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Using the quasiexact density-matrix renormalization-group method and ground-state analysis we study in-
terface delocalization transitions in wide two-dimensional Ising strips subject to long-ranged boundary fields
with opposite signs at the two surfaces. Based on this approach, our explicit calculations demonstrate that
critical wetting transitions do exist for semi-infinite two-dimensional systems even if the corresponding effec-
tive interface potentials decay asymptotically for large € as slow as €~¢ with §<<2, where ¢ is the distance of
the mean interface position from the one-dimensional surface. This supersedes opposite claims by Kroll and
Lipowsky [Phys. Rev. B 28, 5273 (1983)] and by Privman and Svraki¢ [Phys. Rev. B 37, 5974 (1988)]
obtained within effective interface models. The corresponding wetting phase diagram is determined, including
the cases 6=2 and 6=49 with the latter mimicking short-ranged surface fields. Our analysis highlights the

Critical wetting transitions in two-dimensional systems subject to long-ranged boundary fields

limits of reliability of effective interface models.

DOLI: 10.1103/PhysRevE.79.041144

I. INTRODUCTION

Wetting phenomena are surface induced phase transitions
at or close to two-phase coexistence in the bulk, the nature
and characteristics of which depend sensitively on the range
and strength of the underlying microscopic forces and on the
spatial dimensionality of the system [1]. Using various mod-
els and techniques critical wetting (i.e., continuous surface
phase transitions at bulk coexistence) in two dimensions
(2D) has been studied intensively for systems in which both
the intermolecular forces and the surface fields are purely
short ranged. Exact solutions for the nearest-neighbor lattice-
gas model [2,3], which is equivalent to the 2D Ising model,
are in a perfect agreement with the predictions of reduced
effective interface Hamiltonian models as far as the universal
critical behavior is concerned [4]. These original effective
Hamiltonian models, which are designed to describe the in-
terfacial structures at length scales much larger than the bulk
correlation length & have been generalized to study also the
relevant effects of long-ranged, i.e., algebraically decaying
forces. Examples of such long-ranged forces are dispersion
or van der Waals forces, dipolar forces, Ruderman-Kittel-
Kasuya-Yosida (RKKY) interactions, forces in charged sys-
tems, and elastic forces in solids. These effective models
allow one to identify the universality classes and various
so-called fluctuation regimes depending on the range of the
underlying microscopic forces [5]. Such effective models are
particularly useful and popular because the full lattice-gas
model with long-ranged interactions allows only for approxi-
mate solution such as various mean-field approximations.

In this spirit the analysis of effects of long-ranged forces
in 2D on the nature of critical wetting has been performed by
Kroll and Lipowsky [6] using the simple local effective in-
terface Hamiltonian of the form
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H[€]=fdx{5(a) +W(€(x))}. (1)

Here €(x) >0 is a collective coordinate representing the local
distance (height) of the interface separating a bulk phase 8
from a second phase a which coexists in the bulk and which
intrudes between the bulk and the wall. The statistical weight
of a configuration €(x) is proportional to exp[—H[ €]/ (kgT)].
3, is a stiffness coefficient which penalizes interface fluctua-
tions. W(€) is an effective interface potential which can con-
tain both attractive and repulsive parts. Both may vary alge-
braically, i.e., W(£)=—A€"°+B{¢™9, or W may have a form
appropriate for the combined presence of short-ranged and
long-ranged forces, i.e., W({)=—A{+B exp(—{/&). We
note that Eq. (1) is supposed to be a reliable, reduced de-
scription if the forces among the ordering degrees of freedom
are short ranged with the boundary fields decaying algebra-
ically or faster. If the forces between the ordering degrees of
freedom are also long ranged, one faces the additional chal-
lenge to approximate an actually nonlocal effective interface
Hamiltonian [7-9] by the local version given by Eq. (1). In
order to avoid this additional complication and in order to
keep the full model system still treatable, in the following we
consider the boundary fields to be the only ones which decay
algebraically.

The wetting transition refers to the unbinding of the inter-
face from the boundary as the temperature T or the strength
of the effective interface potential is varied. In Ref. [6] ef-
fective interface potentials, which decay asymptotically as

W —o)=—A€° A>0, (2)

were considered. We note that in 2D van der Waals interac-
tions correspond to 6=3. By using transfer-matrix methods
this interfacial model can be treated exactly by replacing the
functional integration over €(x) by an eigenvalue problem,
which in the limit of infinite momentum cutoff in the Fourier
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space reduces to a Schrodinger-type equation for the eigen-
vectors of the transfer matrix. From the analysis of this equa-
tion it follows that the character of the critical behavior de-
pends on whether the exponents § and ¢ are larger or less
than a marginal value given by 2. The conclusion of the
analysis by Kroll and Lipowsky [6] has been that there is no
wetting transition for 6<<2 whereas for the marginal value
6=2 it exists but the associated thermodynamic singularities
are of a different nature than for 6>2. Their prediction is
that for 6<<2 the interface remains pinned to the boundary at
all finite temperatures. This conclusion has been drawn by
providing upper and lower bounds for the ground-state en-
ergy E, of the aforementioned corresponding Schrodinger
equation. Within this approach the occurrence of a bound
state solution of the Schrodinger equation (E,<<0) corre-
sponds to a localized interface. When the bound state ceases
to exist, E, 0 signals a critical wetting transition. The con-
struction of upper and lower bounds (based on using an ex-
ponentially decaying trial wave function) shows that the
ground-state energy has a nonzero value (i.e., there is no
transition) for a finite potential strength.

The case corresponding to 6=1 has been studied by Priv-
man and Svraki¢ in Ref. [10] within the so-called restricted
solid-on-solid (SOS) model in which the first term in Eq. (1)
is replaced by the absolute value of limited height differ-
ences between neighboring lattice sites. They have argued
that for attractive effective interface potentials decaying such
as 1/¢€ for large distances € from the boundary the wetting
transition is no longer sharp but rounded. This finding is
consistent with the claim by Kroll and Lipowsky [6].

There are at least two reasons for trying to describe inter-
facial properties in terms of effective interface models. First,
a reliable statistical mechanics treatment of fully microscopic
models of inhomogeneous systems is either very challenging
or even out of reach. Thus an effective interface model pro-
vides practical means to overcome these difficulties via a
reduced description and thus reduced difficulties (which can
still be very demanding). Second, if the reduced description
turns out to work successfully, it provides deep insight into
which degrees of freedom are the relevant driving forces for
certain interfacial phenomena (such as wetting phenomena)
and which degrees of freedom of a fully microscopic model
are either irrelevant or of reduced importance.

Over the last 25 years intensive research on wetting tran-
sitions, as paradigmatic phenomena which lend themselves
to resort to the concept of effective Hamiltonians, has dem-
onstrated that utmost care is necessary for designing effec-
tive descriptions—in particular if non-Gaussian thermal fluc-
tuations play a decisive role (a situation in which a reduced
description happens to be most needed). In spatial dimension
D=3 this is the case for critical wetting in systems with
short-ranged forces [ 1]. After substantial efforts in describing
these kinds of critical wetting transitions by effective inter-
face models, large scale Monte Carlo (MC) simulations for a
fully microscopic three-dimensional (3D) Ising model re-
vealed qualitative shortcomings of the reduced descriptions
[11,12]. It took several years of dedicated efforts, through
various stages, to overcome these shortcomings and to reach
a more satisfactory understanding in terms of improved ef-
fective models [13].
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Whereas in D=3 for long-ranged forces the leading ther-
mal singularities of continuous wetting transitions are cap-
tured correctly by mean-field theory [1], in D=2 non-
Gaussian fluctuations remain relevant for critical wetting in
systems with long-ranged forces [4]. Guided by the afore-
mentioned experience in D=3, the natural question arises,
whether and to which extent the effective interface models,
used so far in D=2 for systems with long-ranged forces [Egs.
(1) and (2)], capture the actual behavior of the underlying
microscopic model they are supposed to describe. In order to
answer this question, one has to study appropriate micro-
scopic models such as the 2D lattice-gas model. This has
become possible only recently due to substantial progress in
simulation and numerical techniques and computer capaci-
ties. In this context, as far as algebraically decaying bound-
ary fields are concerned, for the full 2D lattice-gas model
(i.e., Ising model) up to now only for the case =2 [Eq. (2)],
which is marginal in the sense of Ref. [6], the critical wetting
temperature T,, has been determined by the density-matrix
renormalization-group (DMRG) approach [14] and by MC
simulations [15,16]. These studies have shown that the pres-
ence of long-ranged tails in the decay of the boundary fields
decreases the critical wetting temperature 7, relative to the
one of the short-ranged boundary fields with the same
strength. The observation of this trend is, at least in principle,
compatible with the expectations raised in Ref. [6], provided
T,, reaches zero for 6<2.

In order to elucidate the influence of the range of bound-
ary fields on 2D wetting phenomena we use the DMRG
method [17-20] to numerically investigate the existence of
critical wetting transitions in the 2D Ising model with long-
ranged boundary fields corresponding to 6=0.5,1,2. For
completeness and in order to test our numerical procedure
we also consider the case =49, which is expected to exhibit
a behavior which closely resembles that for the short-ranged
potential corresponding to p=%. The DMRG method, which
is based on the transfer-matrix approach, provides a numeri-
cally very efficient iterative truncation algorithm for con-
structing the effective transfer matrices for strips of fixed
width and infinite length. At present, strips of widths up to
L=700 lattice constants can be studied. The quantitative data
for thermodynamic quantities and correlation functions ob-
tained this way are very accurate and can be provided in a
wide range of temperatures and in the presence of arbitrary
boundary and bulk fields.

In order to locate critical wetting transitions we resort to
finite-size scaling methods [21-23] which proved to work
well for 2D systems with short-ranged forces [2,24] and were
also used to locate critical wetting transitions for long-ranged
forces with =2 [15,16]. These methods amount to extrapo-
lating the finite-size delocalization temperature of an inter-
face, which forms in a 2D Ising strip with boundaries prefer-
ring different bulk phases, to the thermodynamic limit.

Locating critical wetting transitions for algebraically de-
caying boundary fields with various decay exponents is a
prerequisite for investigating the crossover behavior between
the complete wetting and critical adsorption regimes in the
presence of long-ranged boundary fields. In our subsequent
work [25] we study an interplay of complete wetting, critical
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adsorption, and capillary condensation for two-dimensional
Ising ferromagnets in strip geometries subject to long-ranged
boundary fields with 6=0.5, 1, 2, and 49. The present study
shows that there exist continuous wetting transitions for &
<2, although for this range of values of & the simple effec-
tive interface model predicts incomplete wetting for all tem-
peratures. Our subsequent study shows [25] that even if one
enforces by fiat that the full effective interface potential

W(£), i.e., the potential W(£) renormalized by the interface
fluctuations, exhibits complete wetting, the corresponding in-
crease in the wetting film thickness for decreasing undersatu-
ration as calculated from the full microscopic model does not

agree with predictions based on W(£). Thus for §<2 the
concept of the effective interface model, at least in its pres-
ently available form, does not capture the essential features
of the underlying microscopic model.

We introduce the model in Sec. II. In Sec. III we deter-
mine the wetting transition temperatures for different ranges
of the boundary fields. Section IV contains our conclusions.

II. MICROSCOPIC MODEL

In this section we introduce the microscopic model for
which we investigate quantitatively the existence of critical
wetting. We consider Ising ferromagnets in slit geometries
subject to the same boundary fields on both sides but of
opposite sign. Contingent on the type of numerical approach
we shall use, our results refer to D=2 strips defined on a
square lattice of size M X L, M — . The lattice consists of L
parallel rows at spacing a so that the width of the strip is La;
in the following we set a=1. Successive rows are labeled by
an index j. At each site, labeled (k,j), there is an Ising spin
variable taking the value oy ;== 1. The boundary surfaces
are located in the rows j=1 and j=L, and periodic boundary
conditions (PBCs) are assumed in the lateral x direction. Our
model Hamiltonian for the strip with PBCs and M —® is
given by

L
H:—J( E O-k,ja-k’,j'+zvjf‘£2 o-k,j+H2 O-k,j)’
(kjk'j" =1 k ki
3)

where the first sum is over all nearest-neighbor pairs and the
external potential is measured in units of J>0. vj*ﬁ: Vi
-V +1-; 1s the total boundary field experienced by a spin in
row j; it is the sum of the two independent wall contribu-
tions. The single-boundary field Vj» is taken to have the form
s hl

Vj = J_p ’ (4)
with p>0 and &, >0. H is a bulk magnetic field. According
to Eq. (3) h; and H are dimensionless.

This model can be viewed as being obtained from a 2D
lattice gas model mimicking a two-dimensional one-
component fluid with a short-ranged interaction potential be-
tween the fluid particles and either short-ranged or long-
ranged substrate potentials. The equivalence between the
lattice gas and the Ising model implies the following rela-
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tionships (see, e.g., Ref. [26]): the bulk magnetic field H
in the former is proportional to the deviation Au of the
chemical potential from the bulk phase boundary uq(7) in
the latter, i.e., H~ Au. The lattice gas analog of the number
density p in the fluid is related to the magnetization m by
p=(m+1)/2 so that Ap=p,~p,~ 2m,,, where my, is the spon-
taneous magnetization and p; and p, are the number densities
of the coexisting liquid and gas phases in the bulk, respec-
tively. Finally 4J corresponds to the strength of the attractive
pair potential between the fluid particles, taken to be short
ranged so that in the lattice gas model it can be modeled by
a nearest-neighbor interaction. V**' is a combination of the
substrate potential and the liquid-liquid interaction. These
relationships can be extended to binary liquid mixtures [27].

The decay exponent p of the boundary field [Eq. (4)] is
related to the decay exponent & of the effective interface
potential [Eq. (2)] according to

o=p-1. (5)

The strength h; of the boundary field can be related to the
amplitude A of W(€) in Eq. (2). This relation has been stud-
ied in Ref. [8] within the density-functional theory. The sur-
face stiffness is known exactly for the 2D Ising model:
3./ (kgT)=sinh 2(K—%1n coth K), where K=J/(kgT). The
amplitude of the effective interface potential is given by
A=myKh,, where m, is the spontaneous bulk magnetization.

III. DETERMINATION OF THE WETTING
TRANSITION TEMPERATURE

For the finite systems we are studying, below the bulk
critical temperature 7, the wetting transition temperature
T,(h,,p) as a function of &, for any range p of the boundary
fields can be inferred from the so-called (weakly rounded in
d=2) interface localization-delocalization (ILD) transition
[21,23] which occurs in strips with antisymmetric boundary
fields, i.e., for Vi =V;=V;,, ;. This transition is the precur-
sor of a wetting phase transition which occurs in the limit
of infinite film thickness (L—) at T,(h;,p). For T
<T,(h;,p)[T>T,(h;,p)] such an interface is bound to (un-
bound from) the walls [21,23].

A. Ground-state analysis

First, we note that T, (h;—0,p)— T, for any p [see Eq.
(4)]. On the other hand h,,(T=0,p), which is the solution of
the implicit equation T,,(h;,p)=0 and denotes the critical
surface field strength beyond which the system is wet even at
T=0, shifts toward lower values upon decreasing p. There is
no reason to expect a nonmonotonic behavior of T, (h,p).
Therefore, the gross features of the shape of the wetting tran-
sition line 7,,(h;,p) for an arbitrary p>1 can be inferred
from localizing the position of the wetting transition #,,,(T
=0,p) in the ground state. The ground-state energy of the
system (in units of J) can be found directly from the Hamil-
tonian with a vanishing bulk field. Because the system is
translationally invariant along a strip, it is sufficient to con-
sider only the configurations of a single column.
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In a partial wetting regime with antisymmetric surface
fields there are only two coexisting states (all spins up or all
spins down) with the energy (per the number M of columns),

1 1 1
-_—— + —_——

Ly 2 (L-1)

E,=-JL-1)% W(l

L)
T AN T
=—J(L-1). (6)

In a wet regime at least one interface between spin up and
spin down configurations has to be present. For even L the
lowest-energy configuration is that for the state with the in-
terface located in the middle of the strip. For p— o (short-
ranged case) L—1 degenerate states emerge with a single
interface positioned at any of the rows but the ones closest to
the surfaces. In general, the energy of a single column with
an interface in the middle of a strip (spin up for j

=1,...,L/2 and spin down for j=L/2+1,...,L) is
1 1

Eyu=—-J(L-3)-hJ| 1 o E_(L—I)P
N 1 1 1

(L2)?  (L2+ 1) (LI2+1)?

1 1 1 1
+ o= +—=—+1]. (1)

(L2)P (L-1)p 2F L

In the ground state and at the ILD transition the energies E,,,
and E,. are equal. For a particular L this determines the
critical strength #'-P(L),

1w

1 1 1
hH‘DL _1/(1+—+ +
@) 2P 3” (L/2)P
1 1 L)
(L12+1)" (L-1)y L?
o -1
= 2——2 E —+2 G
=0 17 netnet W0 i 17

In order to find the critical wetting field ,,,=h}->(L— %) we
take the limit L— 0. According to the second hne in Eq. (8)
this leads to

©

1
th:1 E;:

n=0

1/¢(p), )

where {(p) is the Riemann zeta function (see Fig. 1). Its
values are known analytically only for certain even values:
{(p=2)=7?/6 and {(p=4)=7*/90 which gives h,,(p=2)
~0.6079 and h,,,(p=4)=0.9239. Other values can be found
in tables of special functions, e.g., {(p=3)=~1.2021 giving
h,,(p=3)=0.8319. In the short-ranged limit (p—0) the
Riemann zeta function approaches 1, confirming Abraham’s
solution at 7=0 [2]. Even more interesting is the opposite
limit {(p—1)—c which results in &, (p—1)—0. This
means that at 7=0 the wetting transition does not exist for
p=1. Thus there is a continuous wetting transition at 7=0
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FIG. 1. Onset strength h;,(p) [Eq. (9)] for critical wetting at
T=0 as function of the decay exponent p of the boundary fields.
Only for 0<h;<h,(p) there is a temperature range 0<T
<T,,(h,p) within which the system is nonwet at bulk coexistence
H=0. For the asymptotic behavior one has h;,,(p— 1*)=p—1 and
hy(p—°)=1-2"=1-exp(-p In 2).

for all values 6>0. [For p=1, 3t jethi/jP diverges for
L— oo which renders W(£) as ill defined.]

B. DMRG results

In order to determine the location of a quasi-ILD transi-
tion between 7=0 and T=T, various criteria can be applied.
For example, for p=3 in Refs. [15,16] the intersection points
for various L of the fourth-order cumulant and of the total
magnetization as a function of temperature, as well as the
maximum of the susceptibility and the peak of the surface
susceptibility, were used. The peaks of total and surface sus-
ceptibilities have been extrapolated to the thermodynamic
limit L— ¢ using the finite-size scaling behavior predicted
for p=3. These different criteria led to a slight spread of the
estimates for T,,(h,,p=3), probably because the linear di-
mensions L were not yet large enough for the asymptotic
power laws to hold. Here we have adopted the approach
involving the magnetic susceptibility y [14]. The singularity
(or a maximum) of the magnetic susceptibility y is one of the
most useful criteria for the localization of a phase transition
(or of a pseudophase transition for a finite system). The mag-
netic susceptibility can be calculated as the second derivative
of the free energy f with respect to the bulk magnetic field H.
This method is very convenient for the DMRG approach
because the latter provides the free energy with a very high
accuracy.

Nevertheless the present case is somewhat special be-
cause we want to determine T,,(p,h,) at H=0, where in the
partial wetting regime, i.e., for T<<T,, there is a first-order
bulk transition. In the thermodynamic limit there is coexist-
ence of phases with opposite magnetizations. Thus there is a
discontinuity of the first derivative of the free energy f (a
jump of the magnetization m=-4df/JdH) upon changing the
sign of the bulk magnetic field. Accordingly, in order to cal-
culate y there, one has to calculate the derivatives for small
nonzero bulk fields and then to consider the limit H—0. In
the complete wetting regime, i.e., 7>T,, or equivalently
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FIG. 2. Illustration of the generic behavior of x, as a function of
temperature. X, is a second derivative of the free energy with re-
spect to the bulk field H, calculated symmetrically around H=0 and
evaluated at H=0. The data shown here have been obtained for a
film of thickness L=100 and boundary fields of strength /;=0.6 and
with decay exponents p=3 and p=50 [Eq. (4)]. The peak of the
derivative x of x, with respect to temperature (see inset) has been
used to determine the quasi-interface localization-delocalization
transition (see main text).

above the ILD transition, the finite system exhibits only a
single phase with an interface meandering freely between the
boundaries so that there is no discontinuity of the free-energy
derivatives upon crossing H=0.

For numerical calculations such as the ones within the
DMRG method the necessity of performing an extra limiting
procedure (H—0 in this case) is cumbersome. Therefore,
instead of y, we have focused on another quantity y,, which
also corresponds to the second derivative of the free energy
at fixed T and h;, but is calculated numerically in a sym-
metrical way with respect to H=0 by taking the free-energy
values at five equidistant points: —2AH, —AH, 0, AH, or
2AH; we typically used AH=107>. Because our calculations
are always carried out for finite L, there is no discontinuity of
the magnetization in the partial wetting regime. These dis-
continuities are replaced by functions which are rounded but
steeply vary at H=0.

In order to determine the ILD transition we have scanned
the phase diagram at fixed %;. The higher the temperature,
the less steeply the magnetizations vary and the values of
their derivative Y, are smaller. Above the wetting tempera-
ture, where there is no discontinuity, yo(H=0,7T) saturates
for increasing T; here y, is equivalent to y. Therefore, at
fixed L, the ILD transition can be identified by the maximal
slope of x, or the minimum of its derivative with respect to
temperature. Although all derivatives have been performed
numerically, the high accuracy of the DMRG method guar-
antees very precise results. An example for the typical be-
havior of x, and of its derivative x,=dx,/dT as a function
of temperature is shown in Fig. 2 for L=100, /;=0.6, and
p=3.,50.

Finally we have extrapolated T, (p,h;;L) to the limit L
— o0 in order to obtain the wetting temperatures T,,(h;,p).
The obtained wetting phase diagram in the (T,h;) plane is
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FIG. 3. Phase diagram at bulk coexistence H=0 for continuous
wetting transitions in the d=2 Ising ferromagnet for [Egs. (4) and
(5)] p=1.5, p=2, p=3, and p=50 (quasi-short-ranged boundary
field) obtained within the DMRG approach. These values corre-
spond to 6=0.5, 1, 2, and 49, respectively [Egs. (2) and (5)]. For
p>1 the values in the limit 7—0 are known exactly for semi-
infinite systems. The dashed line is the analytically known exact
result for p=c and for semi-infinite systems [2]. Filled squares
indicate estimates from the Monte Carlo simulations for p=3 [16].
T =kgT,/J and T, (h;—0,p)=T.=2.269J/kg.

shown in Fig. 3 for p=1.5, 2, 3, and 50. The dashed line is
the exact result by Abraham for p=c as follows [2]:

exp(2K)[cosh(2K) — cosh(2h,,.)] = sinh(2K),  (10)

where h,.(T) is the critical surface field [the inverse function
of the wetting temperature T, (p=2,h;)]. The close agree-
ment of our data for p=50 with this exact result generates
confidence in our numerical procedures. Our results for p
=3 are in a very good agreement with the Monte Carlo re-
sults of Ref. [16]. We observe that the presence of the long-
ranged tails in the surface fields leads to a reduction in the
value of the critical wetting temperature as compared to that
for short-ranged surface fields.

IV. CONCLUSIONS

Our results show that, contrary to the claim by Kroll and
Lipowsky [6] and by Privman and Svraki¢ [10], in 2D semi-
infinite Ising models with boundary fields varying as &,/ ;"
[Eq. (4)] as function of the distance j from the boundary,
there are continuous wetting transitions at two-phase coex-
istence in the bulk for all decay exponents p > 1. The corre-
sponding wetting transition temperatures T,,(h,,p) can be
well localized as a function of the field strength /; and the
decay exponent p, either numerically for 7,,>0 or even ana-
lytically for 7,,=0 (Figs. 3 and 1, respectively).

As discussed in the Introduction, the claim by Kroll and
Lipowsky [6] is based on studying an effective interface
model [Eq. (1)] which resembles the continuum version of
so-called solid-on-solid (SOS) models. Privman and Svraki¢
[10] studied the SOS model itself for p=2. By focusing on
the fluctuations of the local interface height only, such SOS
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models ignore bulklike fluctuations such as the occurrence of
bubbles and of “overhangs” of the line separating oppositely
magnetized domains. Moreover, the continuum description
captures only the long-wavelength fluctuations of the inter-
face, expected to play the crucial role for wetting transitions.

In the present case of the 2D Ising model the bulk fluc-
tuations are particularly strong even far below the bulk criti-
cal point T, giving rise to a rather diffuse intrinsic interface
profile which is further broadened significantly by capillary
wavelike fluctuations such that the interface is rough for all
temperatures, i.e., its width scales ~\M for a lateral system
size M and L=<. Since the latter fluctuations are captured by
the effective interface model in Eq. (1), the missing types of
fluctuations mentioned above have to be natural candidates
for providing the mechanisms for the unbinding of the inter-
face from the boundary even for 1<<p<2, although the
long-wavelength interfacial fluctuations are strongly sup-
pressed by such long-ranged boundary fields. Thus we con-
clude, in accordance with the corresponding discussion in
Sec. I, that as in the case for critical wetting transitions in 3D

PHYSICAL REVIEW E 79, 041144 (2009)

Ising models with short-ranged forces, critical wetting tran-
sitions in 2D Ising models with particularly long-ranged
boundary fields (p <2) represent another type of phenomena
for which simple effective interface models such as the one
given in Eq. (1) are insufficient to capture correctly the criti-
cal wetting phenomena of the actual underlying microscopic
models.

Further examples for shortcomings of effective interface
models in describing fluctuations in the underlying 2D mi-
croscopic models have been reported within the DMRG
studies of the nonuniversal critical singularities for wetting
transitions in the presence of marginal long-ranged forces
(p=3) [28] and of corrections to the Kelvin equation at com-
plete wetting in slab geometries [29]. In the latter case it was
shown that the apparent discrepancies between predictions
based on coarse-grained arguments and the results of micro-
scopic calculations are due to the fact that even for very wide
slabs the wetting layers are still rather thin and the singular
part of the surface free energy is thus dominated by the con-
tacts with the boundaries.
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