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This investigation employs a hierarchical lattice and renormalization-group methodology to probe the effects
of competing crystal-field interactions in a Blume-Capel Ising system. Several phase diagrams have been
produced in temperature–crystal-field space as the strength of the competing crosslink crystal-field interactions
is varied. Each sink has been interpreted and critical exponents have been calculated for the higher-order
transitions.
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I. INTRODUCTION

The Blume-Capel model �1,2� is a spin-1 Ising model
with a Hamiltonian having bilinear �Jij� and crystal-field
��ij� interactions.

− �H = �
�ij�

Jijsisj − �
�ij�

�ij�si
2 + sj

2� with si = 0, � 1.

�1�

In addition to the typical Ising spin states �si�1�, this model
allows for the presence of nonmagnetic impurities with si
=0. Magnetic ordering is directly effected by the bilinear
interactions, whereas the concentration of nonmagnetic im-
purities, or annealed vacancies, is directly related to the
crystal-field interaction ��� /J�. Systems driven by fluctua-
tions in both magnetization and density are particularly well
suited for study using this model. Each term in the Hamil-
tonian in Eq. �1� involves summations over nearest-neighbor
�ij� pairs of our lattice unit structure including the crystal-
field interaction term. The reader should note that, tradition-
ally, the summation for the crystal-field contribution is over
the sites of the lattice; the current investigation has shifted
this summation to the bonds, for computational convenience,
with no loss of generality.

Ising systems, with density as an added degree of free-
dom, have been used to effectively study a wide range of
systems: the superfluid transition in He3-He4 mixtures �3�,
materials with mobile defects, structural glasses �4�, binary
fluids, binary alloys, frustrated percolation �5�, and frustrated
Ising lattice gas systems �6,7�. The Blume-Capel model, in
particular, has been used recently as a simple spin model for
probing the phenomenon of inverse melting. The reader is
directed to Schupper and Shnerb �8�, and references therein,
for a survey of some experimental realizations �e.g., poly-
mers, micelles, colloids, etc.� exhibiting inverse melting or
freezing.

The effects upon criticality and resulting phase diagrams,
due to underlying competing interactions in various Blume-
Emery-Griffiths �BEG� systems—these BEG systems also
having biquadratic exchange interactions—can become very
complex. Many novel types of competing interactions have
been the focus of previous studies using the Blume-Emery-
Griffiths model in conjunction with mean-field methods
�9–12� and/or renormalization-group �RG� techniques
�13–19�.

Renormalization-group methods have been employed to
probe the effects of competing bilinear interactions �14� in a
spin-1/2 Ising model, annealed vacancies in a spin glass �18�,
competing biquadratic interactions in a dilute Ising ferro-
magnet �19�, and competing crystal-field and biquadratic in-
teractions in a BEG ferromagnet �17�. Each of these studies
was conducted using a hierarchical lattice with tuning pa-
rameters allowing for the degree of frustration to be varied.

In other studies, the effects of quenched random bonds
�20� and quenched random fields �21� upon the criticality and
phase diagrams in BEG systems have been the primary fo-
cus. Branco et al. considered the effects of random crystal
fields using real-space RG �15,16� and mean-field approxi-
mations �15,22� for both Blume-Capel and Blume-Emery-
Griffiths model Hamiltonians, respectively.

The present investigation complements these earlier
works as it employs a hierarchical lattice and
renormalization-group methodology to probe the effects of
competing crystal-field interactions in a Blume-Capel Ising
system. In particular, system temperature ��1 /J�, concentra-
tion of nonmagnetic impurities ��� /J�, and strength of com-
peting crosslink crystal-field interactions are varied and
phase diagrams produced. In each, the phase sinks are inter-
preted and critical exponents are calculated for the higher-
order transitions.

II. HIERARCHICAL LATTICES AND
RENORMALIZATION-GROUP THEORY

Hierarchical lattices have been effectively employed to
study random-bond �23�, random-field �24�, spin-glass
�18,25�, frustrated �14,17,19�, directed-path �26�, and dy-
namic scaling �27� systems. The basic algorithm for generat-
ing a hierarchical lattice consists of two steps: defining a
basic generating unit consisting of spin sites and interactions
and repeatedly replacing each bond of the generating unit
with the generating unit itself. The result is a self-similar
infinite lattice. Figure 1 illustrates the construction of a ge-
neric hierarchical lattice. Figure 2 illustrates the construction
of a slightly more complex hierarchical lattice using a basic
generating unit with competing crosslink interactions
�28,29�.

These types of lattices are attractive to use as model sys-
tems since exact renormalization-group recursion relations
can be calculated. Exact relationships connecting the cou-
pling coefficients at two different length scales allow us to
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calculate phase diagrams and critical exponents very accu-
rately. Consequently, the results presented here may be con-
sidered exact on the infinite self-similar fractal lattice used,
or the results may stand as approximations into the impact of
competing crystal-field interactions on more realistic lattices.

In hierarchical models, such as those shown in Figs. 1 and
2, a renormalization-group solution removes internal degrees
of freedom as the length scale is changed. Essentially, renor-
malization corresponds to the construction process, in re-
verse �as shown in Fig. 1�. The internal degrees of freedom
eliminated with each renormalization in the current study are
represented by solid black dots in Figs. 2�a� and 2�b�, and,
represented by si and sj in Eq. �5�.

Demanding the partition function be preserved at each
length scale allows for the derivation of the recursion rela-
tions relating the coupling coefficients at the two length
scales. The effective interactions J� and �� are separated
by a distance l� which is b lattice constants in the original
system, where b is the length rescaling factor of the
renormalization-group transformation. Renormalization may
lead to nonzero biquadratic �K� interactions. Therefore, we
write

�l��J�,K�,��� = �l�J,K,�� �2�

with l� = bl , �3�

�l = �
s

exp�− �H� = � Rl�si,sj� �4�

with Rl�si,sj� = �
�ij�

exp�− �H� , �5�

�l� = �
s�

exp�− �H�� = � Rl�si�,sj�� �6�

with Rl�si�,sj�� = �
�ij�

exp�J�sisj + K�si
2sj

2 − ���si
2 + sj

2� + G̃�� ,

�7�

where G̃� is a constant used to calculate the free energy.
The penultimate intermediate step in deriving the actual

renormalization-group relationships involves equating those
contributions �Rl�si ,sj� and Rl��si ,sj�� to each partition func-
tion ��l� and �l�. Note, these contributions correspond to the
same configuration of end spins �si ,sj�. These contributions,
at the two different length scales, l and l�, are shown in Eqs.
�15�–�18�. These equations relate the interaction strengths at
the two length scales and algebraic manipulation reveals the
final forms J��J ,K ,��, K��J ,K ,��, and ���J ,K ,�� �see Sec.
V for more details�.

Repeated application of the recursion relations results in a
renormalization- group trajectory that flows to a sink. From
the nature of each trajectory and resulting sink, phase dia-
grams are mapped and transitions are characterized,

J� = RJ�J,K,�� , �8�

K� = RK�J,K,�� . �9�

�� = R��J,K,�� . �10�

At each sink the values of the coupling coefficients �J ,��
have reached fixed points, denoted by �J� ,���. Basins of
attraction in parameter space, corresponding to bulk phases,
flow to common fixed points �also known as sinks� �see
Table I�. The system is scale invariant in the vicinity of these
fixed points and as a consequence the thermodynamic prop-
erties are unaffected by renormalization. Mathematically, the
fixed points must satisfy the recursion relations such that

J� = RJ�J�,K�,��� , �11�

FIG. 1. Hierarchical lattices are generated by repeatedly replac-
ing each bond with the basic unit itself �28�.

FIG. 2. The specific hierarchical lattice used in this study has
two type of nearest-neighbor site interactions. Those with �J ,��
couplings �solid lines� and those with �J ,−�� couplings �jagged
lines� �reprinted from �17� with permission from Elsevier�.

TABLE I. Phases and corresponding sinks.

Phase Sink Characteristics

Paramagnetic I J→0 Dense sublattice I

�→−� Dilute sublattice II

Ferromagnetic I J→ +� Dense sublattice I

�→−� Dilute sublattice II

Paramagnetic II J→0 Dense sublattice II

�→ +� Dilute sublattice I

Ferromagnetic II J→ +� Dense sublattice II

�→ +� Dilute sublattice I
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K� = RK�J�,K�,��� , �12�

�� = R��J�,K�,��� . �13�

Our basic generating unit for our hierarchical lattice con-
sists of two types of components �see Figs. 2�a� and 2�b��
similar to Refs. �14,17–19,30�. Within each component, there
exist two qualitatively different types of nearest-neighbor
sites: those with interactions �J ,�� and those with interac-
tions �J ,−��. The presence of two qualitatively unique
nearest-neighbor interactions allows us to separate the hier-
archical lattice into two sublattices, distinguished from one
another by the type of interaction. Thus, each sublattice ac-
tually consists of the bonds rather than the sites themselves.

The degree of the competition between the two types of
interactions is tuned by varying the strength of the crosslink
interaction �Fig. 2�a��. The special case of p=0 yields the
hierarchical model equivalent �28� to the Migdal-Kadanoff
�31,32� decimation-bond moving scheme in two dimensions.
For this study, the strength of the crosslink interaction �p�, in
Fig. 2�a�, has been varied and the effects upon ordering have
been presented for p=1, 2, 4, and 8. The end spins in the
model are also allowed to interact via two connecting paths
that do not have this crosslinked feature, as shown in Fig.
2�b�. One type of path, consisting of m1 pairs of spins, has all
interactions of the same type, �J ,��, while the other, with m2
pairs of spins, has one nearest-neighbor pair that differs in
the crystal-field interaction, �J ,−��, from the rest of the con-
necting path. The motivation for including these different
types of connecting paths stems from our desire to allow the
end spins to interact via multiple paths, some with and some
without competing interactions.

The connectivity of the system is varied using two param-
eters, pA and pB, each representing the number of component
structures, of type A or type B, respectively, used in our basic
unit generator for the hierarchical lattice as shown in Fig.
2�c�. The present investigation has used connectivity param-
eters, �p ,m1 ,m2 , pA , pB�= �4,8 ,9 ,40,1�, that parallel those
used in Refs. �14,17–19,30�. An increase in the level of con-
nectivity beyond a critical threshold, before the effects of
competing interactions are observed, is consistent with pre-
vious studies of spin-glass systems and other system �29�
characterized by competing microscopic interactions.

III. PHASE TRANSITIONS

The phase diagrams produced in this investigation consist
of multiple basins of attraction, each corresponding to a bulk
phase each having its own sink to which repeated renormal-
ization drives the coupling coefficients. Each phase is under-
stood and interpreted by analyzing the nature of each respec-
tive sink. However, the nature of transitions between
neighboring basins is also of interest to the present study.
The order of each transition has been determined via careful
calculation of thermodynamic properties for our system �e.g.,
magnetization, density, bilinear coupling, etc.� as phase
boundaries are traversed in parameter space.

Each of these thermodynamic quantities is obtained via
numerical differentiation of the free-energy density
f—dimensionless Helmholtz �F� free energy per bond �Nb�.
The free-energy density consists of a sum of the contribu-
tions G��n� to the free-energy density due to the internal de-
grees of freedom eliminated during each renormalization.
The sum is over all applications of the renormalization-group
transformation with each implementation reducing the length
scale of the system by a factor of b and the number of spins
by a factor of bd,

f = −
�F

Nb
= �

n=1

�

b−ndG��n��J�n−1�,K�n−1�,��n−1�� . �14�

Using the free-energy density, the magnetization, density,
and bilinear correlations are calculated by measuring the
shift in the free-energy density with a small perturbation in
the magnetic field �i.e., m	 M

Ns
=

Nb

Ns

�f
�H �, crystal field �i.e., 	

	
Nb

Ns

�f
�� �, and bilinear interaction �i.e., �sisj�=s

Nb

Ns

�f
�J �, respec-

tively, where Ns is the number of sites. First-order transitions
will reveal themselves as discontinuities in any one of these
thermodynamic quantities, whereas higher-order transitions
will exhibit no such discontinuities but will yield critical
scaling exponents as discussed in Sec. IV.

IV. RENORMALIZATION RELATIONS

By equating the fixed end spin configuration contribu-
tions, Rl�si ,sj� and Rl��si ,sj�, to the partition function from
the two length scales �l and l��, we can write the following
for the type A structure shown in Fig. 2�a�:

Rl�1,1� = exp�− 4�� + 2 exp�− 2J − ��6 − p� + 2K� + 2 exp�2J − ��6 − p� + 2K� + exp�− ��8 − 2p� + J�− 4 + p�

+ K�4 + p�� + 2 exp�− ��8 − 2p� − Jp + K�4 + p�� + exp�− ��8 − 2p� + J�4 + p� + K�4 + p��

= exp�J� + K� − 2�� + G̃� = Rl��1,1� , �15�

Rl�1,0� = exp�− 2�� + 2 exp�− J − ��4 − p� + K� + 2 exp�J − ��4 − p� + K� + exp�− ��6 − 2p� + J�− 2 + p� + K�2 + p��

+ 2 exp�− ��6 − 2p� − Jp + K�2 + p�� + exp�− ��6 − 2p� + J�2 + p� + K�2 + p��

= exp�− �� + G̃� = Rl��1,0� , �16�
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Rl�1,− 1� = exp�− 4�� + 4 exp�− ��6 − p� + 2K� + 2 exp�− ��8 − 2p� − Jp + K�4 + p�� + 2 exp�− ��8 − 2p� + Jp + K�4 + p��

= exp�− J� + K� − 2�� + G̃� = Rl��1,− 1� , �17�

Rl�0,0� = 1 + 4 exp�− ��2 − p�� + 2 exp�− ��4 − 2p� − Jp + Kp� + 2 exp�− ��4 − 2p� + Jp + Kp� = exp�G̃� = Rl��0,0� .

�18�

Recursion relationships are derived, using the relationships
above �Eqs. �15�–�18��, relating the strength of the coupling
coefficients at the two different length scales �l and l�� for the
type A unit structure,

JA� =
1

2
ln

Rl��1,1�

Rl��1,− 1�
, �19�

K� =
1

2
ln

Rl��1,1�Rl��1,− 1�R1�
2 �0,0�

R1�
4 �1,0�

, �20�

�A� = ln
Rl��0,0�

Rl��1,0�
, �21�

G̃A� = ln Rl��0,0� . �22�

Recursion relations for type B unit structures involve a
similar process and technique, including identical forms rep-
resented in Eqs. �19�–�22�. However, the internal degrees of
freedom removed with each renormalization differ. There-
fore, the Rl�si ,sj� contributions for the type B unit structure
differ from the type A counterparts. Combining the contribu-
tions to the recursion relationships for both types of struc-
tures �type A and type B as shown in Fig. 2�, the renormal-
ization relationships become

J� = pAJA� + pBJB� , �23�

K� = pAKA� + pBKB� , �24�

�� = pA�A� + pB�B� . �25�

Exact relationships relating the coupling coefficients at
length scales, l and l�, allow for the precise calculation of
critical scaling exponents. This is accomplished by lineariz-
ing the recursion relations in the vicinity of the critical tran-
sition under investigation. That is,

J� − J� = TJJ�J − J�� + TJK�K − K�� + TJ��� − ��� , �26�

K� − K� = TKJ�J − J�� + TKK�K − K�� + TK��� − ��� ,

�27�

�� − �� = T�J�J − J�� + T�K�K − K�� + T���� − ��� ,

�28�

where TJJ= �J�
�J , T�J= ���

�J , etc. and are evaluated at the fixed
point in question. The linearized recursion relationships can
be represented as a recursion matrix, with elements TXY and
eigenvalues of the form


l = byl, �29�

where b is the length rescaling factor �in our case b=2� and
yl represents the corresponding critical exponent for the lth
eigenvalue. A similar, independent analysis is also conducted
for odd sector contributions, H and L.

V. RESULTS

Below we consider the effects of varying the temperature
��1 /J� and vacancy concentration ��� /J� present in a sys-
tem with competing crystal-field interactions. A series of
phase diagrams are produced, each corresponding to a differ-
ent level, via the tuning parameter p, of competing crystal-
field interaction. In each plane, bulk phases have been
mapped that are directly associated with basins of attraction
arising from analysis of each renormalization-group trajec-
tory. This investigation reveals four qualitatively unique re-
gions �or basins of attraction�, each sharing renormalization-
group trajectories that flow to common sinks �see Table I�.

Of the four unique basins of attraction, two structurally
unique phases arise in parameter space: type I and type II.
Type I phases �ferromagnet I and paramagnetic I� have a
greater density of occupied sites on sublattice I, in compari-
son to a relatively dilute sublattice II. Type II phases, on the
other hand, have a densely populated sublattice II and a
sparsely populated sublattice I. Recall, the two sublattices
are distinguished from one another by the type of couplings
present, �J ,�� for sublattice I and �J ,−�� for sublattice II. Of
the four phases identified, two are paramagnetic �paramag-
netic I and paramagnetic II� with bilinear �J� renormalization
trajectories flowing to zero indicative of no magnetic order-
ing. The flow of the crystal-field trajectory is the discrimi-
nating feature separating these two paramagnetic phases:
paramagnetic I with the sink having ��→−�� and paramag-
netic II with a flow for the crystal field ��→ +��. For each
paramagnetic phase there exists a ferromagnetic counterpart
corresponding to a nonzero sink for the renormalization-
group flow of the bilinear interaction �J→��, indicating
magnetic ordering.
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When exploring parameter space with internal crosslink
parameter p=1 �Fig. 3� we find both paramagnetic phases,
paramagnetic I and paramagnetic II, and the ferromagnetic I
phase. The paramagnetic II phase dominates at all tempera-
tures for larger values of the crystal-field interaction
��� /J�. At high temperatures, the paramagnetic II phase is
separated from its paramagnetic I counterpart via a line of
first-order transitions that terminates at a high-temperature
critical point C, which is a critical point, above which it is
possible to pass smoothly between the two phases as in the
standard liquid-gas phase diagram. This line of first-order
transitions separating the two paramagnetic phases has been
probed, and latent heats observed, using the density on both
sublattices �I and II� as the order parameter�s� for our system.
This transition is analogous to liquid-liquid transitions ob-
served in other systems. Sellitto �33� observed a similar first-
order boundary separating two paramagnetic fluid phases in
a study using mean-field models in conjunction with a
Blume-Capel system to probe the phenomenon of inverse
melting and freezing in structural glasses.

At lower temperatures, the paramagnetic II phase mag-
netically orders to the ferromagnetic I phase driven by a
decreasing crystal-field interaction ��� /J�, corresponding to
a smaller density of nonmagnetic impurities present. This
same ferromagnetic I phase disorders to the paramagnetic I
phase at high temperatures ��1 /J=70� via a second-order
phase transition. This line of second-order transitions termi-
nating on the line of first-order transitions at a critical end
point is similar to that topology observed by Hoston and
Berker �9� for the case of uniform J, K, and � with K /J=5,
using mean-field theory.

As we increase the internal connectivity to p=2 �Fig. 4�
we see significant changes in the underlying phase diagram.
The ferromagnetic I phase remains, as does its magnetically
disordering transition, second order, at higher temperatures

�1 /J�56� to the paramagnetic I phase. However, a second
disjoint ferromagnetic phase arises in parameter space, ferro-
magnetic II, for positive values of the crystal-field interac-
tion. This ferromagnetic II phase also disorders via a line of
second-order transitions at a temperature �1 /J�56� to its
paramagnetic II counterpart. As the crystal-field interaction
is varied from positive values to negative values the system
undergoes a first-order transition from the ferromagnetic II
phase to the ferromagnetic I phase. This crystal-field-driven
transition corresponds to a redistribution of the nonmagnetic
impurities present. Positive crystal-field interactions are con-
ducive to ordering on sublattice II since the density of occu-
pied sites is high, whereas, negative crystal-field interactions
result in larger densities of occupied sites on sublattice I.
Finally, the topology at the high-temperature crystal-field-
driven first-order transition between the two paramagnetic
phases persists for p=2.

A further increase in the internal crosslink interactions to
p=4 �Fig. 5� reveals significant changes to the phase dia-
gram, yet again. The ferromagnetic I phase is now present
only at low temperatures. A low-temperature second-order
transition separates the paramagnetic I and ferromagnetic I
phases. In this model, the paramagnetic I phase orders to the
ferromagnetic II phase via a first-order transition that is tra-
versed as the crystal-field interaction increases from negative
� /J to positive � /J. Lines of first-order transitions persist at
low temperatures that separate the two ferromagnetic phases
and terminates at the multicritical point P. Note that the high-
temperature topology separating the two paramagnetic
phases remains, as does the second-order transition from the
ferromagnetic II to its paramagnetic II counterpart.

In our last phase diagram �Fig. 6�, we explore the effects
of varying temperature and crystal-field interactions upon or-
dering when increasing the magnitude of the internal

���

����

����

����

����

����

����

	���


���

����

���� ���� ��� ��� ���


������������ ������������ ∆��

�
�
�

 
�
��

�!
��

�
��

Paramagnetic I

Ferromagnetic I

Paramagnetic II

Phase boundary
terminates at high
temperature
critical point C

E

FIG. 3. Parameter space, temperature ��1 /J� versus
vacancy concentration ��� /J� with connectivity parameters
�p ,m1 ,m2 , pA , pB�= �1,8 ,9 ,40,1�, depicting different basins of at-
traction and associated phases with critical end point �E� and critical
point �C�. Solid lines represent second-order transitions, whereas
dashed lines represent first-order transitions.
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���

����
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�
�
�

 
�
��
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��

�
�� Paramagnetic IIParamagnetic I

Ferromagnetic I Ferromagnetic II
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terminates at high
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M

FIG. 4. Parameter space, temperature ��1 /J� versus
vacancy concentration ��� /J� with connectivity parameters
�p ,m1 ,m2 , pA , pB�= �2,8 ,9 ,40,1�, depicting different basins of at-
traction and associated phases with multicritical point �M� and criti-
cal point �C�. Solid lines represent second-order transitions,
whereas dashed lines represent first-order transitions.
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crosslink interactions to p=8. Qualitatively, the phase dia-
gram is very similar to the case of p=4. However, a notice-
able difference is the size of the low-temperature ferromag-
netic I region. An increase in internal connectivity parameter
p drives this region to diminish in size.

In both of these last two phase diagrams, Figs. 5 and 6,
corresponding to internal connectivities p=4 and p=8, there
exists a small region, at low temperatures, in parameter space
at which the system orders from the paramagnetic I phase to

its ferromagnetic I counterpart with an increase in tempera-
ture. This ordering transition, with an increase in tempera-
ture, seems to be in apparent contradiction to the expected
increase in entropy. It appears that this may be an example of
the phenomenon of inverse freezing. Physically our system
consists of two sublattices �type I and type II�. If ordering
unexpectedly occurs �i.e., entropy decreases� with an in-
crease in temperature on one sublattice �in this case sublat-
tice I�, then this must be compensated for by an increase in
entropy on the other sublattice �in this case sublattice II�. The
free energy of the entire system consists of the contributions
from both types of sublattices.

In each plane in parameter space considered in this study,
lines of critical transitions have been probed while maintain-
ing five scaling fields associated with J, K, �, H, and L.
Linearization of the recursion relations, as discussed in Sec.
IV, yields a recursion matrix from which eigenvalues and
subsequent critical exponents are calculated. For the case of
internal connectivity with p=1 the recursion matrix for the
high-temperature paramagnetic I/ferromagnetic I second-
order transition was found to have four relevant eigenvalues,

i= 
12.32,5.00,2.00,2.00�, corresponding to critical scal-
ing exponents of yi= 
3.62,2.32,1.00,1.00�, respectively,
and an irrelevant eigenvalue with 
5=−0.32. In the p=2
case, both high-temperature second-order transitions, ferro-
magnetic I/paramagnetic I and ferromagnetic II/
paramagnetic II transitions, yield four relevant eigenvalues
with 
i= 
13.40,6.00,2.00,2.00�, corresponding to critical
scaling exponents of yi= 
3.74,2.58,1.00,1.00�, and an irrel-
evant eigenvalue with 
5=0.60

An increase in the strength of the internal connections
with p=4 drives the critical line separating the ferromagnetic
I and paramagnetic I phases to low temperatures. Analysis of
the recursion matrix along this critical line yields three rel-
evant eigenvalues, 
i= 
9.15,4.29,1.48�, corresponding to
critical scaling exponents of yi= 
3.19,2.10,0.566�, respec-
tively, and two irrelevant eigenvalues with 
4=0.755 and

5=0.466.

VI. SUMMARY

In summary, this investigation employs a hierarchical lat-
tice and renormalization-group methodology to probe the ef-
fects of competing crystal-field interactions in a Blume-
Capel Ising system. Several phase diagrams have been
produced in temperature–crystal-field space as the strength
of the competing crosslink crystal-field interactions is varied.
Each sink has been interpreted and critical exponents have
been calculated for the higher-order transitions.

This investigation found four different phases cor-
responding to four unique basins of attraction for the
renormalization-group trajectories. Two paramagnetic phases
�paramagnetic I and paramagnetic II� are separated at high
temperatures by a first-order phase boundary that terminates
at a high-temperature critical point C. This transition is not
present in the original Blume-Capel model; however, a simi-
lar transition has been observed by Sellitto �33�. The order-
ing transitions from paramagnetic I �II� to ferromagnetic I
�II� were found to be second order in each case they were
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FIG. 5. Parameter space, temperature ��1 /J� versus
vacancy concentration ��� /J� with connectivity parameters
�p ,m1 ,m2 , pA , pB�= �4,8 ,9 ,40,1�, depicting different basins of at-
traction and associated phases with critical end points �E and P� and
critical point �C�. Solid lines represent second-order transitions,
whereas dashed lines represent first-order transitions.
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FIG. 6. Parameter space, temperature ��1 /J� versus
vacancy concentration ��� /J� with connectivity parameters
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traction and associated phases with critical end points �E and P� and
critical point �C�. Solid lines represent second-order transitions,
whereas dashed lines represent first-order transitions.
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observed. The topography, presence, and location of these
transitions are critically dependent on the internal connectiv-
ity parameter p. The phase boundary separating the paramag-
netic I and ferromagnetic II phases, and also paramagnetic II
and ferromagnetic I phases, was found to be first order in
nature. In a small range in parameter space, a region of re-
entrance was found that corresponds to the system undergo-
ing inverse freezing similar to that found in �8,33�. Thus, the
hierarchical spin system presented here may provide another
variation of the Blume-Capel model for further probing these

counterintuitive ordering transitions. In general, the results of
this work offer additional insights into ordering in systems
characterized by competing interactions that affect both the
density and distribution of nonmagnetic impurities.
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