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We study in further detail particle models displaying a boundary-induced absorbing state phase transition
�Deloubrière and van Wijland Phys. Rev. E 65, 046104 �2002� and Barato and Hinrichsen, Phys. Rev. Lett.
100, 165701 �2008��. These are one-dimensional systems consisting of a single site �the boundary� where
creation and annihilation of particles occur, and a bulk where particles move diffusively. We study different
versions of these models and confirm that, except for one exactly solvable bosonic variant exhibiting a
discontinuous transition and trivial exponents, all the others display nontrivial behavior, with critical exponents
differing from their mean-field values, representing a universality class. Finally, the relation of these systems
with a �0+1�-dimensional non-Markovian process is discussed.
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I. INTRODUCTION

Phase transitions occurring in the bulk, but driven by spe-
cific conditions at its boundaries, are called boundary-
induced phase transitions �1�. Examples include diffusive
transport �2,3� and traffic flow �4� models. A simple example
for this is provided by the one-dimensional totally asymmet-
ric simple exclusion process �5�, where particles enter the
system at the left boundary, jump to the right in the bulk, and
exit at the right boundary. Depending on the entering and
exiting rate values, the system exhibits qualitatively different
phenomenologies �maximal current, large current and low
density, or small current and high density�, with straightfor-
ward applications to traffic flow problems.

In the present work, we are interested in boundary-
induced phase transitions in systems with absorbing states.
An absorbing state is a dynamical trap which can be accessed
but cannot be left �6–8�. Systems with absorbing phase tran-
sitions are controlled by a parameter, depending on which
the system either enters the absorbing state with certainty or
survives in a stationary fluctuating or active state. The most
prominent family of phase transitions into an absorbing state
is the very robust direct percolation �DP� universality class.
A recent breakthrough has been the experimental observation
of DP critical behavior for the first time �9�.

A paradigmatic model in the DP universality class is the
contact process �CP� �10�. It can be viewed as a simple
model for the propagation of a disease where sick individuals
can infect healthy neighbors or become healthy spontane-
ously. More precisely, in the CP in d spatial dimensions, a
particle �infected individual� can be created at an “empty”
site with a rate �n /2d, where n is the number of nearest
neighbors occupied by a particle, and an occupied site can
become empty at rate 1. The empty configuration is an ab-
sorbing state. For � larger than a certain critical threshold,
�c, the process is able to sustain �in an infinite lattice� a
nonvanishing density of particles, while for ���c the dy-
namics ends up, ineluctably, in the absorbing state.

As continuous phase transitions involve long-range corre-
lations, boundary effects may play an important role. In the

context of absorbing phase transitions, previous studies fo-
cused primarily on DP confined to parabolas �11,12�, active
walls �13�, as well as absorbing walls and edges �14,15�.
Although such boundaries influence the dynamics deep into
the bulk, the universality class of the bulk transition is not
inherently changed; rather it is extended by an additional
independent exponent describing the order parameter near
the boundary. Therefore, the question arises whether it is
possible to find boundary-induced absorbing phase transi-
tions, absent in the corresponding systems without bound-
aries, constituting independent universality classes.

In this paper we present a detailed discussion of two
slightly different models introduced in Refs. �16,17�, respec-
tively. Both of them exhibit a boundary-induced nonequilib-
rium phase transition into an absorbing state. These are one-
dimensional particle systems consisting of a single site �and,
at most, its nearest neighbor�, where creation and annihila-
tion of particles occur, and a bulk, where particles move
diffusively. While in the first reference �16�, the dynamics at
the boundary is a contact process, in the second one �17�
particles at the origin annihilate only pairwise �A+A→0�.
We study different versions of these models to compare them
and scrutinize the relevance of relaxing the fermionic con-
straint �i.e., occupation number not restricted to 0 or 1� both
at the bulk and at the boundary. Our study includes mean-
field approximations, numerical analysis, and some field the-
oretical arguments, as well as the relation with a
�0+1�-dimensional non-Markovian model �18�.

The paper is organized as follows: In Sec. II we define the
first model and present numerical results. In Sec. III we dis-
cuss various types of mean-field approximations and show
that this model has indeed a nontrivial behavior. Section IV
is concerned with two bosonic versions of the first model and
the study of models with pair annihilation at the boundary.
One of the bosonic versions is solved exactly and it is shown
to have trivial critical behavior. Instead, the other bosonic
version and models with pair annihilation are shown to share
the same critical behavior as the first model. In Sec. V we
discuss the relation with a �0+1�-dimensional non-
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Markovian model �18� and, finally, we present our main con-
clusions.

II. BASIC MODEL DEFINITION AND SIMULATIONS

A. Definition of the model

The model presented in �16� is defined on a one-
dimensional semi-infinite discrete lattice where each site is
either occupied by a particle �si=1� or empty �si=0� �see Fig.
1�. All lattice sites have two neighbors, except for the bound-
ary �i=0� with a single one. The dynamics is a combination
of an unbiased random walk in the bulk and a contact pro-
cesslike dynamics at the left boundary. It is implemented as
follows:

�a� A particle is randomly selected.
�b� If it is located at the leftmost site, it generates another

particle at site 1 with probability p, provided that it is empty
�s1=0�, or it dies �s0=0� with probability 1− p.

�c� Particles in the bulk perform a symmetric exclusion
process, moving to any of their two neighbors with equal
probability, provided that the destination site is empty �oth-
erwise nothing happens�.

Starting with a single particle at the leftmost site in an
otherwise absorbing �i.e., empty� configuration, the process
evolves as follows: the initial particle at site 0 either dies or
generates another particle at the neighboring site 1. This last
performs a random walk in the bulk until, eventually, it re-
turns to the origin to create another offspring or disappear. A
critical point located at pc=0.74435�15� has been reported to
separate the absorbing phase, in which the total number of
particles vanishes, from another with indefinitely sustained
activity �16�.

B. Order parameters

A possible order parameter for this model is the average
density of particles at the leftmost site,

�0 = �s0� , �1�

where � � stands for ensemble averages. This quantity is plot-
ted in Fig. 2 as a function of �ªp− pc. At the critical point,
�0�t� decays algebraically in time as

�0�t� � t−� �2�

with an exponent �=0.50�1�, compatible with a rational
value �=1 /2.

Another possibility is to choose as an order parameter the
average total number of particles, �N�t��, which, as shown in
Fig. 2, goes to zero for p� pc and increases steadily for
p� pc �actually, it is limited only by the system size�. At
criticality, �N�t�� is found to be constant in the large time
limit.

In the usual scaling picture of absorbing phase transitions,
the critical exponent � is related to the probability that a
given site belongs to an infinite cluster generated from a
fully occupied lattice at t=−	. This quantity tends to zero as
the control parameter approaches the critical value from
above. Similarly, the exponent �� is related to the probability
that a localized seed generates an infinite cluster extending to
t= +	. Therefore, in the supercritical phase ���0�, the av-
eraged activity of the site at the origin for t→	 measured in
seed simulations averaging over all runs, scales as
�s���+��, where the superscript ‘s’ stands for ‘stationary’.
At criticality, this function is expected to decay as ��t�
� t−��+���/
�, where 
� is the correlation time exponent. More-
over, in the DP class a special time-reversal symmetry im-
plies that �=�� �6�.

As shown in �17�, time-reversal symmetry also holds in
the present type of models. This implies that, in supercritical
seed simulations, the density of active sites at the boundary
is expected to saturate as

�0
s � �2�, �3�

while, at criticality,

FIG. 1. �Color online� Model on a semi-infinite lattice with sym-
metric diffusion in the bulk and special dynamical rules at the left
boundary �see main text�.
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FIG. 2. �Color online� Density
of particles at the leftmost site �0

�left� and the average total number
of particles N �right� as functions
of time for different values of �,
below, above, and at criticality. At
the critical point, �0�t� decays as
t−1/2 while and �N�t�� is essentially
constant.
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�0�t� � t−2�/
� , �4�

implying that � in Eq. �2� is

� = 2�/
� . �5�

Assuming that �=1 /2, then � /
� =1 /4.

C. Stationary properties

In numerical simulations in the active phase, it takes a
very long time, specially for small values of �, to reach the
steady state. Moreover, we observed the unusual fact that, for
��0, the density �0 goes through a minimum before reach-
ing the stationary state �see Fig. 2 and also �19�, where simi-
lar nonmonotonous curves were reported�. However, it turns
out that the value �0

m at the minimum and the saturation value
�0

s differ by a constant factor, entailing that both quantities
scale in the same way, i.e.,

�0
m � �2�. �6�

Note that this can be true only if the density �0�t� in seed
simulations obeys the scaling relation

�0�t� = �2�R�t�
�� , �7�

i.e., if it is possible to collapse the data by plotting �0�−2�

versus t�4�. Indeed, this will be shown to be the case in Sec.
V for a 0-dimensional non-Markovian process argued to be
in the same universality class.

Relying on this observation, one can determine the value
of the exponent � by measuring the density �0

m at the mini-
mum, which is reached much earlier than the stationary state.
In Fig. 3 we plot �m as a function of �, inferring �
=0.68�5�.

D. External field

In ordinary directed percolation, an external field, conju-
gate to the order parameter, can be implemented by creating
active sites at some constant rate h, thereby destroying the
absorbing nature of the empty configuration. At criticality,
the external field is known to drive a d+1-dimensional DP
process toward a stationary state with �s�h1/�h where �h

−1

=� / �
� +d
�−���, and 
� is the correlation length critical
exponent.

In the present model, the external field, conjugate to the
order parameter �0, corresponds to spontaneous creation of
activity at the leftmost site at rate h. The above hyperscaling
relation for �h is thus expected to be fulfilled by taking
d=0,

�0
s � h1/�h �8�

with

�h
−1 = �/�
� − ��� . �9�

From this expression, exploiting the fact that �=�� and us-
ing Eq. �5� as well as the conjectured rational value �=1 /2,
a prediction �h

−1=1 /3 is obtained. Our numerical estimate,
�h

−1=0.29�5� �see Fig. 3� is compatible with this result.

E. Survival probability

The survival probability Ps�t� is defined as the fraction of
runs that, starting with a single seed at the boundary, survive
at least until time t. At criticality, this quantity is expected to
decay algebraically,

Ps�t� � t−�, �10�

with the so-called survival exponent �, while in the super-
critical regime it saturates in the long time limit. Since Ps�	�
coincides with the probability for a seed to generate an infi-
nite cluster, the saturation value of the survival probability as
a function of the distance from criticality gives the exponent
��. As in DP, one expects Ps�t� to decay in time with an
exponent �=�� /
� =1 /4. However, as shown in Fig. 4, one
finds a much smaller exponent �=0.15�2�. Therefore, the
usual relation �=�� /
� does not hold. We also observed that
it is not possible to collapse different curves of Ps�t� for
different values of �, i.e., the survival probability seems to
exhibit an anomalous type of scaling behavior. We expect
that off-critical simulations of the survival probability give
the exponent �� but the simulation times needed to reach
steady state are prohibitively long. An explanation for the
value �=0.15�2�, differing from � /
�, is given in the follow-
ing subsection.

F. Time-reversal symmetry

In ordinary bond DP, the statistical weight of a configu-
ration of percolating paths does not depend on the direction
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FIG. 3. �Color online� Left
panel: Density of particles at the
leftmost site, at the time when it
reaches its minimum value, as a
function of the distance from criti-
cality �. This gives the exponent
�=0.68�5�. Right panel: The same
quantity, at criticality and in the
stationary state, as a function of
the external field h, giving
�h

−1=0.29�5�, compatible with the
conjectured value 1/3.

SIMPLEST NONEQUILIBRIUM PHASE TRANSITION INTO… PHYSICAL REVIEW E 79, 041130 �2009�

041130-3



of time. More specifically, the probability to find an open
path from at least one site at time t=0 to a particular site at
time t coincides with the probability to find an open path
from a particular site at time t=0 to at least one site at time
t. This implies that, in bond DP, �i� the density ��t� in simu-
lations with fully occupied initial state and �ii� the survival
probability Ps�t� in seed simulations coincide; hence �=��.
In other realizations of DP �e.g., site DP�, this time-reversal
symmetry is not exact but only asymptotically realized.

Applying the same arguments to the present model, the
survival probability Ps�t� in seed simulations should scale in
the same way as the density of active sites at the boundary
�0�t� in a process starting with a fully occupied lattice in the
bulk. A numerical test, which approximates such a situation,
confirms this conjecture, i.e., one has �0�t�� t−� with
�	0.15 for a fully occupied initial state.

Following the arguments of �18� in a related model, this
observation can be used to provide an heuristic explanation
for the fact that ��� /
�. It is known that if the boundary
acts as a sink or perfect trap �e.g., if p=0�, then, in a process
starting with a fully occupied lattice, one observes a growing
depletion zone around the boundary whose linear size l��t�
increases as l�� t�l, with �l=1 /2 �see �20� and Sec. II G�.

Thus, the density of active sites decays as t−1/2. Hence, the
influx of particles from the bulk to the leftmost site may be
considered as an effective time-dependent external field
h�t�� t−1/2. Making the assumption that this field varies so
slowly that the response of the process �i.e., the actual aver-
age activity at the boundary� behaves adiabatically, as if the
field was constant, then in a critical process starting from an
initially fully occupied state,

�0�t� � t−1/2�h � t−1/6. �11�

Owing to the time-reversal property, this quantity should de-
cay as the survival probability. This chain of heuristic argu-
ments leads to the conjecture that the survival exponent is
given by �=1 /6, in agreement with the numerical estimate
�=0.15�2�.

This unusual value of the exponent � is clearly related to
the fact that the present problem is inhomogeneous. The ar-
gumentation presented above does not work for the CP, for
example, since there is no special site and, therefore, a fully
occupied lattice cannot be interpreted as a time-dependent
field acting on a special site.

G. Density profile

Now, we consider the density profile ��x , t� in the bulk,
where x�N is the spatial coordinate �distance to the bound-
ary�, computed at the critical point. In the left panel of Fig. 5,
we compare the data collapse of the curves ��x , t�t1/2 as a
function of x / t1/2 with a Gaussian and observe an excellent
agreement, indicating random-walk-like behavior with a dy-
namical exponent z=2. However, in contrast to a simple ran-
dom walk, particles are mutually correlated. This is illus-
trated in the right panel of Fig. 5, where the connected
correlation function between two nearest neighbors

�pair�x,t� = ���x + 1,t���x,t�� − ���x + 1,t�����x,t�� �12�

in a system at the critical point is plotted against time. One
observes an algebraic decay, x−1/2, with distance. According
to the standard scaling theory this implies that � /
�=1 /2,
confirming that z=
� /
�=2. Moreover, these results are in
full agreement with field theoretical calculations presented in
Ref. �17� �see Sec. IV C�, which predict z=2 and �=1 /2.
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III. MEAN-FIELD APPROXIMATION

Here, we study mean-field approximations at different
levels. Let us denote by 
i the probability to find a particle at
site i; the temporal evolution within a simple �one-site�
mean-field approximation is given by

d
0

dt
= − �1 − p�
0 +

1

2

1�1 − 
0� , �13�

d
1

dt
= p
0�1 − 
1� +

1

2
�
2 + 
0
1 − 2
1� , �14�

d
i

dt
=

1

2
�
i+1 + 
i−1 − 2
i�, for i = 2,3, . . . . �15�

Note that the equations for the boundary site and its neigh-
bor, Eqs. �13� and �14�, include quadratic terms due to the
exclusion constraint, while the equation for sites at the bulk,
Eq. �15�, describes in this approximation a symmetric ran-
dom walk, i.e., it is a diffusion equation. The critical point
within simple mean-field theory �where the equation for 
1
also becomes a diffusion equation� is pc=1 /2.

Considering a localized initial condition at the boundary,

i=�i,0, after a transient time the densities at sites 0 and 1
should, approximately, coincide. Therefore, from Eq. �13�
with 
0	
1, it follows that, at criticality, 
0� t−1/2.

In the stationary regime, Eq. �13� leads to 
0��p−1 /2�
for p�1 /2. From these results we have

�MF = 1/2, �MF = 1. �16�

To obtain the survival exponent, �, we follow the arguments
of the preceding section and study the decay of activity from
a fully occupied lattice, 
i=1 for all i. Integrating Eqs.
�13�–�15� numerically with this initial condition, we obtain
an exponent in agreement with

�MF = 1/4. �17�

A more accurate approximation can be obtained by keeping
the correlation between the first two sites, which is expected
to be more relevant than the correlation between other neigh-
boring sites. Such a pair-approximation was used recently in
a model where a boundary site also plays a special role �21�.
In this approximation, the master equation reads

d�00

dt
= �1 − p��10 + 1

2 ��01�1 − 
2� − �00
2� ,

d�01

dt
= �1 − p��11 + 1

2 ��00
2 − �01�2 − 
2�� ,

d�10

dt
= − �10 + 1

2 ��01 − �10
2 + �11�1 − 
2�� ,

d�11

dt
= p�10 − �1 − p��11 + 1

2 ��10
2 − �11�1 − 
2�� ,

d
2

dt
= 1

2 �
3 + �11 + �01 − 2
2� ,

d
i

dt
= 1

2 �
i+1 + 
i−1 − 2
i� for i = 3,4, . . . , �18�

where �s0s1
is the probability that the occupation numbers of

the first two sites are s0 and s1. Numerical integration of
these equations leads to an improved critical-point estima-
tion, pc	0.634, but to the same mean-field exponents as
above.

IV. RELATED MODELS AND FIELD THEORETICAL
APPROACHES

A. Bosonic variant

The model defined above is fermionic in the sense that
each site can be occupied by, at most, one particle. We now
consider a bosonic variant without such a constraint. This
means that diffusion is independent of the configuration of
particles and that particles can be created at the boundary site
without restriction. More specifically, the update rules are the
following:

�a� A particle is chosen randomly.
�b� If the particle is located at the leftmost site it can

create another particle at the leftmost site �s0=s0+1� at rate
�, die �s0=s0−1� at rate �, or diffuse to the next neighbor at
rate D.

�c� If the particle is located in the bulk, it diffuses to the
right or to the left at equal rates D.

The corresponding master equation is

dP�
n�,t�
dt

= ���n0 − 1�P�n0 − 1, . . . ,t� − n0P�
n�,t��

+ ���n0 + 1�P�n0 + 1, . . . ,t� − n0P�
n�,t��

+ D�

ij

P�. . . ,ni − 1,nj + 1, . . . ,t�

+ P�. . . ,ni + 1,nj − 1, . . . ,t� − 2P�
n�,t�� ,

�19�

where P�
n� , t� is the probability to find a given configura-
tion 
n�=n0 ,n1 ,n2. . . and the sum runs over all nearest neigh-
bors, j, of site i �recall that site 0 has only one neighbor�.
Defining the state vector

���t�� = 


n�

P�
n�,t��
n�� , �20�

where �
n��= � i�ni� denotes the usual configuration basis, the
master equation can be expressed in the form

d

dt
���t�� = − Ĥ���t�� , �21�

where Ĥ is the time evolution operator. Using bosonic cre-
ation and annihilation operators, defined by âi�ni�=ni�ni−1�
and âi

†�ni�= �ni+1�, the master equation Eq. �19� can be
shown to correspond to the time evolution operator
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Ĥ = D

�ij�

�âi
† − aj

†��âi − âj� + ��â0
† − 1�â0 + �â0

†�1 − â0
†�â0.

�22�

In this formalism, the expectation value of an operator B̂ is

given by �B̂�= �1�B̂���t��, where �1�=

n��
n��. As is the case
for the bosonic contact process �22�, the equations for the
time evolution of the density of particles close. From the

Heisenberg equation of motion, dB̂
dt = �Ĥ , B̂� and Eq. �22�, one

obtains

d�0

dt
= D��1 − �0� + ��0

d�i

dt
= D��i+1 + �i−1 − 2�i� i = 1,2,3 . . . , �23�

where �i�t�= �ai
†�t�ai�t��= �ai�t�� and �=�−�. Alternatively,

one could have written a Langevin equation equivalent to
Eq. �22�, and from it, averaging over the resulting noise, one
readily arrives at the same set of equations �Eq. �23��.

From these equations, we can see that the critical point is
�=0, where Eq. �23� is a diffusion equation. In the con-
tinuum limit, Eq. �23� reads

���x,t�
�t

=
�2��x,t�

�x2 + ���x���x,t� , �24�

where x is the spatial coordinate and, without loss of gener-
ality, we have set D=1. We note that in order to take the
continuum limit in Eq. �23�, a site −1, with �−1=�0, has to be
introduced so that appropriate boundary conditions are satis-
fied. The solution of this inhomogeneous diffusion equation
is

��x,t� = �
0

	

����G�x,�,t�d�

+ �
0

t �
0

	

��������,��G�x,�,t − ��,d�d� �25�

where G�x ,� , t�= �e−�x + ��2/�4t�+e−�x − ��2/�4t�� / ���t� is the
Green function and the first term in the right-hand side
comes from the initial condition ��x ,0�=��x�. From Eq. �25�
we have

�0�t� =
2

��t
+ 2�

d−1/2

dt−1/2�0�t� , �26�

where �0�t�=��0, t�, and the operator d−1/2

dt−1/2 , defined by

d−1/2

dt−1/2 f�t� = �
0

t f���
���t − ��

d� , �27�

is a half integral operator �23�. Equation �26� involves �ow-
ing to the delta function in the interaction term in Eq. �24��
only the density at the leftmost site. This justifies the map-
ping of this model onto an effective one-site non-Markovian
process �see Sec. V�. Using some rules for half integration
�23� to solve Eq. �26�, we find

�0�t� =
2

��t
+ 4� exp�4�2t�erf�− 2��t� , �28�

where erf�x� is the error function. This implies that, above
the critical point, �0 grows exponentially in the long time
limit, and does not reach a stationary value, i.e., there is a
first-order transition and, hence, �=0 in this bosonic model.
From equation Eq. �28�, we deduce ��=1 and 
� =2. We have
not been able to calculate the survival-probability exponent
exactly, but numerical simulations suggest �=1 /4, in agree-
ment with the mean-field exponent.

B. Partially bosonic variant

Let us now introduce a partially bosonic variant of the
previous model by retaining the exclusion constraint only at
the boundary, but not in the bulk. The rules, in this case, are:

�a� A particle is randomly chosen.
�b� If it is at the leftmost site, it can generate a particle at

site 1 �provided that s1=0� with probability p or die
�s0ª0� with probability 1− p.

�c� Particles in the bulk diffuse to the right or to the left
with the same probability, 1/2.

Numerical simulations show that this variant exhibits the
same critical behavior as the original model even if the criti-
cal point is shifted to pc=0.6973�1�. This shows that the
fermionic constraint is relevant only at the boundary, where
it induces a saturation of the particle density and leads the
transition to become continuous.

C. Models with pair annihilation at the boundary

In the models discussed so far, particles at the boundary
either create an offspring or die spontaneously at some rate.
Instead, a very similar model was introduced in Ref. �17�, for
which particles at the boundary annihilate only in pairs. In
its fermionic variant, particles at sites 0 and 1 annihilate with
each other �provided that both sites are occupied� at some
rate, while isolated particles at the boundary cannot disap-
pear,

present models: A → 2A, A → � ,

models of Ref. �17�: A → 2A, 2A → � .

Analogously, one can define a bosonic version, in which two
particles at the boundary can annihilate. In the following
discussion we consider these two variants in d spatial dimen-
sions where, as is the case d=1, only a single site has “spe-
cial” dynamics.

A detailed field theoretical analysis of these pair-
annihilating models was presented in �17�. In the bosonic
case, proceeding as above �see Eq. �22�� one obtains the
following time evolution operator:

Ĥ = D

�ij�

�âi
† − âj

†��âi − âj� + ���â0
†�2 − 1�â0

2 + �â0
†�1 − â0

†�â0,

�29�

which, after eliminating higher-order terms and taking the
continuum limit, is equivalent to a Langevin equation iden-
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tical to the one for DP except for the fact that all terms,
except for the Laplacian, are multiplied by a � function at the
boundary; i.e., the nondiffusive part of the dynamics operates
only at the boundary. An �-expansion analysis of Eq. �29�
�see �17�� leads to �=1 /2 and z=2 as exact results in all
orders of perturbation theory, and to �=1−3�4−3d� /8, up to
first order in �=4 /3−d around the critical dimension
dc=4 /3. Also, it was shown that the time-reversal symmetry
is preserved.

We have verified all these predictions in computer simu-
lations of the bosonic annihilation model. For instance, from
the time decay of �0�t�, as shown in Fig. 6, we determine
�=0.21�3�, while from a finite-size scaling analysis of the
saturation values of the order parameter at criticality we
measure � /
�=0.51�2� �see Fig. 6�, in reasonable agreement
with the expected results, �=1 /6 and � /
�=1 /2, respec-
tively. Moreover, from spreading simulations �not shown� we
estimate �	1 /2 and z	2. All the exponents are in agree-
ment with the ones presented in the previous section for
single-particle annihilation models.

Actually, a simple argument explains why the model of
Sec. II and the pair-annihilation model share the same critical
behavior. This is plausible because the chain reaction
A→2A→� in the model with pair annihilation generates
effectively the reaction A→� of the model considered with
CP-like dynamics.

Hence, the field theoretical predictions discussed above
�17,16� apply also to the CP-like model. In d=1, the one-
loop prediction �=5 /8=0.625 �17� is not far from the expo-
nent measured in Sec. II, �=0.68�5�.

On the other hand, the fermionic version of the pair-
annihilating model has been conjectured to yield in a differ-
ent universality class, and a prediction for its critical expo-
nents is made in �17� �for instance, �=1�. Our numerical
simulations disprove such a claim; all the measured critical
exponents for the fermionic variant of the pair-annihilation
model are numerically indistinguishable from their bosonic
counterparts �see Fig. 6�.

In summary, all the defined models, either with single-
particle annihilation or with pair annihilation fermionic or
bosonic, exhibit a boundary-induced phase transitions, and,
except for one of them, they all are continuous and share the
same critical behavior. The exception to this rule is the
CP-like model without a fermionic constraint at the bound-
ary, which lacks of a saturation mechanism in the active
phase, leading to unbounded growth of particle density at the
leftmost site above the critical point and to a discontinuous
transition.

V. RELATION TO A (0+1)-DIMENSIONAL NON-
MARKOVIAN PROCESS

In Ref. �17�, by integrating out the fields related to diffu-
sion in the bulk from the corresponding action, it was shown
that the class of boundary-induced phase transitions into an
absorbing state considered here can be related to a non-
Markovian single-site process. The properties of such a
spreading process on a time line have been studied in further
detail in Ref. �18�.

On a heuristic basis, the relation can be explained as fol-
lows: consider the CP-like model only from the perspective
of the leftmost site. A particle at the origin may die or create
a new particle that will go for a random walk coming back to
the origin after a time �. What happens during this random
walk is irrelevant from the perspective of the leftmost site;
the only relevant aspect is the time needed for a created
particle to come back to the boundary. Once it returns it may
die or create new offsprings which, on their turn, will un-
dergo random walks in the bulk.

Our simulations above show that the fermionic constraint
is irrelevant in the bulk. Therefore, we can consider without
lost of generality the bulk-bosonic version in which there is
no effective interaction among diffusing particles. In this
case, the probability distribution of the returning time to the
origin has the well-known asymptotic form �24�

P��� � �−3/2. �30�

Taking all these elements into account we define the follow-
ing non-Markovian model on a single site �16�:

�a� Set initially s�t�ª�t,0 for all times, t.
�b� Select the lowest t for which s�t�=1.
�c� With probability �, generate a waiting time � accord-

ing to the distribution Eq. �30�, truncate it to an integer, and
set s�t+��ª1; otherwise �with probability 1−�� set
s�t�ª0.

�d� Go back to �b�.
The process runs until the system enters the absorbing

state �s�t��=0 for all t�� t� or a predetermined maximum
time is exceeded.

The density of particles at the leftmost site of the original
model is related to �s�t�� in the single-site model, the survival
probability at time t is given by the fraction of runs surviving
at least up to t, and the initial condition s�t�ª�t,0 corre-
sponds to start with a single particle at the boundary in the
full model. Critical exponents can be defined as in the origi-
nal model. However, the simulation results for the single-site
non-Markovian model are more reliable because it is pos-
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FIG. 6. �Color online� Temporal behavior of �0 for the bosonic
pair-annihilating model, starting from a homogeneous initial condi-
tion for different system sizes �from L=64 to L=2048�. The expo-
nent � /
� can be measured from the scaling of the different satu-
ration values as a function of system size �see inset; yellow line�.
Also, in the inset �dashed green line�, we show the scaling of satu-
ration values for the fermionic version of the same model, showing
the same type of scaling.

SIMPLEST NONEQUILIBRIUM PHASE TRANSITION INTO… PHYSICAL REVIEW E 79, 041130 �2009�

041130-7



sible to perform much longer runs and, in the case of off-
critical simulations, one can work with smaller values of �.
With time-dependent simulations at the critical point �c
=0.574 262�2�, we obtained �=0.500�5� and �=0.165�3�, in
good agreement with the conjectured values �=1 /2 and �
=1 /6. As an example, we show the results of supercritical
simulations in Fig. 7, where we obtained a convincing data
collapse by plotting �s�t���−2� as a function of t�4� for dif-
ferent values of � with �=0.71�2�. The latter estimate is in
agreement with �=0.68�5�, coming from the original model.

As shown in previous studies �see e.g., �25� and refer-
ences therein�, a non-Markovian time evolution with alge-
braically distributed waiting times P�����−1−� is generated
by so-called fractional derivatives �t

�, which are defined by

�t
���t� =

1

N�����0

	

dt�t�−1−����t� − ��t − t��� , �31�

where �� �0,1� and N����=−��−�� is a normalization con-
stant. Hence, we expect this model to be described by a
DP-like 0-dimensional Langevin equation with a half-time
derivative, instead of the usual one, to account for the non-
Markovian character of the model

�t
1/2��t� = a��t� − ��t�2 + ��t� , �32�

where a is proportional to the distance from criticality and �
is a multiplicative noise with correlations ���t���t���
=��t���t− t��. This equation can be obtained from the effec-
tive action that arises when the fields related to diffusion in
the bulk are integrated out, and the relation of the order of
the fractional derivative in a generalized one-site model with
the dimension in the full model is �= �2−d� /2 �17�. An

analysis of this one-site model with general � and a compari-
son with the results coming from field theory is presented in
�18�.

VI. CONCLUSION

We have studied boundary-induced phase transitions into
an absorbing state in one-dimensional systems with creation
and annihilation dynamics at the boundary and simple diffu-
sive dynamics in the bulk. The nontrivial dynamics at the
boundary induces a phase transition in the bulk. We have
analyzed such a transition for different though similar mod-
els, including different ingredients: either single-particle an-
nihilation or pairwise annihilation, fermionic constraint or
lack of it, etc.

A particular bosonic version can be exactly solved; owing
to the lack of any saturation mechanism, the density of par-
ticles grows unboundedly in the active phase, leading to a
discontinuous transition with trivial critical exponents.

The rest of the analyzed models exhibit a continuous tran-
sition and define a unique universality class. At the bulk, the
dynamics is governed by random walks, entailing the expo-
nent values z=2 and �=1 /2. On the other hand, some criti-
cal exponents take nontrivial values: �i� the survival prob-
ability from a localized seed at the boundary exponent,
which from an heuristic argument supported by simulations
results, turns out to be �=1 /6, as well as �ii� the order-
parameter exponent, �=0.71�2�. The remaining exponents
can be obtained from these ones using scaling relations.

Finally, it has been shown that the class of boundary-
induced phase transitions studied here can be related to a
single-site non-Markovian process. This process is particu-
larly suitable for numerical simulations and it is also of con-
ceptual interest in the sense that it shows that nonequilibrium
phase transitions can occur even in 0+1 dimensions by
choosing an adequate non-Markovian dynamics. It is also
convenient for the comparison of the results obtained form
the � expansion and simulations �18,17�.

The models studied here possibly constitute the simplest
universality class of nonequilibrium phase transition into an
absorbing state, in the sense that the transition occurs be-
cause of the special dynamics of just one site and, in contrast
to DP, some critical exponents can be obtained exactly from
the field theory.
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