Huang, Statistical Mechanics, 2nd ed. �Wiley, New York,

1987�.
�20� A. Ammann and R. Lipowsky, J. Phys. II 6, 255 �1996�.
�21� K. Binder and D. W. Heermann, Monte Carlo Simulation in

Statistical Physics �Springer, Berlin, 1992�.
�22� M. Asfaw, Ph.D. thesis, Max Planck Institute for Colloids and

Interfaces, 2005 �unpublished�.

ADHESION-INDUCED LATERAL PHASE SEPARATION OF… PHYSICAL REVIEW E 79, 041917 �2009�

041917-7


