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The structural properties of a binary colloidal quasi-one-dimensional system confined in a narrow channel
are investigated through modified Monte Carlo simulations. Two species of particles with different magnetic
moment interact through a repulsive dipole-dipole force are confined in a quasi-one-dimensional channel. The
impact of three decisive parameters �the density of particles, the magnetic-moment ratio, and the fraction
between the two species� on the transition from disordered phase to crystal-like phases and the transitions
among the different mixed phases are summarized in a phase diagram.
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I. INTRODUCTION

Self-assembly of confined low dimensional field-
responsive systems has risen strong interest in recent years.
Part of the interest arises from the fact that it is an ideal
model to understand a variety of phenomena in condensed-
matter physics. Moreover, it has huge practical applications
in the fabrication of many new materials, such as special
nanoscale magnetic dot arrays �1,2� which are the potential
materials for high-density magnetic data storage, field re-
sponse fabrics �3�, and DNA separation devices �4�. Accord-
ingly, numerous experimental and theoretical studies investi-
gated a wide variety of such systems, e.g., two-dimensional
�2D� Wigner-type crystals �5� or quasi-one-dimensional
�Q1D� chains �6,7� formed in dusty plasmas, colloidal sys-
tems restricted in a circular hard wall �8,9� or in a Q1D
channel �10–14�, and superparamagnetic colloidal particles
or hard disks at the liquid-air interface �15,16�. Among all
these above systems, suspensions of superparamagnetic col-
loids trapped in the water-air interface has inspired unique
interests because of its accessibility by experiments �17–19�
which has resulted in extensive studies using computer simu-
lations �15,20,21�. Similar paramagnetic colloids on surfaces
were investigated as well �22,23�.

Furthermore, most of these existing studies of 2D systems
were focused on the ground-state structure �5,8,15,20�, ther-
modynamics including normal modes �5�, melting behavior
�5,8�, and dynamic processes �17�. While for Q1D systems a
lot of attention was paid on the edge effect of the confining
channel �10�, the dependence of the structure upon the width
of the external channel �14,24�, re-entrant solid-liquid phase
transition �11,25�, heat transport behavior �12,26�, transition
from 2D to three-dimensional �3D� �27�, closest packing
property �28�, and so on were also investigated.

Here we consider superparamagnetic colloids that are
confined in a Q1D channel as, e.g., studied in �13,14�. In

contrast to previous work �14� where a monodispersive sys-
tem was investigated, we extend this previous work to a
binary system. Very recently, the scientific focus of both the-
oretical and experimental studies of confined systems shifted
to the study of two-species systems, e.g., systems with two
types of charged particles, which was motivated by the in-
creased complexity of the phase diagrams �29�. The structure
and melting of heterogeneous systems made of single and
double charged species with the same mass were studied in
Ref. �30�. Nelissen et al. �31� studied the ground state of a
finite-size system containing one or two impurities with dif-
ferent charge and mass, which was motivated by the experi-
ment of Ref. �32�. Static and dynamical properties of a bi-
nary system trapped in a dusty plasma or circular hard wall
were studied both theoretically �33–36� and experimentally
in Refs. �37–39�. Liu et al. �40� even extended the analysis
from binary to multispecies systems. Concerning the super-
paramagnetic colloidal binary systems, different types of
stable crystallites have been found �18–21� and also glassy
dynamics could occur �15,17�.

All of the above studies considered binary systems in a
2D confinement. Very recently a Q1D system of particles
interacting through a repulsive Yukawa potential and con-
fined in a parabolic trap �41� was studied theoretically, and a
rich phase diagram of different ordered structures was ob-
tained. Both continuous and discontinuous structural transi-
tions were found and even a disordered phase which was the
ground state in a small region of the parameter space. Here,
we consider a similar system but with dipole interparticle
interaction and hard wall confinement. Our system models an
experimental realizable system of paramagnetic colloids
moving through a lithographic defined channel. The main
differences with the system studied in Ref. �41� are �i� the
long-range interparticle interaction and �ii� the nonuniform
particle density. Such study has never been done before. Our
study is motivated by the recent experiments of 3D binary
colloidal systems �42,43�, and the simulations of the phase
diagram of 3D and 2D binary colloidal systems in Refs.
�44,45�. In this paper we will discuss the dependence of the
ground-state configuration of binary systems on the magnetic
moment and the fraction of the two species.
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The paper is organized as follows. In Sec. II, the model
and the numerical approach are described. Typical ground-
state configurations and phase diagram for binary systems
with different magnetic-moment ratio between the two spe-
cies and different fraction of the two kinds of particles are
discussed in Sec. III. Our conclusions are given in Sec. IV.

II. NUMERICAL APPROACH

We study the properties of a binary system confined in a
Q1D channel, namely, a binary colloidal system confined by
two parallel hard walls �Q1D channel�. Such colloids have
macroscopic magnetic moment in the presence of an external
magnetic field �14,39�, which is directed perpendicular to the
2D plane where the particles are moving in. The interaction
between the colloids is given by a repulsive magnetic dipole
potential. Our system consists of two different kinds of par-
ticles, i.e., the small particles Ns with magnetic moment Ms
and the big particles Nb with a larger magnetic moment Mb.
The magnetic-moment ratio between these two kinds of par-
ticles is defined as Mr=Ms /Mb�1, with the value of Mb
fixed and Ms varied. The induced magnetic moment is cho-
sen to be proportional to the mass and volume of the par-
ticles. The energy of such a Q1D system is given by

H = �
i=1

N

V�Ri� +
�0Ms

2

4�Rw
3 �

i�j=1

Ns Rw
3

�R� i − R� j�3
+

�0Mb
2

4�Rw
3 �

k�l=1

Nb Rw
3

�R� k − R� l�3

+
�0MsMb

4�Rw
3 �

m=1

Ns

�
n=1

Nb Rw
3

�R� m − R� n�3
, �1�

with the channel confining potential taken as

V�R� = �0 for �y� � Rw/2
� for �y� � Rw/2.

� �2�

In the above formulas N represents the total number of par-
ticles �N=Ns+Nb�, �0 represents the magnetic permeability
of free space, Rw represents the width of the channel trap

�distance between the two parallel hard walls�, and R� i
= �xi ,yi� represents the position of the ith particle with �yi�
�Rw /2. The colloidal particles move typically in a nonmag-
netic liquid which makes their motion overdamped.

We rewrite the energy in a dimensionless form and choose
Rw as unit of length, E0=�0Mb

2 /4�Rw
3 as unit of energy, and

Mb as unit of magnetic moment. Equation �1� then reads as
follows:

H = �
i�j=1

Ns Mr
2

�r�i − r� j�3
+ �

k�l=1

Nb 1

�r�k − r�l�3
+ �

m=1

Ns

�
n=1

Nb Mr

�r�m − r�n�3
,

�3�

with the hard wall potential in the form

V�r� = �0 for �y� � 0.5

� for �y� � 0.5.
� �4�

According to Eq. �3�, the structure of the system only de-
pends on the total number of particles, i.e., its density ���,

the magnetic-moment ratio �Mr�, and the fraction �Ns ,Nb� of
the two kinds of particles.

To simulate such Q1D systems, a unit box containing N
particles with fixed width �	1� and fixed length �	15� was
used with periodic boundary conditions �PBC� imposed in
the x direction and hard wall boundaries in the y direction.
We increased the length of the simulation box with a factor
of 10 in order to check that the results are qualitatively the
same and quantitatively within our numerical error bars.
Thus the density of the total number of particles is given by
�=N / �15Rw�, and increasing N is equivalent to the increase
in the density. The ground-state energy and configurations of
a N-particle unit box was obtained. In order to ensure the
obtained energy was very close to the global minimum, an-
nealing simulations were used to cool down the system from
a nonzero temperature T0 to zero temperature through

Ts�i� = T0
TE

T0
�i/Nt

− TE, �5�

Tb�i� =
Ts�i�

2
, �6�

where Nt is the total number of annealing steps, TE is a
temperature close to zero, and Ts�i� and Tb�i� are the tem-
peratures of the small particles and the big particles, respec-
tively, for the ith annealing cycle. As shown in Eq. �6�, Tb�i�
is half of Ts�i� because we make the reasonable assumption
that the big particles can be stabilized faster than the small
particles. Different annealing schedules were tested and com-
pared before obtaining the most efficient one which is given
by Eqs. �5� and �6�.

III. RESULTS

Most of the previous studies were focused on the depen-
dence of the ordered Q1D structure on the width of the con-
fining channel �14,24�. One of the essential findings is that,
when the width of the channel is increased, under identical
number density ��=N /A, where A is the area of the simula-
tion box�, an increasing number of layers is observed.

To prove the validity of our model system and methodol-
ogy we show in Fig. 1, the ground-state configurations of
monodisperse systems with density � varied from 5.33 to
10.67. Seen from top to bottom of Fig. 1, the density of the
particles is increased, which drive the particles to separate
into more layers. At first glance, the configurations in Fig. 1
are close to a hexagonal latticelike structure. However, after
further inspection, we found that some of the structures ac-
tually have more lattice defects than the others, such as in the
case for �=6.67,8. For �=8, the formed structure is a tran-
sition structure from the three-layer to the four-layer hexago-
nal latticelike configuration. A similar transition occurs from
the two-layer structure to the three-layer structure around �
=6.67. This indicates that all the defect-rich lattices are vir-
tually transitional structures before a hexagonal lattice with
more layers is formed with increasing density. In order to
understand this transition better, we plotted the ratio of the
number of defects in the center of the system to the total
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number of the inner particles in Fig. 2. A defect here is de-
fined as a particle with more or less six nearest neighbors,
excluding the particles at the edge. This plot shows clearly
that if one increases the density, the relative number of de-
fects in the system is oscillating. The oscillations are ex-
plained by the fact that the system tries to form a Wigner
lattice structure. A nearly perfect Wigner structure can only
be formed at certain particle densities. The configurations
corresponding with the local minima in Fig. 2 are analogous
to the configurations with magic-number channel widths in
the similar system of Ref. �14�. The consistency of these
results clearly confirms the validity of our model system and
methodology. This study on monodisperse systems will be a

guide to our study of the more complicated binary systems.
In what follows, we systematically study the properties of

the ground-state configuration of binary systems. From Eq.
�3� we know that the properties of the system are mostly
determined by the magnetic-moment ratio �Mr�, the fraction
of the small particles Fs=Ns /N, and the particle density ���.

For 2D binary systems �30,35� and Q1D binary systems
�41� studied before, the ground state consisted of ordered
crystal structures. However, we found that for our Q1D bi-
nary system with hard wall confinement, the ground state has
a plethora of phases including disordered and crystal-like
phases.

In Fig. 3, the configuration of a binary system with �
=9.33 is shown for Mr=0.1–0.5 and Fs=0.1, 0.3, 0.6, and
0.8. If Fs and Mr are small �Fig. 3�a��, all the small particles
�black full dots� are located as interstitials between the big
particles �red open circles�. Here the magnetic-moment
asymmetry is strong, i.e., the magnetic moment of small par-
ticles is much smaller than that of the big particles. Thus the
dipole-dipole interaction �coupling� between the small par-
ticles and big particles is much smaller than those between
the big particles. As a result, the small particles can be lo-
cally trapped by the big particles which is illustrated by the
small cage in Fig. 3�a�. This phase will be called the
“particle-interstitial” phase. In this phase most of the small
particles will be surrounded by five big particles. Such a
particle-interstitial structure will have very different diffu-
sion properties which will be discussed in our following
work.

For larger Mr �i.e., the coupling between the particles be-
comes stronger�, as shown in Fig. 3�c�, the small particles
tend to form a similar crystal structure, as found for a mono-
disperse system �see Fig. 1�, together with the big particles.
When the magnetic-moment asymmetry is small as in Fig.
3�c�, the interaction between the small and big particles be-
comes comparable to the interaction between the big par-
ticles. Because the two species become almost indistinguish-
able, this state will be further referred to the substitutional
phase. Here in this phase most of the small particles will be
surrounded by six big particles. This explains why the binary
systems of Figs. 3�c� have similar structures as the corre-
sponding monodisperse systems with the same density.

If one now increases Fs to 0.30 at Mr=0.1 as shown in
Fig. 3�d�, multiple small particles will form clusters of small
particles as interstitials between the big particles. These big
particles will behave as local cages for the small particles
grouped in clusters. These clusters of small particles can be
seen as one effective particle by the surrounding particles.
Therefore we will call this phase the “cluster-interstitial”
phase which can also be seen as an extension of the particle-
interstitial phase. This structure is a disordered phase rather
than a crystal-like phase.

If one increases Mr=0.1 to Mr=0.5 �Fig. 3�f�� further, one
finds again the substitutional phase but with the difference
that now the particles can be located at the edge of the sys-
tem in contrast to Fig. 3�c�.

If one increases Fs further to 0.6 at Mr=0.1, due to the
increasing number of small particles, the previously sepa-
rated “interstitial clusters” become linked and form a chain-
like structure of small particles, which we will call the

FIG. 1. �Color online� Snapshots of the ground-state configura-
tions �only part of the unit cell is shown� of monodispersed systems
with densities �=5.33, 6.67, 8,9.33, and 10.67 which is marked on
the left side of the figure. The defects in the middle of the channel
are marked by red polygons.

FIG. 2. Ratio of defect particles to the total number of inner
channel particles in a monodisperse Q1D system as function of the
density of particles.
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“chain” structure. For such chain structure, the density of
particles inside the channel can be higher than that at the
edge, a situation which does not occur in single-species sys-
tems �14�. The emergence of this chain structure breaks the
general rule obtained from the monodisperse system that
there are always more particles at the edge than at the inside
of the confining channel. Similar as the cluster-interstitial
structure, this structure is a disordered structure.

If one increases Mr to 0.5 as in Fig. 3�i�, again a crystal-
line substitutional structure is formed. Finally if one in-
creases Fs to 0.8 at Mr=0.1, one will find a “chainlike” struc-
ture of small particles in the center with some of the small
particles at the edge of the channel.

So far we looked at the effect of changing Fs at constant
magnetic dipole ratio Mr. Now we will investigate how a
system is going from a disordered state to a crystal structure
by changing the magnetic-moment ratio at constant Fs. If one
decreases the magnetic-moment ratio Mr of the system from
Mr=0.1 to Mr=0.5 in Figs. 3�j�–3�l�, one will go gradually
from the disordered chain structure to the crystal-like substi-
tutional structure while keeping the � and Fs unchanged.

We summarized our findings in Fig. 4�d�, into a phase
diagram of the magnetic ratio Mr�0.02–0.50� versus the frac-
tion of small particles Fs�0.05–0.90� for �=9.33. For the
construction of the phase diagram, the step size when vary-
ing Mr is taken to be 0.02 and when varying Fs is chosen to
be 0.05. In this phase diagram we concentrate on three
phases: the “interstitial” phase �taken the “cluster” and
particle-interstitial phase together�, the chain, and the “sub-
stitutional” phase. Because the transition from one to another

FIG. 3. �Color online� Typical ground-state configurations of
binary systems �only part of the unit cell� for �=9.33. The corre-
sponding parameters �� ,Fs ,Mr� of each configuration are marked.
The open circles �red� denote the particles with big magnetic mo-
ment, while the full dots �black� refer to the particles with small
magnetic moment.
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FIG. 4. �Color online� Phase diagram of binary systems con-
fined into a hard wall channel for six different densities from �
=5.33 up to 10.67. The white transition zone separates three phases:
the interstitial, the substitutional, and the chain phases. The red line
separate two subphases: one where big and small particles are
mixed at the edge �indicated by E� and another where there is no
mixing �indicated by NE�.
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phase occurs gradually, the transition region from one phase
to another is indicated by a white transition zone which has a
T-like shape. This T-like shape can be explained as follows.
If one increases the fraction of small particles from 0 to 0.9
at Mr=0.1 one will go through a phase transition from the
interstitial phase to the chainlike phase as expected. If one
increases Mr from 0 to higher values one will go from the
interstitial or chain phase to the substitutional phase because
small particles become indistinguishable from the other par-
ticles. If one increases Fs at Mr=0.1, the small particles will
first fill the holes between the bigger particles as interstitials.
If one increases Fs further, these interstitial particles will
agglomerate as interstitial clusters between the big particles
and finally repel most of the big particles out of the center
forming a chainlike structure. �Please note that these chains
are different from the chains formed when the dipoles are
aligned along the chain. Here the dipole moments are still
directed perpendicular to the chain.� If one however in-
creases Fs from 0 to 0.9 at Mr=0.4 the system will undergo
a phase transition from the interstitial phase to the substitu-
tional phase. Figure 1 shows that a perfect Wigner structure
can only be formed at certain particle densities. If there are a
lot of lattice defects in the system �corresponding with local
maxima in the curve� those vacancies will be filled with
small particles as interstitials between the big particles. If the
fraction of small particles becomes large enough to fix the
disordered triangular Wigner lattice, those small particles be-
come substitutional. At the other hand if the big particles
already form a quasiperfect �close packed� Wigner crystal,
for systems corresponding with the local minima in Fig. 2,
the small particles will be rather inserted as substitutional in
order to conserve the Wigner structure. This effect is clearly
visible if one compares the different phase diagrams. For �
=5.33 and �=10.67, the phase boundary between the inter-
stitial and the substitutional phases is quasihorizontal be-
cause the big particles are forming a quasiperfect Wigner
crystal. For �=6.67, 8, and 9.33 the big particles form a
pattern with a lot of lattice defects. If the small particles are
inserted in a structure similar to this, they will never form a
regular structure because of the chaotic organization of the
big particles in the center of the system. This makes that the
inclination of this phase boundary is proportional with the
number of defects in the system. Further we can see from
this phase diagram that the phase boundary between the in-
terstitial phases is shifted to the right as function of the den-
sity. The reason is that the particles in a monodisperse sys-
tem with a higher density of particles are strongly coupled.
This makes it very difficult for the particles to break the
crystalline structure of the small particles resulting in a shift
of the phase boundary. Further we distinguish whether the
small and big particles are mixed or not at the edge of the
system �we define the mixing state where more than 10% of
small particles stay at the edge� indicated by the red line in
the phase diagram.

For the interstitial and substitutional phases the mixing of
the big and small particles at the edge of the system is easy
to understand. In the substitutional phase, there is a very
small difference between the small and big particles; conse-
quently they can substitute each other both in the center as
well as at the edge of the channel. This phase is therefore

characterized by the mixing of the particles at the edge of the
confinement. In the interstitial phase, however, the small par-
ticles are trapped between the big particles and consequently
are not located at the edge of the confinement. In the chain
phase, however, particles can be located at the edge if the
density of small particles is large enough. This is because at
high concentration of small particles, the big particles are not
able to trap the small particles as interstitials. The mixing
and nonmixing phases are separated in the phase diagram by
the red line. From this we can conclude that there are two
mechanisms responsible for mixing of particles at the edge:
�i� the fraction of the small particles becomes so large that
some of them are forced to occupy an edge position and �ii�
the small particles becomes indistinguishable from the big
particles because of the too small difference in magnetic mo-
ment.

IV. CONCLUSION

The problem of whether the two species in a binary sys-
tem are separated or mixed has always been a very important
topic in the research of binary systems. Previous works
found a general rule valid for 2D binary systems confined in
a circular external potential: independently of confining the
particles in a parabolic trap �30� or a hard wall �35�, the big
particles always stay at the edge of the trap, while the small
particles appeared inside. Even this rule was found to apply
for Q1D systems trapped in a parabolic potential �41�. Here
we studied the structural properties of classical quasi-one-
dimensional binary systems confined in a narrow channel
which was investigated through modified Monte Carlo simu-
lations, and this rule was found to be no longer valid.

The impact of three decisive parameters �the density of
particles �, the fraction of small particles Fs, and magnetic-
moment ratio Mr� on the structure were discussed in detail.
Depending on these three parameters the particles in the sys-
tem will be organized in the interstitial, chain, or substitu-
tional,” structure. If the fraction of small particles Fs is
small, each small particle is surrounded by five nearest
neighbors, and one can speak about a particle-interstitial. If
one increases Fs, more small particles will be grouped in
clusters forming the cluster-interstitial structure. If Fs be-
comes very large, a chainlike structure of small particles will
be formed in the center. At the other hand the phase is deter-
mined by the density which determines the number of layers
in the system as found for a monodisperse system.

Besides the structural transitions, we also investigated the
mixing state of the two species of particles distinguishing
two phases: mixing of big and small particles at the edge of
the channel or not. If the magnetic-moment asymmetry is
weak, we can distinguish two phases a phase where one can
find substitutionals at the edge and one where there are no
substitutionals. This mean that if the small particles are in-
serted in the system as substitutional, they prefer to be sub-
stituted in the center. If Fs becomes larger the probability of
finding small particles at the edge is increased. When the
magnetic asymmetry is larger, the probability of finding a
small particle at the edge is reduced and the two particles are
not mixed. From this we can conclude that the small particles
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prefer to stay at the center while the big particles tend to be
at the edge.
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