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Lévy flights and fractional Brownian motion have become exemplars of the heavy-tailed jumps and long-
ranged memory widely seen in physics. Natural time series frequently combine both effects, and linear frac-
tional stable motion �lfsm� is a model process of this type, combining �-stable jumps with a memory kernel.
In contrast complex physical spatiotemporal diffusion processes where both the above effects compete have for
many years been modeled using the fully fractional kinetic equation for the continuous-time random walk
�CTRW�, with power laws in the probability density functions of both jump size and waiting time. We derive
the analogous kinetic equation for lfsm and show that it has a diffusion coefficient with a power law in time
rather than having a fractional time derivative like the CTRW. We discuss some preliminary results on the
scaling of burst “sizes” and “durations” in lfsm time series, with applications to modeling existing observations
in space physics and elsewhere.
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I. INTRODUCTION

Fractional kinetics is finding increasingly wide applica-
tion to physics, chemistry, biology, and interdisciplinary
complexity science �1–6�. One reason for this is the link
between “strange” kinetics and observed non-Brownian
anomalous diffusion, motivating the use of fractional dy-
namical models of transport processes, including those based
on fractional calculus. Scalas et al. �5� gave numerous appli-
cations; we will just note space plasmas �7�, magnetically
confined laboratory plasmas �8–11�, fluid turbulence �4�, and
the travels of dollar bills �12�.

Equally widespread in its application, and evolving in par-
allel with the theory of anomalous diffusion, is the theory of
anomalous time series. The corresponding models, particu-
larly in the mathematics and statistics literature, have often
been based on stable self-similar processes �13–15�. Stability
here means the property whereby the shape of a probability
density function �pdf� remains unchanged under convolution
to within a rescaling �cf. Chaps. 3 and 4 of �16��. It is an
attractive feature in modeling, particularly when one antici-
pates that a signal represents a sum of random processes. In
particular stable self-similar processes, a development in the
wider field of stochastic processes �17,18�, can model two
effects which are often seen in real data records. The first—
Mandelbrot’s “Noah” effect �19�—describes non-Gaussian
“heavy-tailed” pdfs, while the second—his “Joseph” effect
�20�–manifests itself as long-ranged temporal memory. The
many applications have included hydrology �21�, finance
�19�, magnetospheric activity as measured by the auroral in-
dices �22,23�, in situ solar wind quantities �23�, and solar
flares �24�.

The existence of two rich parallel, but intersecting litera-
tures means that it is not yet completely known which tech-
niques from one will apply to a given problem in the other. It
is, for example, not always clear a priori what type of kinetic
equations will apply in a given context. The right class of
kinetic equation for reversible microphysical transport need
not also be the right one for an evolving time series taken
from a macroscopic variable. The problem of model choice
is an important and timely one, in both physics and more
general complexity research. Because different models can
predict subtly different observable scaling behaviors, distin-
guishing them may require measuring several exponents, as
any individual exponent may be identical across several
models, a point emphasized by Lutz �25�.

It is now increasingly recognized that much natural data
are of the type that Brockmann et al. �12� dubbed “ambiva-
lent.” In such systems heavy-tailed jumps and long-ranged
temporal memory compete to determine whether transport is
effectively superdiffusive or subdiffusive. The ambivalent
process �ap� they used for illustration, and fitted to data, was
the well-studied fully fractional continuous-time random
walk �CTRW� �3� which incorporates both effects via frac-
tional orders of the spatial and temporal derivatives in its
kinetic equation. Zaslavsky et al. �26,27� also advocated use
of the same process in space physics for modeling the auroral
index time series. They explicitly contested �27� the applica-
bility of a time-series model �23� based on a self-similar
stable process—linear fractional stable motion �lfsm�
�13,14�—in this role. We note that, rather than being purely a
mathematical abstraction, lfsm has been linked to physics via
the propagation of activity fronts in extremal models �28�. A
comparison of these two approaches, leading to better under-
standing of their structure and their similarities and differ-
ences, thus seems to us to be highly topical. It will be the
first of two main topics of this paper. Although we are fully
aware that the kinetic equation we obtain on its own cannot
fully specify a non-Markovian process and, importantly, will
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not be unique to lfsm, we nonetheless believe that our com-
parison of the kinetic equations for the two paradigms is of
value, particularly as a source of physical insight �see also
Secs. 1 and 2 of �29��.

To make the comparison we first briefly recap �Table I�
the main kinetic equations corresponding to the modeling of
time series by stable processes and of anomalous diffusion
by the CTRW. In particular we highlight �following Lutz
�25�� the difference between fBm and the ftp, which has
sometimes led to confusion, at least in the physics and com-
plexity literature �e.g., �23��. We illustrate the potential value
of this comparison with reference to a surprising gap in the
physics literature, the absence of a kinetic equation corre-
sponding to lfsm, analogous to the one given for fBm by
Wang and Lung �30�. We give a simple derivation by direct
differentiation using the characteristic function. The kinetic
equation can be obtained by methods as diverse as a trans-
formation t�H of the time variable in the space fractional
diffusion equation, and a path integral �31�.

Our second main topic is the potential relevance of lfsm
to physics as a toy model for “calibrating” diagnostics of
intermittency �cf. �32��. As a frequent attribute of nonequi-
librium and nonlinear systems, intermittency has been a par-
ticular stimulus to physicists and time-series modelers �33�.
In particular the paradigm of self-organized criticality �SOC�

�33� has been one framework for this, embodying the hy-
pothesis of avalanches of activity in nonequilibrium complex
systems. We investigate the scaling of intermittent bursts in
lfsm, using the burst size and duration measures which have
very often been used as direct diagnostics of SOC. Such
measures have been previously studied on, among many oth-
ers, magnetospheric and solar wind time series �34� as well
as, for example, magnetohydrodynamic �MHD� simulations
of turbulence �35–37�. We follow several earlier conjectures
�22,34,37–39�, and build on the heuristic scaling argument
given by Kearney and Majumdar �40�, to suggest that lfsm
could indeed be one candidate model for observed power
laws in such bursts. We test our arguments with numerics
using the algorithm of Stoev and Taqqu �41�. We confirm the
earlier results of Carbone et al. �38� and the more recent
work of Rypdal and Rypdal �42�. These papers considered
just the �=2, fBm case, using a running average threshold
and a fixed threshold, respectively. The scaling arguments of
Carbone et al. �38� were independent of the type of threshold
and with hindsight should also be expected to hold for the
constant threshold case that we study.

We find numerically, however, that for lfsm our simple
scaling argument, while giving a good approximation to the
dependence of the burst exponents on the self-similarity ex-
ponent H as � is initially reduced from 2, eventually be-
comes much less accurate as � reaches 1. We conclude by
offering some suggestions as to the reasons for this, and
describing future work.

II. KINETIC EQUATION OF lfsm

A. Limit theorems and stochastic processes

In Table I we collect the kinetic equations for the pdf p
= p�x , t� of some processes which have been proposed in the
various literatures on time-series analysis and anomalous dif-
fusion. For clarity we concentrate on the simplest examples
from the family of stable processes and from the CTRW. In
the table the �statistical� self-similarity exponent H is defined
using dilation in time where �t goes to ��t,

x���t� = �Hx��t� , �1�

and the equality is in distributions.
The fourth row of Table I corresponds to BWBm and the

fifth row to the familiar diffusion equation where we have
abbreviated � /�t to �t. BWBm is of course a manifestation of
the central limit theorem �CLT� �43,44�. The solution p�x , t�
is of Gaussian form with width spreading as t1/2 and its char-
acteristic function is also a Gaussian in k ��exp�−�k�2t�� with
stability exponent �=2.

B. Anomalous diffusion and the extended
central limit theorem

Similarly, the fifth row of Table I corresponds to relaxing
the assumption of finite variance, by allowing a stability ex-
ponent 0���2. The corresponding pdfs p��x , t� are the
�-stable class, with power-law tails decaying as x−��+1�. Fol-
lowing Mandelbrot we refer to these as “Lévy flights” or
ordinary Lévy motion.

TABLE I. Kinetic equations for the main classes of process used
to study anomalous time series and transport beyond the Bachelier-
Wiener-Brownian paradigm. Ordinary Lévy motion �oLm� param-
etrized by a stability exponent � relaxes the finite-variance assump-
tion of the central limit theorem. The fractional time process �ftp�
and the ap, i.e., the fully fractional continuous-time random walk,
add a fractional derivative of order �H to the kinetic equations for
Bachelier-Wiener Brownian motion �BWBm� and oLm, respec-
tively. A different way of introducing temporal memory effects is
via stable self-similar processes with memory kernels, fractional
Brownian motion �fBm�, and lfsm, respectively. Although not fully
specified by them, the stable processes nonetheless have kinetic
equations with time-dependent diffusion coefficients. The kinetic
equation for lfsm is highlighted. In the self-similar stable processes
the self-similarity parameter H depends on a memory exponent d
and on the stability exponent � via H=1 /�+d, and in the CTRW
case, by contrast, on the standard memory exponent, d�=�H. In all
cases there is a coefficient D with appropriate dimensionality on the
left-hand side which we have set to 1. In the BWBm case this is
simply the familiar diffusion coefficient.

� H

Stable process CTRW

H=1 /�+d d�=�H

�=2 H=1 /2 BWBm

�2p=�tp

0���2 H=1 /� oLm

��p=�tp

�=2 0�H�1 fBm ftp

2Ht2H−1�2p=�tp �2P=�t
�Hp

0���2 0�H�1 lfsm ap

�Ht�H−1��p=�tp ��p=�t
�Hp
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The corresponding kinetic equation

�p��x,t�
�t

=
��p��x,t�

� �x��
�2�

has a symmetric Riesz fractional derivative in space,
�� /��x��, which in Table I is given as three dimensional and
abbreviated to ��. The Riesz derivative is a pseudodifferen-
tial operator with symbol −�k�� and p��x , t� has characteristic
function p̂��k , t�=exp�−�k��t�. Unlike the cases we now go
on to discuss, the kinetic equation for oLm is still unambigu-
ously Markovian and an expression of the extended CLT.
Due to infinite divisibility, in this specific case the pdf
p��x , t� alone is enough to uniquely characterize the stochas-
tic process, which we will call Z��t�.

C. Relaxing independence through temporal memory:
Fractional Brownian motion versus the fractional time process

The seventh row of Table I describes the case when the
independent and identically distributed �iid� assumption is
relaxed, rather than the finite-variance one. This case is more
subtle than the previous two. Relaxing independence is one
way to break the iid assumption and is the situation we con-
sider. It can be done in several ways, we will discuss just
two.

One of the ways which have been employed in the CTRW
formalism is to take a power-law pdf of waiting times p���
��−�1+�H� �45�. This became known as the fractional time
process �see also �25��. The waiting times themselves are still
iid, but their infinite mean is assumed to be a consequence
of dependence due to microscale physics. The kinetic equa-
tion that corresponds to the ftp �25,46,47� can be seen in
the fourth column of the eighth row in Table I. We may
define a temporal exponent by d�=�H. The fractional deriva-
tive in time, of order �H=d�, corresponds physically to the
power law in waiting times. The prime indicates that this
exponent is not identical to the memory parameter d in the
case of fBm or fractional autoregressive integrated moving
average �FARIMA� processes �24�. d� runs from 0 to 1 and
is, for example, the same as the temporal exponent defined
by Brockmann et al. �12� �their “�;” our � is their “�”�. In
all the following cases D is no longer the Brownian diffusion
constant but simply ensures dimensional correctness in a
given equation. Note that we do not include the term describ-
ing the power-law decay of the initial value here or in sub-
sequent CTRW equations �it is retained and discussed in
�46�; see their Eq. 40�.

Another way to relax independence is to introduce global
long-range dependence, as pioneered by Mandelbrot and Van
Ness �21�. They used a self-affine process with a memory
kernel, originally due to Kolmogorov �17� and called by
them “fractional Brownian motion.” Contradictory state-
ments exist in the physics literature concerning the equiva-
lent kinetic equation for fBm corresponding to that for ftp. It
has sometimes been asserted �1,23� that the equations are the
same, while ftp has sometimes been labeled “fBm” �cf. the
supplementary material in �12��. However the solution of the
equation for ftp is now known to be non-Gaussian �5,46�.
Conversely the pdf of fBm is by definition �48,49� Gaussian

but with a variance which “stretches” with time as t2H. The
correct kinetic equation for fBm must thus �25� be local in
time. It is shown in row 8, column 3 of Table I. Given, to our
knowledge, first by Wang and Lung �30�, it can be seen by
trial solution to have a solution of the required form.

The difference between ftp and fBm is striking, in that
although both include temporal correlations, the kinetic
equation for the ftp is nonlocal in time, while that for fBm is
local. This distinction disappears when we go to a Langevin
description, where both processes explicitly require frac-
tional derivatives �25�. We are grateful to our referee for
pointing out that the kinetic equation for fBm also corre-
sponds to a transformation of time to t2H in the ordinary
diffusion equation for BWBm, which we may contrast with
the fractional derivative in time in the kinetic equation for
ftp. We remark that if one rescales BWBm with time, the
resulting increments would not be stationary, whereas fBm
with the same kinetic equation has stationary increments.
This illustrates the point that fBm shares its kinetic equation
with several other stochastic processes and so a full specifi-
cation of the process thus requires more than the kinetic
equation.

D. Combining memory with infinite variance:
“Ambivalence” versus lfsm

1. “Ambivalent processes” and the fully fractional
continuous-time random walk

Questions similar to those in Sec. II C have been asked in
the physics literature about the natural generalization of the
fractional time process to allow for both Lévy distributions
of jump lengths as well as power-law-distributed waiting
times. The resulting fully fractional kinetic equation is frac-
tional in both space and time,

��H

�t�H pap�x,t� = D
��

� �x��
pap�x,t� , �3�

and was used by Brockmann et al. �12� to exemplify the
“ambivalent process.” Analogously as with the ftp, the solu-
tion for this process is known �50� not to be a Lévy-stable �or
stretched Lévy-stable� distribution but rather a convolution
of such distributions.

2. Self-similar stable alternative to the ap:
Linear fractional stable motion

Analogously as with the generalization of the ftp to the
ambivalent process, there are several H-self-similar Levy
symmetric �-stable processes, enumerated in �51�. We here
consider the simplest one, lfsm, which generalizes linear
fractional Brownian motion to the infinite-variance case. We
emphasize that lfsm is, for example, not the fractional Levy
motion referred to by �52�. We can describe lfsm through a
stochastic integral:

SH�t��,b1,b2� = �
−	

	

KH,��t − s�Z��ds� �4�

where the memory kernel KH,� is given by
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KH,� = b1��t − s�+
H−1/� − �− s�+

H−1/��

+ b2��t − s�−
H−1/� − �− s�−

H−1/�� . �5�

Burnecki et al. �53� showed how mixed linear fractional
stable motion can be obtained from Z��t� using the Lamperti
transformation �14,54�, a more general result which enables
any self-similar process to be obtained from its correspond-
ing stationary stochastic process. We are concerned here,
however, simply with obtaining the kinetic equation. This
can be found by direct differentiation of the characteristic
function with respect to time �cf. �55��.

As with the simpler stable processes the pdf plfsm of lfsm
can be expressed via the Fourier transform of the character-
istic function �e.g., �13,56��,

plfsm�x� =
1

2

� e−ikx exp�− �̄�k��t�H�dk . �6�

We see that the characteristic function p̂�k�=exp�−�̄�k��t�H�
generalizes the oLm case. Because � is no longer equal to
1 /H the effective width parameter now grows like t�H. The
characteristic function has the correct fBm limit because
when �=2, we see for fBm at any given t that it is a Gauss-
ian with width growing as t2H. We can also see �28� that lfsm
is a general stable self-affine process by taking k�=k�H,
which gives plfsm�x�= t−H���x / tH�, a stable distribution of in-
dex � and a prefactor ensuring H-self-similarity in time.

Direct differentiation of this pdf gives

�

�t
plfsm = − �H

�̄

2

t�H−1�

−	

	

e−ikx�k��exp�− �̄�k��t�H� , �7�

which can be recognized as

�

�t
plfsm = �Ht�H−1D

��

�x� plfsm �8�

using the definition of the Riesz derivative in Sec. II B. Sur-
prisingly the kinetic equation of lfsm seems to not have been
given explicitly before in either the physics or mathematics
literature. Krishnamurthy et al. �28� quoted an equation of
motion for integrated activity in lfsm. This has a more com-
plicated structure, presumably due to additional memory ef-
fects arising from the integration process.

We note that �Ht�H−1=�tt
�H. This factor arises because

Eq. �8� could also be obtained from space fractional diffusion
equation �2� by a simple transformation of the time variable:
t is replaced by t�H. The appropriate limits may be easily
checked; in particular �=2 gives the kinetic equation of
fBm.

We also remark that lfsm should be a special case of the
nonlinear shot noise process studied by Eliazar and Klafter
�57�, which may allow further generalization of the kinetic
equation we have presented.

III. lfsm AS A MODEL OF INTERMITTENT BURSTS

Intermittency is a frequently observed property in com-
plex systems, and can be studied within several paradigms.
One such, of continuing interest, has been Bak et al.’s SOC,

a key postulate of which is that slowly driven, interaction-
dominated, thresholded dynamical systems will establish
long-ranged correlations via “avalanches” of spatiotemporal
activity. The avalanches are found to obey power laws in size
and duration. In consequence, many papers have sought to
measure “bursts” of activity in natural time series. This has
most typically been done by means of a fixed threshold. The
duration � and size s of the bursts are then defined as the
interval between the ith upward crossing time �ti� and the
next downward crossing time �ti+1� of the threshold, and the
integrated area above the threshold between these times, re-
spectively.

The search for SOC in the magnetosphere and solar wind
has used this approach among others �e.g., �22,34��, while
burst exponents have also been calculated in MHD turbu-
lence models �35–37�. The similarity of observed burst size
and duration distributions in solar wind and magnetospheric
quantities to those from models of turbulence and SOC led
Freeman et al. �34�, Watkins �22�, and Chapman et al. �58� to
conjecture that, at least qualitatively, such behavior might
simply be an artifact of a self-similar �or multifractal� time
series, rather than unique to a given mechanism. In particular
this was in distinction to the idea that one could use the
presence or absence of power laws in waiting times defined
similarly as the above to distinguish between SOC and tur-
bulence. One of the present authors thus elsewhere �22� ad-
vocated the testing of avalanche diagnostics using control-
lable self-similar models. Similar points were by Carbone et
al. �38� for fBm and Bartolozzi �39� for the multifractal ran-
dom walk.

In this section we thus present a preliminary investigation
of the ability of lfsm to qualitatively mimic SOC signatures
in data. The kinetic equation we have derived is not unique
to lfsm and is insufficient to specify all its properties, so in
what follows we have used a numerical simulation of the
process SH using the algorithm of Stoev and Taqqu �41� and
analytic arguments based on those of Kearney and Majumdar
�40� to predict the scaling of the tail of the pdf of burst size
s and duration � in lfsm for large s ,�. Carbone et al. �38�
gave a similar argument to ours, but unlike us restricted its
application to the fBm case. Rather than estimate the expo-
nents from plots of the numerically simulated empirical pdf
or complementary cumulative distribution function �cdf�, we
have elected to use maximum-likelihood estimation, as
implemented in the algorithms of Clauset et al. �59�. De-
tailed comparison with measured experimental exponents is
not attempted at this stage and will be the subject of future
work.

Dealing first with durations, we make use of the fact that
for a fractal curve of self-similarity exponent H and dimen-
sion D=2−H, the points �ti	 have dimension 1−H. In con-
sequence the probability of crossings over a time interval �
goes as �1−H, giving an interevent probability scaling like
�−�1−H�. The pdf for interevent intervals in the isoset thus
scales as

p��� � ��, �9�

where
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� = 2 − H , �10�

giving the same exponent of 3/2 as for the first-passage dis-
tribution in the Brownian case. For symmetric processes this
scaling is retained by the subset of the isoset that corre-
sponds to burst “durations” �e.g., �34,38��. We expect this to
be independent of the detailed nature of the model and so
should, in particular, also apply to lfsm.

To establish the behavior of burst “sizes” we note first that
Kearney and Majumdar �40� considered the zero-drift
BWBm case. Rather than their full analytic treatment, we
recap their heuristic argument for a burst size �area� A de-
fined using the first-passage time tf. This may then be
adapted to burst sizes defined using isosets, and thence to
lfsm. Kearney and Majumdar �40� first noted that for BWBm
the instantaneous value of the random walk y�t�� t1/2 for
large t. Then, defining A as

A = �
ti

tf

y�t��dt�, �11�

the integration implies that large A scales as tf
3/2. Simple

inversion of this expression implies that tf must scale as tf
�A2/3. We independently have the standard result for first-
passage time for BWBm: P�tf�� tf

−3/2. To get P�tf� as a func-
tion of A, i.e., P(tf�A�) one needs to insert the expression for
tf as a function of A in above equation, and in addition will
need a Jacobian. After these manipulations P�A��A−4/3 �40�.

In the zero-drift but non-Brownian case we will still argue
that y�t�� tH for large t. As our application uses the above-
mentioned isoset-based burst size s rather than those based
on first-passage times, we define s as

s = �
ti

ti+1

y�t��dt�. �12�
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FIG. 1. �Color online� Same as Fig. 3, dependence of duration
exponent � on H, but one trial only.
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FIG. 2. �Color online� Same as Fig. 4, dependence of size ex-
ponent 
 on H, again one trial only.
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FIG. 3. �Color online� Dependence of exponent � for pdf p���
of a burst of duration � on H for simulated lfsm in the fBm, �=2
limit. The average of seven trials was taken.
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FIG. 4. �Color online� Dependence of exponent 
 for the pdf
p�s� of a burst of size s on H for simulated lfsm in fBm limit. Again
an average of seven trials was taken.
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The rest of the argument goes as before but using Eq. �9�.
We find

P�s� � s
, �13�

where


 = − 2/�1 + H� , �14�

which we can check in the Brownian case where H=1 /2 to
retrieve P�s��s−4/3.

The same exponents, � and 
, but defining the bursts
using a detrended fluctuation analysis �DFA�-like moving av-
erage rather than a fixed threshold, were earlier investigated,
for the fBm case only, by Carbone et al. �38�. We have used
the same notation, and the format of our figures for the fBm
and lfsm cases has been chosen to allow comparison with
theirs. They found the same dependences of � and 
 on H
that we have in Eqs. �10� and �14� above, which is intuitively

reasonable on hindsight because the choice of fixed or run-
ning threshold should not change the asymptotic scaling be-
havior. For a fixed threshold the burst size and duration ex-
ponents for fBm were also very recently presented in �42�.

A time series of 26 768 points of lfsm was simulated for
each �H ,�� pair, from which the burst size data set was
obtained. We then used MLE to estimate the exponents, on
the assumption of a power-law pdf. Numerics confirm that
using our fixed threshold definition the expressions obtained
by earlier authors for � and 
 describe fBm reasonably well,
although the scatter, from a single trial in the case of each
value of � and 
 shown in Figs. 1 and 2, seems relatively
high. We reduced the scatter in Figs. 3 and 4 by plotting the
average of the exponents over a small number �here 7� of
trials. The assumption that burst size s grows with duration �
used in the heuristic derivation above can be seen to be rea-
sonable for the fixed threshold, fBm case in Fig. 5.

Perhaps more surprisingly the expressions also seem to
hold reasonably well when the stability exponent is reduced,
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FIG. 5. �Color online� Dependence of exponent � on H in fBm
case. � captures growth of burst size s with duration �.
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FIG. 6. �Color online� Same as Fig. 3 �burst duration exponent
� vs H; seven trials�, but for �=1.8.
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FIG. 7. �Color online� Same as Fig. 4 �burst size exponent 
 vs
H; seven trials�, but for �=1.8.
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FIG. 8. �Color online� Same as Fig. 3 �burst duration exponent
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first to 1.8 �Figs. 6 and 7� and then to 1.6 �Figs. 8 and 9�.
Again we note that these are averages of seven trials in each
case. By the �=1 case presented in Figs. 10 and 11, how-
ever, the expressions can clearly be seen to fail. In this pa-
rameter regime, for any given H, they are seen to consis-
tently underestimate both the burst exponents. It has been
suggested to us that this could be because yH ceases to be a
good estimate of characteristic displacement when the incre-
ments of the walk are very heavy tailed �60�, but we have so
far been unable to find a suitable alternative expression. We
also note that if the burst sizes and durations are not asymp-
totically distributed as power laws, then the departure from
pure scaling must be incorporated into the MLE, or exponent
estimates will be biased. Such MLEs exist �59�, but we have
left investigation of these issues to future work.

IV. CONCLUSIONS

In this paper we studied the question of whether one
would expect the same equation to describe a time series as
an anomalous diffusive process. A codification of diffusion-
like equations showed that a kinetic equation was “missing”
from the literature, the one corresponding to lfsm. We gave a
simple derivation for it by direct differentiation of the well-
known characteristic function of lfsm. We then made a pre-
liminary exploration of how lfsm could model the burst sizes
and durations previously measured on magnetospheric and
solar wind time series. We made simple scaling arguments
building on a result of Kearney and Majumdar �40� to show
how lfsm could be one candidate explanation for such “ap-
parent SOC” behavior and made preliminary comparison
with numerics. These arguments fail when the tails of the pdf
of increments become very heavy, and further work is
needed on this topic.

In future we also plan to consider other stochastic pro-
cesses, both FARIMA �cf. �24��, nonlinear shot noises, and
multifractals, to allow generalization of the above initial in-
vestigations into burst size and duration. The prevalence of
natural processes showing heavy tails and/or long-ranged
persistence suggests a relevance well beyond our initial area
of application in space physics.
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