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We study the surface growth generated by the random deposition of particles of different sizes. A model is
proposed where the particles are aggregated on an initially flat surface, giving rise to a rough interface and a
porous bulk. By using Monte Carlo simulations, a surface has grown by adding particles of different sizes, as
well as identical particles on the substrate in �1+1� dimensions. In the case of deposition of particles of
different sizes, they are selected from a Poisson distribution, where the particle sizes may vary by 1 order of
magnitude. For the deposition of identical particles, only particles which are larger than one lattice parameter
of the substrate are considered. We calculate the usual scaling exponents: the roughness, growth, and dynamic
exponents �, �, and z, respectively, as well as, the porosity in the bulk, determining the porosity as a function
of the particle size. The results of our simulations show that the roughness evolves in time following three
different behaviors. The roughness in the initial times behaves as in the random deposition model. At inter-
mediate times, the surface roughness grows slowly and finally, at long times, it enters into the saturation
regime. The bulk formed by depositing large particles reveals a porosity that increases very fast at the initial
times and also reaches a saturation value. Excepting the case where particles have the size of one lattice
spacing, we always find that the surface roughness and porosity reach limiting values at long times. Surpris-
ingly, we find that the scaling exponents are the same as those predicted by the Villain-Lai-Das Sarma
equation.
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I. INTRODUCTION

The research on the geometric properties of growing sur-
faces is one of the most important in the field of the nonequi-
librium statistical physics, not only because it is a challenge
for the theoretical physicist to model these properties, but
especially for the intrinsic experimental interest in shaping
the surfaces with desired purposes �1,2�. The random depo-
sition is the simplest known model, where particles are ag-
gregated onto an initially flat substrate. Because lateral cor-
relations among the deposited particles are completely
neglected, the continuous and discrete atomistic versions of
the model have exact solutions. If a surface relaxation
mechanism is allowed to the deposited particles in the ran-
dom deposition model, height-height correlations naturally
appear. Although the corresponding discrete model did not
present an exact solution, it can be described by the linear
Edwards-Wilkinson �EW� equation �3�, which is exactly
soluble. A generalization of the EW equation was proposed
by Kardar, Parisi, and Zhang �KPZ� �4� in 1986, including a
nonlinear term that accounts for the lateral growth of the
interface. Although the growth process is a local phenom-
enon, the lateral growth is related to the spreading of the
height fluctuations along the surface. This is characterized by
a correlation length that increases with time and it reaches a
maximum value corresponding to the linear dimension of the
substrate. A perpendicular correlation length is also defined
that is related to the fluctuations in height along the growth

direction. The nonlinear KPZ equation �4� is very useful to
describe porous deposits, as those ones generated by the bal-
listic deposition of particles �5�.

The morphology of the surface described by the interface
width w�L , t�, which characterizes the roughness of the inter-
face, is defined by the rms deviation of the height h around

average value h̄; that is,

w�L,t� = ���h − h̄�2� , �1�

where L is the linear dimension of the substrate, t is the time
elapsed after the growth started, the overbar indicates spatial
average, and the angular brackets mean configurational aver-
ages. It is well established that a large class of growth mod-
els follow the Family-Vicsek scaling relation �6�

w�L,t� � L�f	 t

Lz
 , �2�

where the scaling function f�x� is a constant when x is very
large and f�x��x� when x�1. The exponent � characterizes
the interface width, z is the dynamic exponent, while � is the
growth exponent. These exponents are not independent and
are related by �=�z.

Most of the studies performed in the area of surface
growth focus their attention in the determination of these
exponents and whether they fit to the Family-Vicsek ansatz.
These calculations have been done analytically by solving
stochastic differential equations or employing mean-field ap-
proximations and through extensive use of Monte Carlo
simulations �7–13�. In this work we use Monte Carlo simu-
lations to study the surface growth in �1+1� dimensions due*wagner@fisica.ufsc.br
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to the deposition of particles of different sizes. There are in
literature some studies where two or more different deposi-
tion models are combined �14,15� or two species of particles
are deposited �16–18� in order to describe the time evolution
of roughness in real systems. Here, we choose our particles
to be deposited from a modified Poisson distribution, with
average size equal to five lattice spacings and maximum size
equal to nine. This type of distribution appears to be relevant
in some ash particles deposition on the heat exchange sur-
faces �19,20�. We also consider in this work, the deposition
of identical particles, which size is larger than one lattice
spacing of the substrate. The deposition of particles proceeds
as in the pure random deposition model; however, correla-
tions between columns naturally appear due to the deposition
of particles larger than one lattice spacing. The random depo-
sition of particles of unit size generates a compact bulk and
an infinitely large interface width. This means that for a lin-
ear substrate of size L, w�L , t� becomes infinitely large as the
deposition time t goes to infinity. On the other hand, the
deposition of particles larger than one unit produces a porous
bulk. Then, we can determine the evolution of the porosity of
the bulk simultaneously with the scaling properties of the
surface. We say that the interface width satisfying Eq. �2� is
self-affine, which means that rescaling part of the interface
anisotropically we obtain an interface that is statistically in-
distinguishable from the whole one. In order to characterize
the morphology of a rough interface, it is sufficient to know
the value of the exponent � �1�. We show that the surface
growth presents three different behaviors as a function of
time. At the initial times, it behaves as in the usual random
deposition of particles of unit size. Then, at intermediate
times, when the lateral correlations between columns de-
velop, it grows more slowly and finally reaches a saturation
regime at long times. Porosity attains the saturation regime
faster than the interface width and it presents large values
even for the smallest particle size of two lattice spacings.
Finite-size effects are not observed for this property, and for
particles of size corresponding to four lattice units of the
substrate, the porosity is already 85% of the maximum pos-
sible porosity, that is, P=0.5.

The paper is organized as follows. In Sec. II we present
the model, the deposition rules, and some details concerning
the Monte Carlo simulations. In Sec. III, we present the re-
sults for the interface width as a function of particle sizes.
Section IV contains the results for the scaling exponents
when the deposited particles are identical and Sec. V is de-
voted to the study of bulk porosity. Finally, in Sec. VI, we
present our main conclusions.

II. MODEL FOR DEPOSITION OF LARGE PARTICLES

We propose a model where the particles are dropped ran-
domly over a finite linear substrate, which is divided into
cells of unit size. All the particles also have unit height and
the columns where they land are increased by one unit. Par-
ticles of different sizes are selected from a modified Poisson
distribution, with sizes changing by 1 order of magnitude.
The most important difference between this model and the
simple random deposition, where only particles of unit size

are deposited, is that the present model naturally allows for
correlations among the columns; that is, it leads to a lateral
growth of the interface. We studied the effect of particle sizes
on the scaling exponents, as well as on the global porosity. In
this study, we performed Monte Carlo simulations in two
quite different conditions: �1� adding particles of different
sizes and �2� adding identical particles. For the deposition of
identical particles, only particles which are larger than one
lattice spacing of the substrate are considered. In the case of
particles of different sizes, they are selected from a modified
Poisson distribution.

The Poisson distribution was modified in this work in
order to take into account the discrete nature of the particles
and a maximum size of the particle to be deposited during
our Monte Carlo simulations. The probability of a particle
with size equal to n to be selected for a deposition trial is

P�n,x� =
xne−x

an!
, �3�

where n ranges from one to nine lattice spacings, which is
the maximum permitted size for deposition in the present
model. As we fixed x at the value of 5, the normalization
factor a is equal to 0.96143. Therefore, this is a type of a
modified Poisson distribution with a finite set of possible
results. For a true Poisson distribution, where all values of n
are possible, x should be the average value of the distribution
and the normalization factor a=1. This modified Poisson dis-
tribution is believed to be realistic to describe some ash de-
posits, where particle sizes may vary by 2 or more orders of
magnitude and are well represented by a Poisson distribution
�19�.

When we perform simulations with particles of different
sizes, the particles to be deposited are flat, with height of 1,
and may change from �1�1� to �9�1� in units of the lattice
parameter of the linear substrate, according to the modified
Poisson distribution. In the case of deposition of identical
particles, we choose just one species of particle with a de-
fined size. The simulations in this work are performed in
�1+1� dimensions, the resulting deposit is two dimensional,
and we always use periodic boundary conditions along the
linear substrate.

To add a particle on the substrate, a cell on the lattice is
randomly selected. At this selected position we place the
midpoint of the particle, trying to extend horizontally, at both
sides of the initial position, this site to the full size of the
particle. In the case of particles with even sizes of two, four,
six, and eight lattice spacings, we choose as their midpoint
the positions 1, 2, 3, and 4, respectively.

We allow the reflection of a particle by the surface and, in
this case, the trial of deposition is lost; the particle is not
incorporated to the substrate. The reflection is due to the
geometric constraint properties of the surface. For each par-
ticle deposition attempt, we look at the number of vacant
sites around a randomly selected position on the substrate.
The number of vacant sites around this site determines the
possible deposition or reflection of the selected particle. If
the vacant region is smaller than the size of the selected
particle, the particle will be rejected. On the other hand, if
the vacant region is larger or equal to the size of the particle,
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there are no geometric restrictions and the incident particle
permanently sticks to that region.

The growth rules are illustrated in Fig. 1. The particle
labeled by “A” will not be incorporated to the surface, while
the particle labeled by “B” is added to the deposit. Under the
B particle, a shadow zone is created, where no other particle
can be aggregated. This is the mechanism that leads to the
formation of a porous structure inside the bulk. In order to
determine the global porosity, we calculate the quantity

P =
Vpore

Vpore + Vsolid
, �4�

where Vpore is the volume occupied by the vacant sites and
Vsolid is the proper volume occupied by particles. The vacant
sites here mean that only the empty sites are not belonging to
the surface. The overhangs from the topmost layer are not
considered vacant sites. In this work, we show that the depo-
sition of particles larger than one lattice parameter of the
substrate generates a highly two-dimensional porous struc-
ture. The time evolution of the porosity and its dependence
on the size of the deposited particles are presented in Sec. V.

III. PARTICLES OF DIFFERENT SIZES

In this section, we focus our simulations on the estimate
of the scaling exponents and determination of the universal-
ity class of the model when the deposited particles are se-
lected from the probability distribution �Eq. �3��. The usual
scaling exponents—the growth, roughness, and dynamic
exponents—and also the global porosity in the bulk are cal-
culated for deposition of particles larger than one lattice
spacing. Some earlier studies �12,16� clearly point for the
existence of two different regimes of growth, with growth
exponents �1 and �2, when only two species of particles are
deposited. The observation of the data for the time evolution
of the roughness shows a change in its behavior from an
uncorrelated growth, whose exponent is �1, to another one,
where lateral correlations are present, which is characterized
by a second growth exponent �2.

At the very initial times, the surface is free of lateral
correlations once the particles are incorporated to the sub-
strate, following the rules of the random deposition model.
The exponent �1 is near 1/2, which is the typical value for

the random deposition model. However, at intermediate
times, height-height correlations develop and we find a
smaller value for the growth exponent �2. Finally, at long
times, the roughness enters into a saturation regime, and the
surface is characterized by the roughness exponent �.

In Fig. 2 we show the log-log plot for the time evolution
of the roughness, where simulations were performed with
particles selected from the Poisson distribution �Eq. �3�� with
x=5 and n ranging from 1 to 9. The results we are showing
represent averages considering 103 different samples for the
linear sizes L=1024, 2048, and 400 samples for L=4096 and
8192. In this log-log plot we see two different linear
regimes at the initial times, where we find the value
�1=0.503�0.005 for all the lattice sizes, which is close to
the expected value for the random deposition model, whose
exact value is 1/2 in any spatial dimension.

At intermediate times, the interface width grows more
slowly, with another growth exponent �2, which is not in the
same universality class of the random deposition model. Fig-
ure 2 shows that this exponent depends on the lattice size L,
especially for the smallest system sizes, which is a typical
finite-size behavior. For larger system sizes �2 smoothly in-
creases with L, reaching a limiting value when L→�. In Fig.
3 we show the plot of the growth exponent �2 as a function
of 1 /L. The extrapolation to L→� gives the best value for
this exponent, �2=0.310. Fortuitously, it is close to the value
1/3, which is the exact result for the ballistic deposition in
�1+1� dimensions described by the KPZ equation.

On the other hand, at long times, when the surface width
reaches its saturation value for each lattice size, we can es-
timate through Eq. �2� the value of the corresponding rough-
ness exponent. We have found that �=0.94�0.01. Another
method to determine � is by using the rms fluctuation of the
squared roughness in the steady state presented in Refs.
�21,22�. This procedure gives an estimate for the roughness
exponent, which is much less dependent on the finite-size
corrections. The effective roughness exponent is defined as

��L� �
1

2

ln���L�/��L/2��
ln 2

, �5�

where � is defined by

FIG. 1. Illustration of the growth rules, where geometric restric-
tions lead to the reflection of a particle by the surface. Particle A
will be rejected, while particle B will be added to the surface.

0 2 4 6 8
ln(t)

0

0.5

1.0

1.5

2.0

2.5

3.0

ln
(w

)

FIG. 2. Log-log plot of the roughness versus time for deposition
with particle size taken from the modified Poisson distribution
�Eq. �3��. From bottom to top the lattice sizes are L
=1024,2048,4096,8192.
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� � ��wsat
2 � − �wsat�2. �6�

Using this method we have found that �=0.942, which is
in good agreement with our estimate based on Eq. �2�. With
the values of � and �2, the dynamical critical exponent is
z=3.00, which comes from the Family-Vicsek scaling rela-
tion. After deposition, particles cannot migrate either down-
ward or upward, and there is no surface diffusion in the
present model. The exponents we calculated, �, �2, and z, fit
very well to the nonlinear model, with conservative dynam-
ics and nonconservative noise in �1+1� dimensions, which is
described by the Villain-Lai-Das Sarma equation �23�. The
exponents of this model were exactly determined from the
renormalization-group recurrence relations, where the non-
linear term determines the scaling behavior and the upper
critical dimension is dc=4. For d=1, the exponents are
�=1, �=1 /3, and z=3. In the deposition problems, we say
that a given relaxation process is conservative if it does not
change the number of particles in the system. On the other
hand, a noise is said to be nonconservative when its correla-
tion function at coordinates �x , t� and �x� , t�� is of the white
noise type; that is, it is the product of two Dirac delta func-
tions: one of them is a function of the difference between the
two spatial positions �x−x�� and the other is a function of the
difference between the two times �t− t��.

IV. IDENTICAL PARTICLES

For surfaces formed by depositing identical particles, only
particles with size in the range of two to nine lattice units of
the linear substrate were considered. In our simulations, the
particles are flat, with variable horizontal length �2	N	9�
and vertical height corresponding to one unit. The deposition
rules are exactly the same as the ones presented in Sec. III.
The dependence of the surface width on the size of the par-
ticle is very weak and its behavior as a function of time for
different lattice sizes is very similar to that seen for the depo-
sition of particles of different sizes. We also find two differ-
ent growth regimes characterized by the exponents �1 and
�2. In Table I we display for each particle length �N�, the

values of the exponents �1, �2, �, and z for the lattice size
L=8192. Then, even when the particles are of the same size,
we find the this model is in the same universality class of the
nonlinear model with conservative dynamics and nonconser-
vative noise in �1+1� dimensions.

V. POROSITY

There are few studies in the literature considering the for-
mation of voids inside the volume �16,22� and only deposits
formed by the deposition of particles with two sizes have
been analyzed. In this section we present the results for the
global porosity, where particles of different sizes are taken
into account. The porosity, defined by Eq. �4� and calculated
at each Monte Carlo step, saturates at the early stages of
deposition and exhibits a strong dependence only on the size
of the particles. For deposits formed by a mixture of par-
ticles, selected from the modified Poisson distribution, or by
identical particles with size in the range 2	N	9, we did
not observe any dependence of the porosity on the size L of
the linear substrate for lattice sizes larger than L=512.

Figure 4 shows the time evolution of porosity for a de-
posit formed by a mixture of particles, whose sizes were
selected from the modified Poisson distribution �Eq. �3��
with x=5 and n ranging from 1 to 9. The particles are
aggregated on a linear substrate of size L=4096, and the
resulting deposit is a two-dimensional structure. Just after
50 time units we reach the stationary porosity value
P=0.445�0.004.

When we consider the formation of pores due to the depo-
sition of identical particles with size larger than one lattice
spacing, we find that the stationary porosity increases with
the size of the particle. The deposition of particles with size
exactly equal to one lattice spacing of the substrate does not
lead to the formation of pores because the deposition follows
the rules of the random deposition model. The inclusion of a
very small fraction of particles of size 2 is sufficient to gen-
erate a porous structure, which percolates over the whole
deposit �22�.

As to be expected, the porosity increases with the size of
the deposited particle. When a large particle is incorporated
to the substrate, a shadow zone is created below it as we
have seen in Fig. 1. In this way, we expect that the porosity

TABLE I. The growth exponents for different particle sizes.

Particle size
�N�

L=8192

�1 �2 � z

2 0.50�0.04 0.32�0.02 0.95�0.01 2.98

3 0.50�0.02 0.32�0.02 0.93�0.01 2.94

4 0.51�0.03 0.32�0.01 0.94�0.01 2.94

5 0.51�0.07 0.32�0.03 0.94�0.01 2.92

6 0.50�0.03 0.31�0.04 0.95�0.02 3.05

7 0.50�0.01 0.31�0.04 0.97�0.01 3.07

8 0.51�0.04 0.32�0.03 0.95�0.01 2.96

9 0.52�0.03 0.33�0.02 0.95�0.01 2.89

0 0.001 0.002

1/L

0.25

0.30

0.35
β 2

FIG. 3. �Color online� Plot of the growth exponent �2 versus
1 /L. The straight line is the best fit of �2 for several values of L and
surface formed by adding particles selected from the modified Pois-
son distribution �Eq. �3��.
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increases with the size of the particle. We show in Fig. 5 the
behavior of the stationary porosity as a function of the size of
the deposited particle.

We note that the increase in the porosity is large for small
particle sizes, but it reaches a value near its saturation for
particles of intermediate size. It is easy to understand that the
saturation value for this problem is P=0.5. A simple reason-
ing shows that the maximum value of P is 0.5. This happens
when the size of the particle to be deposited is N=L /2, i.e.,
half of the lattice size. After a particle of this size is incor-
porated to one of the ends of the substrate, the probability
that the next particle is deposited at the same height as the
former one is about 1 /L, which is a very small number when
we take larger substrates. On the other hand, if the particle is
not deposited exactly at one of the ends of the linear sub-
strate, no other particle can be incorporated with the same
height. Then, in this case, only a single particle is deposited
at each Monte Carlo step and we have P=1 /2. For values of
L /2
N
L, the porosity decreases and is given by

P =
L − N

L
, �7�

and only a single particle is aggregated in each Monte Carlo
step, which happens, in fact, in the first trail of deposition.
Our results show that, even for particles of small size, as for
instance N=9, we find that P=0.489 for L=8192, which is
very close to the maximum possible value P=0.5.

VI. CONCLUSIONS

We studied a surface growth model where particles of
different sizes are deposited on a linear substrate. Particles
with sizes in the range 1	N	9 are selected from a modi-
fied Poisson distribution and fall from random positions over
an initially flat surface. We also considered the deposition of
identical particles with size larger than one lattice spacing of
the linear substrate. Through Monte Carlo simulations we
found that the surface width evolves in time following three
different behaviors. At the initial times the surface roughness
behaves as in the random deposition model and the growth
exponent is �1=0.50. At intermediate times, the surface
roughness grows more slowly with the exponent �2=0.310.
Finally, at long times, it enters into the saturation regime
characterized by the roughness exponent �=0.94. The esti-
mate dynamic exponent is z=3.0. These figures put the
present deposition model in the same universality class of the
nonlinear model with conservative dynamics and nonconser-
vative noise in �1+1� dimensions. The two-dimensional bulk
formed by the deposition of particles larger than one cell unit
of the linear substrate reveals us a porosity increasing very
fast at the initial times, and also reaching a saturation value,
which depends on the size of the particle. For particles of
size N=9 the stationary porosity reaches a value which is 2%
away of the maximum possible value P=0.5.
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