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We study a classical fully frustrated honeycomb lattice Ising model using Markov-chain Monte Carlo
methods and exact calculations. The Hamiltonian realizes a degenerate ground-state manifold of equal-energy
states, where each hexagonal plaquette of the lattice has one and only one unsatisfied bond, with an extensive
residual entropy that grows as the number of spins N. Traditional single-spin-flip Monte Carlo methods fail to
sample all possible spin configurations in this ground state efficiently, due to their separation by large energy
barriers. We develop a nonlocal “chain-flip” algorithm that solves this problem, and demonstrate its effective-
ness on the Ising Hamiltonian with and without perturbative interactions. The two perturbations considered are
a slightly weakened bond and an external magnetic field h. For some cases, the chain-flip move is necessary for
the simulation to find an ordered ground state. In the case of the magnetic field, two magnetized ground states
with nonextensive entropy are found, and two special values of h exist where the residual entropy again
becomes extensive, scaling proportionally to N ln �, where � is the golden ratio.
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I. INTRODUCTION

Ising frustration is a common ingredient in spin models
designed to search for and study exotic physics. The proto-
typical example is the well-known triangular lattice antifer-
romagnetic �AFM� Ising model,

H = J�
�ij�

Si
zSj

z, �1�

which admits a ground state without long-range order �with
power-law spin correlations�, where an extensive number of
degenerate �equal-energy� configurations causes a residual
�T=0� entropy �1,2�. This classical “manifold” of ground
states is the fertile foundation from which one expects novel
or exotic order to spring. For example, the triangular lattice
AFM Ising Hamiltonian, perturbed with a quantum trans-
verse field, undergoes order-by-disorder to realize a long-
range-ordered quantum dimer state �3�. If instead the pertur-
bation is a nearest-neighbor in-plane ferromagnetic �FM�
quantum exchange, the system reveals an exotic “supersolid”
phase with coexisting diagonal and off-diagonal long-range
orders �4–6�. Ultimately, one would like to construct a spin
Hamiltonian that is a true T=0 quantum paramagnet, spin-
liquid �7�, or resonating valence-bond phase �8,9�. This could
open a new window on our understanding of the world of
deconfinement, quantum number fractionalization, and topo-
logical order �10�, a role in which frustrated interactions are
sure to play.

In the case of purely classical systems, perturbations to
frustrated Ising Hamiltonian are of utmost importance to ac-
tual material physics, as well documented in the spin ices
�11�—rare-earth titanates that realize to a very close approxi-
mation Ising models on the frustrated pyrochlore lattice. In
addition to the Ising exchange, in these materials the dipolar
interaction strength is significantly large, and has been

shown to be a critical ingredient in the realization of the
spin-ice state �12,13� as well as the prediction for long-range
order �14�.

A special class of classical Ising models is of particular
theoretical interest due to the ability to map their ground
states to hard-core dimer models, in which dimers live on the
bonds of the respective dual lattice �3,15�. The simplest frus-
trated dimer model is the classical triangular lattice dimer
model �16�; extensions of this prototypical example are
known to harbor interesting physical phenomena. The
ground state of this model is one where each site of the
triangular lattice has one and only one dimer emanating from
it. Although no long-range order exists in this ground state,
when constrained to a torus the model admits configurations
which may be categorized into four distinct topological sec-
tors �15�. Quantum extensions of this model promote, among
other things, a short-ranged resonating valence-bond phase
with deconfined fractional excitations �spinons� �8�. The
quantum dimer model on the triangular lattice has also been
used to motivate the design of topologically protected qubits
�17�. Clearly, such models are ideal playgrounds for the
study of the exotic physics mentioned above.

The ground state of the classical dimer model on the tri-
angular lattice maps to the so-called fully frustrated �FF�
honeycomb lattice Ising model �3,15�. In that model, antifer-
romagnetically interacting spins are placed on the sites of a
honeycomb lattice �labeled a in Fig. 1�, with the exception
that one bond per hexagon has an exchange of opposite sign,
i.e., a ferromagnetically interacting nearest-neighbor pair �la-
beled b�:

H = J�
�ij�

�− 1���ij�,bSi
zSj

z. �2�

Here, ��ij�,b is a delta function, with values of 0 on bonds a
and unity on bonds b. In this paper, we use the convention
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Si
z= �1 /2. The ground state of this model is one where each

hexagon of the honeycomb lattice has one and only one un-
satisfied bond. If this unsatisfied bond is mapped to represent
a dimer on the dual �triangular� lattice, one immediately sees
that the spin configurations in the ground state of the FF
honeycomb lattice Ising model can be matched to the ground
state of the classical dimer model on the triangular lattice �a
close-packed model of dimers with hard cores�, which has
one and only one dimer connected to each site �16�. This
ground state does not have a long-range order. Rather, it is an
extensive manifold of equal-energy disordered states, which
produce a residual entropy of S�0.214 per spin �16,18�.

We note that the equivalency of the ground states of the
two models �FF honeycomb Ising and triangular dimer� is
true for many choices of the pattern of the FM bonds �not
just the one in Fig. 1�. In other words, there is a “gauge
freedom” for which bonds we call ferromagnetic and which
we call antiferromagnetic, as occurs with similar mixed-bond
models �3�. Other patterns for the FM bonds could be chosen
in Fig. 1 that have an equivalent ground state for the above
Hamiltonian �or, the exchange of FM and AFM bonds, which
is another gauge choice�. Only when we explore perturba-
tions to this Ising Hamiltonian in Secs. II C and III does our
particular gauge choice become important, and we will dis-
cuss it more there.

In this paper, we study the ground states of this model
using an efficient Markov-chain Monte Carlo �MCMC�
method. As described in Sec. II, conventional local �or
“single-spin-flip” �SSF�� MCMC algorithms fail to explore
the entire degenerate ground state ergodically, which leads to
incorrect simulation results, in particular for perturbed mod-
els. The problem can be alleviated with global loop and clus-
ter algorithms �19�. However those designed for use on
corner-sharing triangular or tetrahedral lattices �20,21� do not
generalize to the FF honeycomb Ising model. Therefore, we
develop a general chain-flip algorithm which allows for full
ergodicity in the MCMC sampling of the ground-state mani-
fold of the unperturbed model. We demonstrate how this re-
stored ergodicity uncovers a phase transition to a long-range-
ordered state in a perturbed model, whereas conventional

algorithms with only local configuration changes do not.
In Sec. III of this paper, we use our MCMC algorithm to

explore the evolution of the ground state of the Hamiltonian
in an applied external magnetic field, where we find two
nontrivial higher-magnetization states with nonextensive en-
tropy �scaling as 	N�. In addition, for two critical-field val-
ues bounding these states, we find special points of restored
extensive entropy. Remarkably, one is able to calculate the
values of these “re-emergent” extensive entropies exactly,
and we find that they scale proportionally to N ln �, where �
is the golden ratio. These values are confirmed by our
MCMC simulations.

II. CHAIN-FLIP ALGORITHM

The most powerful method for studying classically frus-
trated lattice spin models is MCMC. The design of efficient
algorithms has made much of the past discoveries in the field
possible, but it is not without its difficulties. In particular, the
ability to study perturbed Hamiltonians, and phenomena re-
lated to the lifting of macroscopic Ising ground-state degen-
eracies, is critically dependent on global “cluster” algorithms
which are able to traverse degenerate �or nearly degenerate�
configurations in order to discover energetically preferred
ground states. In other words, local updates �such as the SSF
mentioned above� may suffer from a loss of ergodicity, or an
exponential suppression of computational efficiency, effec-
tively becoming frozen into particular states due to the pres-
ence of large energy barriers between configurations. How-
ever, global updates may restore ergodicity to the algorithm.
This has been demonstrated with the development of loop
algorithms in classical two-dimensional �2D� ice and vertex
toy models �19�, and has matured into a very general set of
loop algorithms applicable to a wide range of models on
corner-sharing triangular-based lattices in two dimensions
�kagome� �20� and three dimensions �pyrochlore� �21�.

A. Description of the algorithm

In this section, we examine in more detail the mechanism
by which SSF updates become inefficient in our FF honey-
comb lattice Ising model �2�, before developing a global
“chain-flip” algorithm which restores ergodicity at low tem-
peratures. Consider the classical SSF Metropolis algorithm,
where configurational changes are made by attempting to flip
each spin individually, finding the corresponding change in
energy �E=Eafter−Ebefore, and then accepting the flip with
probability

P = min
exp�− �E

T
�

1.

 �3�

In this as in all frustrated models, the SSF method works
well at higher temperatures T, but as the temperature be-
comes lower, the system begins to “freeze” �or lose ergodic-
ity� into its disordered manifold of equal-energy states. Each
degenerate ground-state configuration is at the bottom of a
local energy well, which means that most “nearby” system
configurations �configurations with only a few different

x

b

a

x

x x

x x

x

x

FIG. 1. �Color online� A fully frustrated honeycomb lattice.
Single lines �labeled a� represent antiferromagnetic bond interac-
tions, and double �blue� lines �labeled b� represent ferromagnetic
interactions. The lattice illustrated has N=2�L�L sites, with L
=4, and periodic boundary conditions. Dots illustrate one possible
ground-state configuration of the Ising model, with black dots rep-
resenting Sz spin up, and empty sites representing spin down. A
�red� x denotes each unsatisfied bond.
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spins� have a significantly higher energy. As a result, the
probability P that any SSF which breaks out of the degener-
ate manifold is accepted becomes exponentially low. To get
from one ground state to another �i.e., to move from one
energy minimum to an adjacent one�, multiple consecutive
single spin flips are needed, and since the probability of any
one spin being flipped is low, the chance that multiple spins
are flipped consecutively is very small. This means that the
simulation dynamics becomes effectively frozen, or noner-
godic.

In order to overcome this difficulty, one requires an algo-
rithm that flips multiple spins simultaneously in a way that
bypasses the large energy barriers and tunnels from one
ground state to the next. We achieve this by introducing a
chain-flip algorithm for the FF honeycomb Ising model. To
understand how this chain move works, it is first useful to
understand the structure of ground states in the model �see
Fig. 1 for one example�. In any given configuration, we call
a bond unsatisfied if it has positive energy �+J /4�, and sat-
isfied if otherwise �−J /4�. The spin configurations that con-
tribute to the ground-state manifold are the ones in which
every hexagon on the lattice has one and only one unsatisfied
bond. If flipping a group of spins creates as many unsatisfied
bonds as it removes, such a process is equivalent to moving
from one degenerate ground state to another. This net zero-
energy move is not possible with single spin flips alone.

Now we look at a method for finding a group of spins that
creates as many unsatisfied bonds as it removes �Fig. 2�. We
build up a chain of spins by selecting vertices one at a time
and counting the number of unsatisfied bonds that flipping
the spin creates versus how many it removes. Call the total
number of unsatisfied bonds at any point in the algorithm the
net unsatisfied bonds. It is useful to note that flipping a spin
changes the state of frustration of its three neighboring
bonds. We note that if at any point in building the chain we
encounter a hexagon not initially in its ground state �i.e.,
with more than one unsatisfied edge�, we cancel the chain,
thus ensuring that the lattice remains locally in a ground state
and ensuring detailed balance.

Our first step is to pick a hexagon at random and label its
unsatisfied bond b1 �see Fig. 2�. Label the two hexagons that

share that bond h1 and h2. Then we randomly pick one of
b1’s spins, and label it s1, and label the third hexagon that s1
is adjacent to as h3. Label the bond shared by h1 and h3 as
bond b2, and the bond shared by h2 and h3 as bond b3. Note
that since b2 and b3 are edges of h1 and h2, respectively,
neither of them can be unsatisfied. Now store s1 as the first
spin in our chain, and flip it. Flipping s1 makes b1 satisfied
and b2 and b3 unsatisfied, giving us +1 net unsatisfied
bonds.

We know that h3 initially had one unsatisfied bond, and
h3 has four bonds we have yet to consider: two adjacent to
b2 and b3, and two opposite b2 and b3. Label the spins that
s1 shares with b2 and b3 as s2 and s3, respectively. If h3’s
initial unsatisfied bond is adjacent to s2, then s2 is now ad-
jacent to two unsatisfied bonds �its third bond, being part of
h1, is satisfied�. Thus we can flip s2 and create −1 unsatisfied
bonds, giving our chain �s1 and s2� a total of 0 net unsatis-
fied bonds when flipped, and we are done. This argument
works similarly if h3’s initial unsatisfied bond is adjacent to
s3. So we see that the minimum number of spins that need to
be flipped to complete the chain algorithm is 2. Alternatively,
the algorithm continues, if h3’s unsatisfied bond is opposite
either b2 or b3. Incidentally, the basic two-spin chain flip is
analogous to the elementary dimer plaquette moved gener-
ated by the kinetic term in typical quantum dimer models �8�.

To explore the more general case, assume without loss of
generality that the unsatisfied bond occurs opposite to b3. In
this case, we want to flip s2, so label the second bond s2
shares with h3 as bond b4, label s2’s third bond as b5, and
label b4’s other spin as s4. Bonds b4 and b5 are satisfied, so
flipping s2 creates +1 unsatisfied bonds, for a total of +2 net
unsatisfied bonds. Now label h3’s unsatisfied bond as b6, and
s4’s third bond as b7. Hexagon h3 shares b4 with h4; label
the hexagon adjacent to both h3 and h4 as hexagon h5. Spin
s4 has two neighboring unsatisfied bonds, b6 and the newly
unsatisfied b4, and one neighboring satisfied bond, b7, which
we know is satisfied because it is part of h5, which already
has b6 as its unsatisfied bond. Thus flipping s4 creates −1
unsatisfied bonds, for a total of +1 net unsatisfied bonds. The
chain must therefore continue; we now begin the recursive
phase of the algorithm.

Hexagon h4 must initially have unsatisfied bonds, and so
far we have looked at three of its bonds, b5, b4, and b7.
Bonds b5 and b7 have been made unsatisfied by spin flips we
have already done. Label b5’s second spin as s5 and b7’s
second spin as s6. If h4’s initial unsatisfied bond is adjacent
to s5 we can flip s5, creating −1 unsatisfied bonds, for a total
of 0 net unsatisfied bonds. The algorithm is therefore done.
Similarly, if h4’s unsatisfied bond is adjacent to s6, one can
flip s6 and the chain is done. The recursive case comes when
h4’s unsatisfied bond is opposite b4. Label the bond adjacent
to s5 on h4 as bond b8, the bond adjacent to s6 on hexagon
h4 as b9, and the bond opposite b4 as bond b10. We now
randomly choose either b8 or b9 and flip both of its spins.
Say without loss of generality that we chose b8. Since b5
and b10 are unsatisfied and the other two bonds adjacent to
b8 are satisfied, flipping both of b8’s spins results in 0 un-
satisfied edges, for a total of +1 net unsatisfied bonds. Label
the hexagon that shares b8 with h4 as hexagon h6.

The recursion comes by realizing that our current state is
the same as it was before we flipped b8’s two spins: h6 has

h4

h5

h3

h1

h6

h2

s1
b3

s3

b2

b4

b6

b7

s4

s6

b9

b8

s5 s2

b1

b5

b10

FIG. 2. �Color online� Labeled lattice.
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one unsatisfied edge that we have not found yet, on one of
three sides that we have not considered. Furthermore, two of
h6’s spins have been flipped. Thus we can apply the same
logic in choosing spins to add to the chain that we applied
when choosing the last two. Specifically, if h6’s unsatisfied
bond is the one opposite b8, then we continue recursing. If
the unsatisfied bond is one of the other two possibilities, we
can end the chain with 0 net unsatisfied bonds, or in other
words, with a chain that, when flipped, takes us to another
ground state.

In T=0 simulations of Hamiltonian �2�, where the model
is expected to be in the ground state, spins on completed
chains can be flipped with probability of unity. However, in
the case of perturbed Hamiltonians �see Secs. II C and III�,
the energy change �E incurred by the proposed chain flip
must be calculated. Then, this proposed flip is accepted or
rejected based on the Metropolis condition �Eq. �3��.

B. Chain moves in the unperturbed model

In order to test the efficiency of the chain move in a real
simulation, in this section we present results for two MCMC
codes for unperturbed model �2�, each employing a Metropo-
lis algorithm with a Boltzmann probability �3�. The first uses
a conventional SSF Metropolis algorithm, the second a com-
bination of SSF and chain-flip updates. Specifically, the
MCMC step using SSFs alone consists of attempting to flip
each spin in the lattice twice. The MCMC step using chain
moves consists of attempting SSF on each spin in the lattice
once, followed by 1 attempted chain move for every 20 spins
in the lattice. This convention for MCMC steps was chosen
so that the CPU time of the chain-flip-assisted step is roughly
equal to that of the step using SSFs alone, thereby allowing
us to directly compare results without relying on formal au-
tocorrelation measurements. We note of course that, in a
working MCMC code, other conventions for the Monte
Carlo �MC� “step” may be chosen by the practitioner.

In this work, simulations were performed at finite tem-
peratures and on finite system sizes ranging from a few hun-
dred to tens of thousands of spins, using of order 106 MCMC
steps. From such simulations, we examine the impact of the
chain move on certain thermodynamic quantities, in particu-
lar, the energy E, specific heat C=�E /�T, and magnetization
per spin M =1 /N�iSi

z. Further, we restrict ourselves to look-
ing at two procedures for obtaining such finite-T data: �1� an
annealing �or slow-cooling� algorithm, and �2� a quenched
�or rapid-cooling� algorithm, details of which are reported
below.

First, we examine data obtained through annealing simu-
lations. An annealing procedure is often employed in simu-
lations of models with long time scales or glassy dynamics,
and is known to help reach even complex ground states using
very simple local �SSF� algorithms. In an annealing run, the
simulation is started at a high temperature T /J�1, and the
usual MCMC algorithm �a series of equilibriation and pro-
duction steps� is employed. After sufficient data are gathered,
the temperature is lowered by a small step, keeping the sys-
tem configuration from the previous �higher-temperature�
step. The MCMC algorithm is then repeated, and the tem-

perature is lowered again until the system settles in its
ground state.

Figure 3 illustrates the results for the energy E, the spe-
cific heat C, and the magnetization M of the annealing algo-
rithm for a system of 20 000 Ising spins in the Ising model.
It is clear that the results for E and C are similar for both
types of MCMC step, and that both realize the proper ground
state of the model, with energy per spin E /N=−J /4. Further,
integration of C /T �see, e.g., Ref. �21�� for both of these
simulation runs reveals that the model retains a residual en-
tropy in its ground state of S /N=0.214 to within numerical
�1%� accuracy �18�. The lack of difference between the SSF
and the chain-algorithm data can be explained largely as the
success of annealing: even without the chain move, anneal-
ing allows the SSF algorithm alone to find a ground state.
However, the single spin flips cannot move between degen-
erate ground states at very low T; E and C are simply unaf-
fected as every ground state has the same energy. This is not
the case with the magnetization M, as seen in Fig. 3. Clearly,
the expectation that the ground-state magnetization per spin
should be tightly distributed around a mean of M =0 can be
violated in the SSF algorithm, where degenerate configura-
tions with higher magnetization can be frozen in, as illus-
trated. However, with the chain-flip algorithm, the expected
convergence to M =0 is found with high accuracy.

Our next observation is of the acceptance rate of the chain
moves �Fig. 4�. The single spin flips work well until lower
temperatures are reached, at which point their acceptance
rate drops off to zero. Comparing to Fig. 3, this happens at a
temperature where the system has realized the degenerate
ground state. The chain moves, in contrast, have a very low
acceptance rate at high temperatures. This is due to the large
number of chains being aborted during generation, when the
construction algorithm encounters a hexagon with the “incor-
rect” number of unsatisfied bonds �i.e., not 1�. As the tem-
perature lowers and the system reaches the ground-state
manifold, the chain-move acceptance rate climbs to unity.
Clearly, a combination of SSF and chain flips is needed in
order to give a MCMC step with a reasonable acceptance
rate across all temperatures.

It is interesting to consider the size of chains produced by
the algorithm. Note first that every chain must have an even
size to ensure an even number of “boundary” bonds �see Fig.
2�. In Fig. 5, we see that in a histogram of data collected for
several parameter values, the most common chain size is 2,
with the distribution of chains decreasing rapidly with their
size. At high temperatures this distribution is weighted
heavily toward chains of size 2, but as temperature decreases
the distribution flattens out somewhat, making longer chains
more probable. We also note that the distribution of chain
sizes is essentially unaffected by lattice size, since apparently
very few chains are long enough to act on more than a very
local area of the lattice.

We complete our examination of the two possible MCMC
algorithms mentioned above, turning now to a discussion of
the quenching algorithm. Quenching refers to the procedure
whereby a simulation is run completely at a single �usually
low� temperature, in an attempt to obtain the ground state
quickly without annealing. The desire to use a quenching
algorithm is obvious if one is interested only in the low-
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temperature properties of the model, which is often the case,
and it is widely used since it is also the easier of the two
algorithms to implement. However, without the history of
higher-temperature configurations provided by an annealing
procedure, it is often observed that simulations at low tem-
perature have a more difficult time settling into their true
ground-state configuration, as it is possible to get trapped in
local energy minima separated by large energy barriers that
single spin flips have difficulty overcoming.

Figure 6 illustrates the energies of three different
quenched simulations, all begun in a random initial state �at
step zero�, as a function of the number of MCMC steps. It is
clear that the chain-flip simulation reaches the proper
ground-state energy in a fraction of the number of steps that
the simulations without it take. The effects of the energy

barriers and local minima on simulations using only single
spin flips is most obvious in the plot of the energy of the
smaller lattice of size N=1152. The plateaus correspond to
local minima in the energy, and the jumps between plateaus
correspond to several spins being flipped consecutively, al-
lowing the simulation to “bypass” the energy barrier. The
simulation using chain flips is virtually unaffected by the
energy barriers, and finds the ground state in less than 50
MCMC steps. This figure is therefore a testament to the in-
creased efficiency of the algorithm with the chain move in
reaching the ground state.

In this section, we have demonstrated that MCMC simu-
lations employing the chain-flip algorithm can both realize
the ground state of the unperturbed FF honeycomb lattice
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FIG. 3. �Color online� The energies, specific heats, and magnetizations of a simulation of 20 000 Ising spins on the unperturbed FF
honeycomb model.
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FIG. 4. �Color online� The acceptance rate of single spin flips
and chain moves across a range of temperatures.
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lattice of 20 000 spins.
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Ising model more efficiently that those employing single spin
flips alone, and also remain unfrozen once in this ground
state. We now demonstrate the usefulness of the chain move
in simulations where the Hamiltonian has been perturbed by
a small interaction that lifts the degeneracy of the ground-
state manifold.

C. Chain moves in a perturbed model

In physical cases of interest, for example, in the modeling
of real materials, one typically expects a more complicated
Hamiltonian than Eq. �2�, often taking the form of small
perturbations added to �or modifying� the simple Ising inter-
action. In many applications, these perturbations require no
modification of existing MCMC schemes. However in the
case where the unperturbed ground state is an extensively
degenerate manifold of equal-energy states �such as is the
case with the FF honeycomb Ising model�, this is not true.
Specifically, if small perturbative interactions lift the degen-
eracy of the manifold by energetically favoring one or more
specific configurations �e.g., promoting long-range order�, it
has been demonstrated that SSFs in a MCMC scheme can
fail to find this true ground state �21�.

In our FF honeycomb model, one may see the dynamical
freezing of the SSFs by inspecting the acceptance rate in Fig.
4, which also suggests that the chain flips successfully ex-

plore the degenerate manifold of states at very low tempera-
tures. We test this idea by introducing a small perturbation in
the Hamiltonian which slightly weakens the ferromagnetic
bonds in Fig. 1. The Hamiltonian can be written as

H = J�
�ij�

Si
zSj

z��ij�,a − J��
�ij�

Si
zSj

z��ij�,b, �4�

where the first term is the Hamiltonian for the antiferromag-
netic bonds, and the second is for the ferromagnetic bonds
�i.e., both J and J� are positive constants—see Fig. 1 for the
bond labels a and b�. In the following discussion, we set
J� /J=0.90. With this slight perturbation, we expect that the
system will select a unique ground state with long-range or-
der from the extensive manifold of states in the unperturbed
model. Since the ferromagnetic bond is slightly weakened,
this order will be one where the unsatisfied bond �one per
hexagon� is placed uniquely on the ferromagnetic bond b.
We expect the energy per spin of this ground state to be
−41J /160, which is less than the −J /4 of the unperturbed
model.

Indeed Fig. 7 shows that the chain moves significantly
modify the behavior of the MCMC simulation. Results pre-
sented there are for an annealing algorithm, and in contrast to
the unperturbed case, it is clear that the MCMC using SSFs
does not find the correct ground state, while the MCMC
using chain flips does. In addition, the specific-heat curve in
Fig. 7 shows a large peak in the algorithm using the chain
move that is not present above the noise seen in the algo-
rithm not using the chain move. One observes a dynamical
freezing of the spin configuration in the SSF algorithm,
where the MCMC simulation no longer is able to sample
low-lying states, and hence eventually freezes into a disor-
dered state. In contrast, the chain algorithm is able to find a
phase transition to a long-range-ordered state, promoted by
the perturbed Hamiltonian, as evident from the peak in C.
Integration of this specific-heat peak �over T� in Fig. 7 with
the chain moves finds all of the expected ln�2� entropy, con-
firming the development of a unique ground state at T=0. In
contrast, with the SSF algorithm only, the full ln�2� entropy
is not recovered by the integration, indicating that a long-
range-ordered ground state is not found.

0 200 400 600 800 1000
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Without Chain (N=18432)

Without Chain (N=1152)

FIG. 6. �Color online� The energy of a simulation of 20 000
Ising spins in the unperturbed model at T /J=0.05, as a function of
MC step.
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FIG. 7. �Color online� The energies and specific heats of a simulation of 20 000 Ising spins on the perturbed FF honeycomb model �Eq.
�4��.
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III. GROUND STATES IN AN EXTERNAL MAGNETIC
FIELD

We now turn to a consideration of the fully frustrated
honeycomb lattice Ising model, with the physically impor-
tant perturbation of an external magnetic field:

H = J�
�ij�

�− 1���ij�,bSi
zSj

z + h�
i

Si
z. �5�

The inclusion of a symmetry-breaking magnetic field is
known to lift the degeneracy of the ground-state manifold in
some models, e.g., the frustrated Ising AFM on a triangular
lattice �22�. However, in other cases, such as the frustrated
Ising AFM on the kagome lattice, this is not the case, and the
presence of a perturbative external magnetic field reduces the
degeneracy but does not lift it all together �3�.

A. Magnetization plateaus and entropy spikes

Using MCMC simulations with the SSF and chain-flip
algorithm, we study the ground state of the Hamiltonian �Eq.
�5�� on the honeycomb lattice. Figure 8 shows the evolution
of the magnetization per spin, M, as a function of the applied
field. Immediately upon application, the field promotes the
development of a plateau with magnetization M =1 /8. In-
spection of simulation configurations on this plateau reveals
that it corresponds to a partial ordering of spins.

This order is illustrated in Fig. 9; it can be described in
terms of horizontal zigzag “rows” �labeled a-d in Fig. 9�.
There, every second row with ferromagnetic bonds �labeled
a� is fully polarized �all spin up�. This choice of ordering
pattern is obviously not gauge invariant, since the pattern of
FM bonds has been chosen to break the lattice rotational
symmetry. It can be seen however that it lowers the energy of
the spins associated with these bonds in the magnetic field,
while retaining a configuration that is a member of the
ground-state manifold in the unperturbed model �i.e., one
and only one unsatisfied bond per hexagon�. The rows adja-
cent to the fully polarized row �i.e., every row without a

ferromagnetic bond, or rows b and d in Fig. 9� are forced
into a specific configuration, with alternating up- and down-
spins, in order to maintain one unsatisfied bond per hexagon.
Finally, the remaining rows with ferromagnetic bonds �the c
rows in Fig. 9� each have two possible configurations, each
alternating two up-spins, with two down-spins along their
ferromagnetic bonds. Remarkably, this is not a unique long-
range-ordered state in two dimensions, since the FM rows of
spins c sandwiched in between the fully polarized FM rows a
are ordered independently of the FM c rows above and be-
low. Thus, a ground-state entropy remains. However, it is no
longer extensive �i.e., scaling as L2�, but scales as L, the
lattice linear dimension. See Sec. III B below for an exact
expression for this entropy.

The M =1 /8 semiordered state remains stable to moder-
ately large applied fields �as evident by the plateau in Fig. 8�,
until for h /J�1 a second plateau is reached at M =1 /4. We
note that for this plateau, the ground state is forced out of the
degenerate manifold of states �with one and only one unsat-
isfied bond per hexagon�. Hence, chain moves cease to be
effective �although SSFs still contribute�, resulting in the in-
creased noise in the magnetization plateau in Fig. 8 and a
rounding of the associated transition. From observation of
simulation configurations, it is apparent that this plateau cor-
responds to the flipping of all down-spins to up-spins on row
c �Fig. 9�. This configuration is again not truly long-ranged
ordered in two dimensions. Rather, in this case the antiferro-
magnetic rows b and d have become independent of each
other, and the ferromagnetic row c has become fixed. Thus,
we find that the entropy of the 1/4 plateau is actually twice as
large as the entropy of the 1/8 plateau, although still scaling
as the linear system size L �see Sec. III B�. Finally, for ap-
plied magnetic field h /J�3 /2, the remaining down-spins on
the b and d rows flip to up-spins, and the system becomes
fully polarized.

A curious phenomenon occurs in the transition regions
between the three magnetization plateaus illustrated in Fig.
8. For the special values h /J=1 and h /J=3 /2, the model
transitions from a configuration of decoupled quasi-one-
dimensional �1D� ordered chains to once again being a dis-
ordered 2D system. In other words, at precisely these critical
values of h /J, the model becomes “accidentally” macro-
scopically degenerate due to fine-tuning of the magnetic

0 0.5 1 1.5 2

0.0

0.125

0.25

0.375

0.5

h/J

M
S = 0

S = 0.214L2
S = 0.060L2

S = 0.241L2

S = 0.087L

S = 0.173L

FIG. 8. �Color online� The magnetization per spin of a simula-
tion of 288 Ising spins �L=12� in model �5� at T /J=0.005. The
plateaus at M =1 /8 and M =1 /4 correspond to partially ordered
states, described in the text. The �asymptotic� values of the residual
T=0 entropy S of the ground-state configurations are also labeled.
The extensive entropy spikes which occur at the special values of
h /J=1 and h /J=3 /2 are discussed in Sec. III B.

a

}

d}

c}

b

a

}

}

FIG. 9. �Color online� The ground-state spin configuration of
Hamiltonian �5� at magnetization M =1 /8 �0�h /J�1�. Black dots
represent Sz spin up, and empty sites represent spin down. The 16
sites making up the unit cell are outlined by the dashed �red� line.
To obtain the M =1 /4 state, the down-spins on the zigzag “row”
labeled c must be flipped to up-spins.
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field. At h /J=1, this degeneracy occurs between states like
those in Fig. 9, and states where all spins on all zigzag row
c are up. Similarly, the degeneracy at h /J=3 /2 occurs be-
tween states like this last state, and the M =1 state where the
remaining spins �on the zigzag rows b and d� flip up. For
these two special field values where the fine-tuning of h /J
causes an accidental degeneracy, we expect a re-emergence
of a residual ground-state entropy, scaling as the system size
N �similar to the h=0 case�. Remarkably, one is able to cal-
culate the values of these re-emergent extensive entropies
exactly in this model. This is shown in Sec. III B, where we
discover that the asymptotic residual entropies are

S/N = ln �/8 � 0.060 15 for h/J = 1, �6�

S/N = ln �/2 � 0.240 61 for h/J = 3/2. �7�

Here, ��1.618 is the golden ratio. Numerically, one can
measure the values of the residual entropy via our MCMC
simulations as the difference of the integral of C /T �over all
T� from ln�2�. For a lattice of size L=32, we obtain S
=0.0604�2� at h /J=1, and S=0.2398�2� at h /J=3 /2, where
finite-size trends clearly suggest that the MCMC approaches
the above asymptotic results in the thermodynamic limit, to
within error bars. The derivation of the exact asymptotic re-
sults is presented in detail in Sec. III B.

B. Exact entropy calculations

In this section we derive exact expressions for the finite-
size entropy of the system with external magnetic field for
varying h /J. In our derivation, we concentrate on linear lat-
tice sizes L that are multiples of 4, based on the assumption
�e.g., from Fig. 9 and discussions in Ref. �3�� that the small-
est unit cell that contains the ordered or partially ordered
structure is commensurate with L=4. We also give approxi-
mate expressions for large lattice size L, and asymptotic val-
ues for L tending to infinity. In our presentation, we refer to
Fig. 9.

1. 0�h ÕJ�1

As discussed above, for 0�h /J�1, ground states are
such that rows c can each have two configurations �with
pairs of spins alternating up and down�, and there are L /4
rows c. Rows a have all spins up, and rows b and d are fixed
as in Fig. 9. This gives 2L/4 configurations, but the roles of
rows a and c can be switched, which leads to an additional
doubling of this number of configurations. In this way we
obtain

	 = 2L/4+1, �8�

S = ln 	 = �L

4
+ 1�ln 2, �9�

S

N
= � 1

8L
+

1

2L2�ln 2, �10�

giving S��ln�2� /8�L�0.087L in the limit of large L.

2. 1�h ÕJ�3 Õ2

We now extend our notation and call rows a and rows c
rows of type A �A= �a ,c�� and, similarly, B= �b ,d�. As dis-
cussed above, for 1�h /J�3 /2, ground states are such that
each row B has its spins alternating up and down, and is thus
in one of two possible states, independently from the other
rows B: either all its up-spins are adjacent to the row A above
it or to the row A below it. For each row B, let us assign a
binary digit 1 to the former case �spins up are adjacent to the
row A above row B�, and 0 in the other case. Let m=L /2 be
the number of rows B on the lattice. Then there are 2m con-
figurations for the rows B, and we get

	 = 2L/2, �11�

S = ln 	 =
L

2
ln 2, �12�

S

N
=

1

4L
ln 2, �13�

i.e., S�0.173L in the limit of large L.

3. h ÕJ�3 Õ2

For h /J�3 /2 there is a single ground state, with all spins
up, and we get

	 = 1, �14�

S = ln 	 = 0, �15�

S

N
= 0. �16�

4. h ÕJ=1

We first observe that all ground states for 1�h /J�3 /2
are still ground states for h /J=1. �Recall that these states
have all spins up on rows A, and spins alternating up and
down on rows B�. However, there are now many additional
ground states, because for every of the 2m configurations of
rows B, some of rows A are allowed to flip some of their
pairs of spins that are connected by a ferromagnetic bond
from up to down. Indeed, rows A that have their upper neigh-
bor row B in the 0 state, and their lower neighbor row B in
the 1 state, are allowed to flip pairs of spins without chang-
ing the energy, as long as no two adjacent pairs have spin
down �see Fig. 10�. Note that this corresponds to the case
that for a pair of up-spins in rows A, all neighboring spins are
up as well. For these rows A, flipping a spin pair �which has
neighboring pairs up� from up to down results in a magnetic
energy change of 4h /2 �two spins flipped from up to down�,
and the energy change from the bonds is −4J /2, because four
bonds become satisfied. At h /J=1 the energy thus remains
unchanged. We now want to count how many states can be
obtained in this way.

To this end, we first investigate how many rows A are
allowed to flip pairs of spins, for a given configuration of
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rows B. Every configuration of rows B can be represented by
an m-digit binary number �see above�, and every transition
from a 0 to a 1 in this binary number corresponds to a row A
whose spin pairs can be flipped. �Note that we have to in-
clude the periodic case, where the last digit is 0 and the first
digit is 1, in our count.� Let R�m ,d� be the number of m-digit
binary numbers with d transitions from 0 to 1. It is shown in
Appendix A that

R�m,d� = 2�m

2d
� . �17�

Next we have to count, for each row A that is allowed to
flip its pairs, how many configurations there are in which no
two adjacent pairs are down. Let n=L be the number of pairs
on a row A, and let g�n� be the number of configurations in
which no two adjacent pairs are down. �Again, we have to
include the periodic case in our count.� Appendix B shows
that g�n� satisfies the Fibonacci recurrence equation, with
exact solution

g�n� = c1�n + c2
n, �18�

where

� =
1 + 	5

2
� 1.6180, �19�


 =
1 − 	5

2
� − 0.6180, �20�

c1 =
5 + 3	5

10
� 1.1708, �21�

c2 =
5 − 3	5

10
� − 0.1708. �22�

Note that for large L, g�L� can be approximated well by

ĝ�L� = c1�L. �23�

The number of ground states, 	, is now given by

	 = �
d=0

L/4

R�L/2,d�g�L�d. �24�

�Note that there are at most d=L /4 transitions from 0 to 1 in
a binary number with m=L /2 digits.�

It is shown in Appendix C that a closed-form expression
for this sum is given by

	 = �1 + 	g�L��L/2 + �1 − 	g�L��L/2, �25�

and then S=ln 	 and S /N=ln 	 /2L2.
For large L, we can approximate Eq. �25� as

	̂ = 2ĝ�L�L/4 = 2c1
L/4�L2/4, �26�

which leads to

Ŝ = ln 	̂ = ln 2 +
L

4
ln c1 +

L2

4
ln � , �27�

Ŝ

N
=

ln 2

2L2 +
1

8L
ln c1 +

1

8
ln � . �28�

We thus find an asymptotic value for S /N equal to ln � /8
�0.060 15.

5. h ÕJ=3 Õ2

We saw above that for 1�h /J�3 /2, ground states have
all spins up in all rows A, and spins alternating up and down
in rows B. These states are all ground states at h /J=3 /2 as
well, but there are many additional ground states, because
rows B can now flip some of their spins up or down without
changing the energy, as long as no two adjacent spins are
down �see Fig. 11�. Indeed, flipping a spin �which has its
three neighboring spins up� from up to down results in a
magnetic energy change of 2h /2 �one spin flipped from up to
down�, and the energy change from the bonds is −3J /2, be-
cause three bonds become satisfied. At h /J=3 /2 the energy
thus remains unchanged. We now want to count how many
states can be obtained in this way.

First, there are m=L /2 rows B that can change some of
their spins independently. Second, every row B has n=2L
spins that can be flipped up our down as long as no two
adjacent spins are down. The number of valid configurations
for each row B is thus given by g�2L�, with g�n� as the

B 0}

B 1}

A}

B 1}

B 0}

A}

A}

2

3

1

FIG. 10. �Color online� The ground-state spin configuration for
h /J=1. The binary digits 1 or 0 are associated with rows of type B.
Pairs of spins on rows of type A can be flipped if that row is
“above” a B row of type 1 and “below” a B row of type 0, for
example, the spins circled by the dashed �red� line in row A2. Spins
on rows A1 and A3 may not be flipped.

}

}

A}

B}

B

A

FIG. 11. �Color online� The ground-state spin configuration for
h /J=3 /2. Spins on rows of type B can be flipped as long as the
condition of not having two adjacent down-spins is satisfied. Down-
spins circled by a dashed �red� line can be flipped to up-spins with-
out a change in energy.
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specific solution of the Fibonacci equation given in Eq. �18�.
This gives

	 = g�n�m = g�2L�L/2, �29�

and then S=ln 	 and S /N=ln 	 /2L2.
For large L, we can approximate Eq. �29� as

	̂ = ĝ�2L�L/2 = c1
L/2�L2

, �30�

which leads to

Ŝ = ln 	̂ =
L

2
ln c1 + L2 ln � , �31�

Ŝ

N
=

1

4L
ln c1 +

1

2
ln � . �32�

We thus find an asymptotic value for S /N equal to ln � /2
�0.240 61.

IV. DISCUSSION

In this paper, we have developed a global chain-flip algo-
rithm for Markov-chain Monte Carlo simulations of the fully
frustrated honeycomb lattice Ising model. Chain flips are
used to complement conventional single spin flips, in param-
eter regimes where the MCMC simulation is required to ex-
plore the model’s extensively degenerate ground-state mani-
fold of minimally frustrated spin configurations. We have
demonstrated, through careful numerical simulations, that
the chain-flip algorithm both increases simulation efficiency
and restores ergodicity in the sampling of the degenerate
manifold of states. We have emphasized this latter point by
demonstrating that chain flips are necessary for the MCMC
simulation to find the proper ground state in the case where
one of the members of the extensive manifold is made to
have lower energy. In this perturbed model, chain flips pro-
mote a low-temperature phase transition to a long-range-
ordered state, which recovers all of the residual entropy of
the unperturbed model.

We have also used our MCMC algorithm to study the
physically important extension of the FF honeycomb Ising
model, where an external magnetic field h is applied. In this
case, moderate values of h promote the realization of par-
tially ordered states, corresponding to magnetization plateaus
with values of M =1 /8 and M =1 /4. The precise nature of
the partially ordered states is dependent on the geometry
with which frustration is introduced into the original �unper-
turbed� FF honeycomb Ising model, and is not gauge invari-
ant in this sense. An interesting phenomenon that occurs is
the re-emergence of extensive entropy “spikes” at h values
bounding the M =1 /4 plateau. Using a proof based on the
reduction of the configurational disorder down to a Fibonacci
recurrence, we are able to show that the entropy of the two
re-emergent spikes is equal to

S/N = ln �/8 � 0.060 15 for h/J = 1,

S/N = ln �/2 � 0.240 61 for h/J = 3/2,

where ��1.618 is the golden ratio. MCMC simulations
confirm these results to a high degree of accuracy. It is inter-
esting to note that in one case �for h /J=3 /2�, the entropy
spike S /N=0.241 is actually greater than the residual entropy
for h=0 �S /N=0.214�. The phenomenon of a magnetization
plateau bounded by extensive entropy spikes has previously
been seen to occur on several models in one �23� and two
dimensions �24�, and also in three-dimensional �3D� spin-ice
systems in an applied field along the �111� crystallographic
direction �20�.
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APPENDIX A: NUMBER OF m-DIGIT BINARY NUMBERS
WITH d TRANSITIONS FROM 0 TO 1

Let R�m ,d� be the number of �periodic� m-digit binary
numbers with d transitions from 0 to 1. We want to show that

R�m,d� = 2�m

2d
� . �A1�

In a periodic binary number of size m, there are m possible
places to switch digits. Choose 2d of these m places in order
to get d transitions from 0 to 1. Once the 2d locations where
digits switch are chosen, the number can be formed in two
different ways �zeros and ones can be switched�. This leads
directly to expression �A1�.

APPENDIX B: NUMBER OF CONFIGURATIONS g(n)

Consider a �periodic� line with n spins. We want to show
that g�n�, the number of configurations in which no two ad-
jacent spins are down, satisfies the Fibonacci recurrence
equation,

g�n� = g�n − 1� + g�n − 2� , �B1�

with exact solution

g�n� = c1�n + c2
n, �B2�

where

� =
1 + 	5

2
� 1.6180,


 =
1 − 	5

2
� − 0.6180,

c1 =
5 + 3	5

10
� 1.1708,
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c2 =
5 − 3	5

10
� − 0.1708. �B3�

Note that this also covers the case of a �periodic� line with
n fixed spin pairs, in which no two adjacent spin pairs are
down.

To count the number of valid states, we introduce two
sets. First, Un is the set of valid states on rows of size n such
that the first spin in the row is an up-spin. We would like to
find �Un� recursively. We divide Un into two categories, rows
starting with two up-spins and rows starting with an up-spin
and then a down-spin. An up-spin followed by any member
of Un−1 is in the first category, and all members of the first
category must be of that form. If the row starts with an
up-spin and then a down-spin, then the third spin must be an
up-spin. Thus the second category is every row of the form
up-spin, down-spin, then a member of Un−2. So

Un = �↑ + Un−1� � �↑ + ↓ + Un−2� ⇒ �Un� = �Un−1� + �Un−2� .
�B4�

Now our second set is Tn, the set of all valid states on
rows of size n. Clearly Un�Tn, so we need only worry about
rows that begin with a down-spin. If a row begins with a
down-spin, its second spin must be an up-spin. Furthermore,
since the row loops around due to the periodicity of the
lattice, its last spin must be an up-spin. Thus rows that begin
in a down-spin, end in an up-spin, and have a member of
Un−2 in between to account for all remaining members of Tn.
So

Tn = Un � �↓ + Un−2 + ↑� ⇒ �Tn� = �Un� + �Un−2� = �Un−1�

+ �Un−2� + �Un−3� + �Un−4� ,

by Eq. �B4�

�Tn� = �Tn−1� + �Tn−2� .

With �Tn�=g�n�, we obtain the Fibonacci equation �Eq.
�B1�� for g�n�. The general solution of this recurrence is
given by Eq. �B2�, with � and 
 as the roots of the charac-

teristic polynomial of the equation. The base cases �by in-
spection� are g�1�=2 and g�2�=3, which provide the values
for the constants c1 and c2 that are given in Eq. �B3�.

APPENDIX C: CLOSED-FORM EXPRESSION FOR EQ. (24)

We show that

	 = �
d=0

m/2

R�m,d��d, �C1�

with R�m ,d� given by Eq. �17�, has the closed-form expres-
sion

	 = �1 + 	��m + �1 − 	��m. �C2�

We show this assuming that m is even �m=L /2 in Eq. �24�,
and L is a multiple of 4�. Using

�1 + 	��m = �
i=0

m �m

i
��	��i

= �
i=0

m/2 �m

2i
��	��2i + �

i=0

m/2−1 � m

2i + 1
��	��2i+1

and

�1 − 	��m = �
i=0

m �m

i
��− 	��i

= �
i=0

m/2 �m

2i
��	��2i − �

i=0

m/2−1 � m

2i + 1
��	��2i+1,

we obtain immediately

	 = 2�
d=0

m/2 �m

2d
��d = �1 + 	��m + �1 − 	��m. �C3�
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