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We analyze fluctuation-dissipation relations in the backgammon model: a system that displays glassy be-
havior at zero temperature due to the existence of entropy barriers. We study local and global fluctuation
relations for the different observables in the model. For the case of a global perturbation we find a unique
negative fluctuation-dissipation ratio that is independent of the observable and which diverges linearly with the
waiting time. This result suggests that a negative effective temperature can be observed in glassy systems even
in the absence of thermally activated processes.
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I. INTRODUCTION

Understanding nonequilibrium systems remains one of the
major open problems in modern physics. In the last years
many theoretical and experimental studies have focused on
the extension of the concept of temperature to the nonequi-
librium regime �1�.

Glassy systems are adequate for testing nonequilibrium
generalizations of thermodynamic concepts. Glassy materials
display extremely slow dynamics as they approach the amor-
phous solid phase from the liquid phase �2�. Below the glass
transition temperature, relaxation times become huge and
time-translational invariance �TTI� is lost, meaning that two-
time correlation and response functions strongly depend on
the time elapsed since the system was prepared in the non-
equilibrium state. At equilibrium, linear response and corre-
lation functions are related by the fluctuation-dissipation
theorem �FDT� �3�. Although FDT does not hold under non-
equilibrium conditions, it can be generalized by defining an
effective temperature �4�:

Teff�t,tw� =

�C�t,tw�
�tw

R�t,tw�
, t � tw, �1�

where C�t , tw� is a generic two-time correlation function and
R�t , tw� is the corresponding response of the system to an
external perturbation applied at a given previous time tw. At
equilibrium Teff is just the bath temperature. But what is the
true physical meaning of the nonequilibrium Teff�t , tw�? Can
it be used to characterize the nonequilibrium relaxation? Is it
a well-defined parameter from a thermometric point of view?
In the last years many studies have tried to answer these
questions from both empirical and theoretical perspectives.
However, there are still several debated issues �for a review
see Ref. �5� and references therein�. The effective tempera-
ture is often expressed in terms of the so-called fluctuation-
dissipation ratio �FDR�:

X�t,tw� =
T

Teff�t,tw�
, t � tw. �2�

X�t , tw�=1 for systems at equilibrium. In general, the
asymptotic value of the FDR does depend not only on the
nature of the system but also on the type of perturbation
applied �6�. A property that a physically meaningful effective
temperature Teff�t , tw� should satisfy is its independence from
the type of observable used to define the correlation and
conjugated response functions in the limit t� tw. A standard
way to account for possible differences is to calculate or
measure X�t , tw� for different observables to evaluate such
independence.

In order to analyze the applicability and generality of the
concept of effective temperature, a variety of exactly solv-
able models with glassy dynamics have been studied in the
last years. A remarkable aspect of glassy systems is the ap-
pearance of negative effective temperatures under some con-
ditions. This seems to contradict our intuition and to preclude
a possible thermometric interpretation of the effective tem-
perature. Recent studies on kinetically constrained models
reveal negative FDRs �7,8� which have been interpreted as
due to activated effects in the dynamics of such class of
models. Negative FDRs seem to be unrelated to any thermo-
dynamic interpretation of effective temperatures. However,
from a theoretical point of view, nothing prevents that they
could be generally found in glassy materials.

In the present paper we study FDRs in the context of the
backgammon model �BG� �9�. The BG at low temperatures
presents the typical behavior of the nonequilibrium relax-
ation of structural glasses: extremely slow relaxation, time-
dependent hysteresis effects, activated increase in the relax-
ation time, and aging. The most interesting feature of the BG
is the fact that glassy behavior is only due to the emergence
of entropic barriers rather than energy barriers.

We have found observable-independent negative FDRs in
the BG due to the entropic barriers present at low tempera-
tures. We conclude that the negativeness of these FDRs is a
consequence of the dynamic coupling between the external
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field and the energy of the system. Interestingly, we also
have found how these negative FDRs scale with the waiting
time.

The paper is organized as follows. In Sec. II we briefly
review the BG. In Sec. III we present the exact analytical
expressions for the correlations and responses of a set of
correlations and conjugated responses in the model. In Sec.
IV we present both numerical and analytical results. Finally,
in Sec. V we discuss the results. Technical aspects are left to
Appendixes A and B.

II. MODEL

The BG is a mean-field model for a glass without energy
barriers. The model was introduced in �9� and has been ex-
tensively studied in �10–16�. Similarly as for the case of
kinetically constrained models �17�, the statics of this model
is very simple and does not show any phase transition at
finite temperatures. The BG belongs to the more general
class of models called urn models which are based on the
original Ehrenfest model �18,19� and consist of a set of M
boxes �“urns”� among which we can distribute N particles. In
these models there is no local kinetic constraint but there
exists a conservation law, the total number of particles, that
acts as a global constraint which induces a condensation
transition. For a review of urn models and their extensions,
see Refs. �20,21� and references therein.

Consider N distinguishable particles which can occupy M
different boxes. Let us denote the density �number of par-
ticles per box� by �= N

M . The Hamiltonian in the backgam-
mon model is defined by

H = − �
r=1

M

�nr,0
, �3�

where nr is the occupation number of the box r=1, . . . ,M.
The conservation of the number of particles gives a global
constraint:

�
r=1

M

nr = N . �4�

Equation �3� shows that energy is simply given by the
number of empty boxes �with negative sign�. The system at
very low temperatures tends to empty as many boxes as pos-
sible by accumulating all particles in a small fraction of
boxes. We define the occupation probabilities as follows:

Pk =
1

M
�
r=1

M

��nr,k
� , �5�

which is the probability of finding one box occupied by k
particles. In the canonical ensemble the statics can be easily
solved �9,10�, giving the following relation for the occupa-
tion probabilities:

Pk = �
zk−1 exp���k,0�

k ! exp�z�
, �6�

where z is the fugacity and � is the inverse of the tempera-
ture T. These quantities are related by the condition

��e� − 1� = �z − ��ez, �7�

expressing the fact that the density is fixed to �. This condi-
tion, in the microcanonical formulation, is equivalent to the
saddle-point condition in the integral solution of the partition
function. In the grand canonical formulation this closure con-
dition is easier to obtain by means of the equation of state.
The occupation probabilities are the main observables in the
system and verify the relation �k=0

� Pk=1. In particular the
energy is simply given by U=−P0.

In the original formulation the model was studied under
Metropolis dynamics where at each time step a particle is
chosen at random and a destination box is selected. The
move is accepted with probability of 1 if the energy either
decreases or does not change, and with probability exp�−��
if otherwise �see Fig. 1�. Note that the energy can only in-
crease by one unit at each time step. The original geometry is
mean field, so the destination box is chosen at random with
uniform probability among all boxes. In this case, a complete
analytical study can be done and a hierarchy of dynamical
equations can be obtained for the occupation probabilities
�10�.

It has been shown that the dynamics is highly nontrivial at
very low temperatures where a dramatic slowing down of the
relaxational kinetics takes place. The origin of this slowing
down can be qualitatively understood. Suppose that the sys-
tem starts from a configuration of high energy and the tem-
perature is set to zero. The system will then evolve without
accepting changes which increase the energy of the system.
As time goes on, the system evolves toward the ground state
of the system where all boxes are empty and all particles
have condensed into a single box �Fig. 2�. During the relax-

FIG. 1. �Color online� Schematic representation of the dynamics
of the model. At each time step a particle is chosen at random and
a destination box is selected with a uniform probability among all
boxes. In the original formulation, the system was studied under
Metropolis dynamics.

FIG. 2. �Color online� At zero temperature only movements be-
tween occupied boxes are accepted. As time goes on, only a small
fraction of boxes contain particles and the time needed to empty an
additional box increases rapidly as the number of occupied boxes
decreases.
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ation process more and more boxes are progressively emp-
tied. This means that the few boxes which contain particles
have more and more particles because the number of par-
ticles is a conserved quantity. Then, the time needed to
empty an additional box increases with time. The final result
is that the energy very slowly converges to the ground-state
value. At very low temperatures it can be shown �10� that the
characteristic equilibration time is given by

� = teq �
exp �

�2 , �8�

which diverges at zero temperature. The Arrhenius depen-
dence is remarkable if we note that only entropy barriers �but
not energy barriers� are present in the model.

The BG has been used as a playground model where new
concepts of nonequilibrium thermodynamics can be tested.
The fact that the dynamics is glassy and can be exactly
solved has inspired several works that have investigated ex-
tensions of FDT to the nonequilibrium regime �e.g., the dis-
ordered model studied in �22��. In the present work we solve
the BG for any general Markovian dynamics and study the
existence of negative FDRs.

III. CORRELATIONS AND RESPONSES IN THE BG

Let us generalize the BG by adding an external field to the
Hamiltonian of model �3�. The external field is introduced in
order to compute the effective temperature �Eq. �1�� in the
nonequilibrium regime. This external field can be a local
quantity �i.e., an external field acting on a single box� or a
global one �i.e., an extensive field acting on all boxes�, lead-
ing to different definitions of the FDRs.

Previous studies of the nonequilibrium dynamics of the
BG, such as the studies carried out in �15�, have suggested
that the effective temperature depends on the observable. In
the studies of Ref. �15�, the Hamiltonian was perturbed by a
local external field. Recently, it has been shown that local
FDRs can lead to inconsistent results if finite-N corrections
are not properly taken into account �23�, pointing out the
convenience of computing global FDRs.

In order to give a complete picture of the system, through-
out this paper we will compute both local and global FDRs
by considering local and global external fields.

A. Local external field

Let us consider an external field h acting on a single box
�e.g., box 1� that is coupled to this box only when it contains
one particle:

H = �
r=1

N

�− �nr,0
� − h�n1,1. �9�

Note that this subextensive perturbation does not affect
the values of the occupation probabilities Pk�t�= 1

N ��r�nr,k
�

which in equilibrium are still given by Eq. �6�. As can be
deduced from Eq. �9� we set, without loss of generality, the
density of the system as �=1. However, note that all the
results obtained throughout the paper are valid independently

of the value of the density �=N /M whenever � is finite in
the N→� limit. In Appendix A a complete derivation of the
dynamical equations for the probability densities of the per-
turbed box, Pk

1, is carried out �see Eq. �A1��. In what follows
we will focus on the dynamical evolution of two-time quan-
tities: local correlations and local response functions. Local
correlation functions are defined as

Ck
loc�t,tw� =

1

N	�
r

�nr�t�,k
�nr�tw�,1
 , �10�

where the sum in Eq. �10� runs over all boxes and counts the
fraction of boxes that contain k particles at time t provided
that these boxes contained one particle at previous time tw.
The brackets denote an average over dynamical trajectories
of the system and over the initial conditions. The dynamical
equations for these local correlations are derived in Appen-
dix A leading to �see Eq. �A5��

�Ck
loc�t,tw�
�t

= W�0��− kCk
loc + �k + 1�Ck+1

loc − Ck
loc + Ck−1

loc �

+ �W�0� − W�− 1���P1�Ck
loc − Ck−1

loc �

+ ��k,1 − �k,0��C1
loc�1 − P0� + C0

locP1��

+ �W�0� − W�1���P0�kCk
loc − �k + 1�Ck+1

loc �

+ ��k,0 − �k,1��C0
loc�1 − P1� + C1

locP0�� . �11�

This expression is valid for any Markovian dynamics.
W�	E� denotes the transition probability between two states
with energy difference 	E. From now on, we consider that
the dynamics obeys local detailed balance in order to ensure
the convergence toward equilibrium.

Similarly, we can compute the dynamical equations for
the local response function defined as the variation in the
occupation probabilities for the perturbed box when the im-
pulse field is applied at tw:

Rk
loc�t,tw� = 
�Pk

1�t�
�h�tw�

�
h�tw�→0

. �12�

Again, the details about the derivation can be found in the
Appendix A. The result �Eq. �A7�� is

�Rk
loc�t,tw�
�t

= W�0��− kRk
loc + �k + 1�Rk+1

loc − Rk
loc + Rk−1

loc �

+ �W�0� − W�− 1���P1�Rk
loc − Rk−1

loc � + ��k,1 − �k,0�


�R1
loc�1 − P0� + R0

locP1�� + �W�0� − W�1��


�P0�kRk
loc − �k + 1�Rk+1

loc � + ��k,0 − �k,1�


�R0
loc�1 − P1� + R1

locP0�� + ��t − tw�Sloc��Pk�� ,

�13�

where the � term Sloc��Pk�� is given in Eq. �A8�. Equations
�11� and �13� are the necessary ingredients for computing
nonequilibrium effective temperatures.

From Eqs. �11� and �13�, we can check that FDT is veri-
fied at equilibrium. Indeed, at equilibrium the correlations
and responses become functions of the difference of times,
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i.e., Ck
loc�t− tw� and Rk

loc�t− tw�, so we recover time-
translational invariance. Moreover, as we can see from the
form of the dynamical equations for the autocorrelations �Eq.
�11�� and responses �Eq. �13��, at equilibrium the FDT is
verified at all times provided that the initial condition for the
responses �the function Sloc��Pk��� corresponds to the value
of the derivative of the appropriate correlation at equal times.
In this case, the correlation functions for a general observ-
able are given by

Ck
loc�tw,tw� = P1�tw��k,1. �14�

Therefore, the initial value �t= tw� for the derivative of the
correlation functions is


 �Ck
loc�t,tw�
�t

�
t→tw

= P1�tw��W�0��− 2�k,1 + �k,0 + �k,2��

+ P1�tw��W�0� − W�− 1���P1��k,1 + �k,2��

+ P1�tw��W�0� − W�− 1��


�1 − P0���k,1 + �k,0� . �15�

Using Eq. �A8� it is easy to check that in equilibrium,
FDT is verified,

T = −

�Ck
loc�t − tw�

�t

Rk
loc�t − tw�

. �16�

B. Global external field

As we have explained before, local computations can lead
to erroneous conclusions if finite-N corrections are not prop-
erly taken into account �23�. In such cases it is easier to carry
out an analysis of FDRs for global observables. Here we
shall consider the corresponding extensive perturbation of an
external field coupled to the set of boxes which contain just
one particle �i.e., coupled to the observable P1�. The Hamil-
tonian reads

H = − �
r=1

N

��nr,0
+ h�nr,1

� . �17�

Now, as the perturbation is extensive, all the equilibrium
occupation probabilities are modified in the presence of the
external field h:

Pk =
zk−1 exp���k,0 − �h�k,1�

k ! �ez + e−�h − 1�
. �18�

We proceed following the same steps as in the local case.
In Appendix B we have computed the dynamical equations
for the occupation probabilities, Eq. �B1�, and from these
equations we derive the dynamical evolution for the global
correlation and response functions.

Due to the fact that the perturbation is extensive we con-
sider the connected correlation functions

Ck
g�t,tw� = ��k�t��1�tw�� , �19�

where

�k�t� =
1

N
�

r

�nr,k
− Pk�t� �20�

are the deviations of the instantaneous occupation variables
from their average value at a given time. The dynamical
evolution for the global correlation functions is given by Eq.
�B6�:

�Ck
g�t,tw�
�t

= W�0��− kCk
g + �k + 1�Ck+1

g − Ck
g + Ck−1

g � + �W�0�

− W�− 1���C1
g��k,1 − �k,0 + Pk − Pk−1� + P1�Ck

g

− Ck−1
g �� + �W�0� − W�1���C0

g�kPk − �k + 1�Pk+1

+ �k,0 − �k,1� + P0�kCk
g − �k + 1�Ck+1

g �� . �21�

Again, these equations are valid for any Markovian dynam-
ics. The global response function is the response of the oc-
cupation probabilities to the extensive perturbation coupled
to the observable P1:

Rk
g�t,tw� = 
�Pk�t�

�h�tw�
�

h�tw�→0
. �22�

The result for the dynamical evolution is given in Appen-
dix B, Eq. �B8�, and it reads

�Rk
g�t,tw�
�t

= W�0��− kRk
g + �k + 1�Rk+1

g − Rk
g + Rk−1

g � + �W�0�

− W�− 1���R1
g��k,1 − �k,0 + Pk − Pk−1� + P1�Rk

g

− Rk−1
g �� + �W�0� − W�1���R0

g�kPk − �k + 1�Pk+1

+ �k,0 − �k,1� + P0�kRk
g − �k + 1�Rk+1

g �� + ��t

− tw�Sg��Pk�� , �23�

where we have introduced the function Sg��Pk�� which de-
pends only on one time and gives the initial value for the
responses. The exact form of Sg��Pk�� is given in Eq. �B9�.

Again, we check that in equilibrium FDT is verified. In-
deed, at equal times the global correlations are given by

Ck
g�tw,tw� = − Pk�tw��P1�tw� − �k,1� . �24�

Obviously, in equilibrium the correlations at equal times
do not depend on time. Inserting this initial value into the
equations for the correlations and by considering the equilib-
rium case, it is easy to prove FDT for all k values of the
observables Ck

g and Rk
g:

T = −

�Ck
g�t − tw�
�t

Rk
g�t − tw�

. �25�

IV. RESULTS

In this section we analyze the nonequilibrium behavior of
the correlations and responses at zero temperature for both
local and global observables.

The interesting glassy behavior in the BG occurs in the
zero-temperature limit, where entropy barriers govern the re-
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laxational dynamics of the model. In what follows we shall
consider heat-bath dynamics at zero temperature, for both the
local and the global variables. This choice is motivated by
the known fact that in the Metropolis algorithm there is a
discontinuity of the derivative of the transition rates for 	E
=0. As a result, the definition of the response functions be-
comes ambiguous; see Ref. �15�. We circumvent this draw-
back by employing heat-bath dynamics.

A. Local two-time quantities

From the numerical integration of Eqs. �11� and �13� we
can analyze the nonequilibrium behavior of the local corre-
lations and response functions. From now on, all the numeri-
cal results shown are obtained using heat-bath dynamics at
zero temperature.

1. Correlations and responses

In Fig. 3 we plot the normalized local correlation

C̄1
loc�t , tw�=

C1�t,tw�
P1�tw� at zero temperature. We can clearly see the

aging effects in the local correlation function: as tw increases
the autocorrelation function develops a plateau showing two
characteristic and well-separated time scales. The first time
scale corresponds to the initial relaxation of the system �usu-
ally called � relaxation� which does not depend much on tw.
The second one is larger, increases with tw, and corresponds
to the late decay of the correlation function, usually known
as � relaxation. The existence of these two time scales is a
typical signature of the glassy relaxation of structural
glasses.

In the inset of Fig. 3 we plot the local normalized corre-

lation function C̄1
loc�t , tw� multiplied by tw in order to collapse

all curves on the same plateau. It is clear that the system
displays simple aging, i.e., the scaling t / tw is well satisfied.

Regarding response functions, they show some peculiari-
ties: on one hand, the initial value for the response functions
�given by the function Sloc��Pk��� is proportional to �, giving

a divergence at zero temperature �a known common feature
of kinetically constrained models �8��. On the other hand, the
response function R1

loc�t , tw� is nonmonotonic �for tw fixed
when t is varied� and becomes negative for long enough
times. In Fig. 4 we plot both the local, R1

loc, and the global,
R1

g, response functions for the observable P1 �see below�.
Both responses show a nonmonotonic behavior and become
negative for long times.

The nonmonotonicity of the response function can be eas-
ily understood. The external field is coupled to P1; therefore
the system tends to increase the population of boxes with one
particle. However, because boxes with one particle are
bottlenecks for the relaxation of the energy, a transient in-
crease in their number at tw induces a faster relaxation of the
energy at later times. Because the natural evolution of the
system tends to decrease P1 when decreasing the energy, a
transient increase in P1 at tw causes a net decrease in the
same quantity at later times when energy relaxation becomes
faster.

In order to facilitate the readings of the effective tempera-

ture in our plots, we introduce the function Ḡ1
loc�t , tw� as

Ḡ1
loc�t,tw� = T

�R1
loc�t,tw��
P1�tw�

, �26�

which is the normalized absolute value of the response
R1

loc�t , tw� multiplied by T. Due to the change of sign of R1
loc,

we have taken the absolute value in order to plot the relax-
ation in a log-log scale.

In Fig. 5 we plot Ḡ1
loc�t , tw� for different values of tw. As

can be inferred from Fig. 5, the dip at short times corre-
sponds to the change in sign of the response. Looking at this
logarithmic plot, the response shows again the two charac-
teristic relaxation time scales of glasses. In the inset of Fig. 5
we can see that the response function also displays simple
aging with scaling t / tw as the leading term.

It is worth noting that this simple aging relaxation in the �
regime can also be seen in the correlations and responses for
the other observable quantities of the model, i.e., in the dy-
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namical behavior of Ck
loc�t , tw� and Rk

loc�t , tw� for a generic k
�data not shown�.

2. Nonequilibrium effective temperatures

We now define a set of effective temperatures from the
nonequilibrium definition, Eq. �1�:

�Teff
loc�k�t,tw� =

�Ck
loc�t,tw�
�tw

Rk
loc�t,tw�

. �27�

In order for �Teff
loc�k�t , tw� to share some of the properties of

a thermometric temperature it should not asymptotically de-
pend on the integer k �for a fixed tw and in the large-t limit�.
In Fig. 6 we plot the ratio between the absolute value of the
effective temperature and the physical one �in the limit T
→0�, which corresponds to the inverse of the local FDR �4�
defined as

Xk
loc�t,tw� =

T

�Teff
loc�k�t,tw�

. �28�

We can clearly see that the effective temperature shows
two different behaviors depending on the time scales consid-
ered. For t→ tw the value of the FDR converges to 1 as tw
increases. This is a typical feature of glasses: the first �
relaxation is an equilibrium process which implies that the
effective temperature is just the physical one. This is true in
the asymptotic limit tw→�. It can be shown that it converges
to 1 in a logarithmic way as was found in the analysis of Ref.
�15�.

From the integration of the dynamical equations, we ob-
tain the asymptotic value of the ratio �Teff

loc�k�t , tw� /T, which is
positive because for long enough times both the local re-
sponse and the derivative of the local correlation become
negative. This asymptotic value tends to zero in the limit
tw⇀�. In addition, for a given waiting time the effective

temperature is proportional to the bath temperature.
Looking at Fig. 7, where we plot the effective temperature

at tw=10 000 for different observables, we can clearly see
that the effective temperature depends on the observable un-
der scrutiny. Consequently, it seems clear that from a local
point of view we cannot define a unique effective tempera-
ture by using the FDR.

B. Global two-time quantities

In Sec. IV A we have shown that a unique effective tem-
perature cannot be defined by the FDR from a local pertur-
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bation. As we have mentioned before, this is an expected
result consistent with previous analysis �15�. In this section
we will analyze the time dependence of the global correla-
tion and the global response functions and we will show that
a unique negative effective temperature can be defined from
the global FDRs.

1. Correlations and responses

We study the connected correlation functions for heat-
bath dynamics of the BG at zero temperature. In Fig. 8 we

plot the normalized correlation function, C̄1
g�t , tw�=

C1
g�t,tw�

P1�tw� , for
different values of tw. Similarly as with the local case, we
can clearly distinguish two characteristic time scales in the
system, the � relaxation and the � relaxation. Note that as tw
increases, the plateau value of the correlation decreases and
in the limit tw→� the plateau value converges to zero. In the
inset of Fig. 8 we have multiplied this normalized correlation
by tw. As for the local case, the global correlation displays
simple aging.

Again, in order to analyze the relaxation of the global
response function we have defined the normalized response

function Ḡ1
g�t , tw�,

Ḡ1
g�t,tw� = T

�R1
g�t,tw��

P1�tw�
, �29�

motivated by the fact that the response function R1
g�t , tw� be-

comes negative for long times as shown in Fig. 4. This is
again consequence of the fact that the natural evolution of
the system tends to diminish P1�tw� in opposition to the ac-
tion of the external field. Moreover, the global response func-
tion is proportional to the bath temperature, which diverges
at zero temperature. In Fig. 9 we plot the two time-scale

relaxations of Ḡ1
g�t , tw�. In the inset of Fig. 9 we show the

simple aging scaling of the function Ḡ1
g�t , tw�. Again, the dip

of the curves at short times corresponds to the time when the
response changes its sign.

The global correlations and responses for the rest of the

observables in the model, C̄k
g�t , tw� and Ḡk

g�t , tw�, also display
simple aging �data not shown�. It is worth mentioning that

the ratio between C̄k
g and Ḡk

g for k
1 is on the same order of
magnitude as the one corresponding to k=1.

2. Nonequilibrium effective temperatures

As we have done for local observables, from the FDR we
can define the effective temperatures:

�Teff
g �k�t,tw� =

�Ck
g�t,tw�
�tw

Rk
g�t,tw�

. �30�

In Fig. 10 we plot the absolute value of the effective tem-
perature �Teff

g �1�t , tw� divided by T for different values of tw.
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This quantity is related to the global FDR X1
g�tw� for P1 as

X1
g�tw� =

T

�Teff
g �1�t,tw�

, �31�

As in the local case, the value of
�Teff

g �1�t,tw�
T in the limit t

→ tw tends to 1, showing that the first � regime corresponds
to an equilibrium relaxation process �i.e., X1

g=1�. We can also
see that, in contrast with the local case, this global effective
temperature remains constant throughout the � regime for
any finite tw.

A very important aspect of the global effective tempera-
ture is the fact that for a given value of the waiting time, this
effective temperature does not depend on the observable as
can be seen in Fig. 11, where we have plotted the absolute
value of the inverse of the global FDRs �Eq. �31�� at tw
=10 000 for different observables. It is clear that the
asymptotic value of the FDRs at finite tw does not depend on
the observable.

Moreover, from the results of Fig. 10 we can see that for
large waiting times tw the inverse of the FDR scales as the
inverse of tw:

�Teff
g �k�t,tw�

T
=

1

Xk
g�tw�

� −
1

tw
∀ k . �32�

Again, the minus sign in Eq. �32� is a consequence of the
nonmonotonicity of the response functions. Finally, it is
worth mentioning that we have checked that all the results
obtained at zero temperature throughout this paper remain
valid at finite but very low temperatures. The analysis at
finite small temperatures does not give new insights into the
nonequilibrium behavior of the system as all dynamical
quantities smoothly converge to their T=0 limit.

C. Asymptotic analysis

In Sec. IV B we have obtained a negative FDR indepen-
dent of the observable that displays simple scaling of the
type t / tw. This result can be easily understood by analyzing
the asymptotic nonequilibrium relaxation of the model. The
equilibrium probabilities in the presence of an external field
are given by

Pk =
zk−1 exp����k,0 − h�k,1��

k ! exp�z�
. �33�

In the long-time asymptotic regime, the multiplier z�t� is a
function of time which grows as �11,12�

z�t� � ln t + ln�ln t� . �34�

With the global perturbation considered along the paper,
we can compute the global susceptibility �1

g by assuming
local equilibrium using Eq. �18� with k=1:

T�1
g = T lim

h→0

P1�h = 0� − P1�h�
h

=
1

ez . �35�

From Eq. �34� the global susceptibility associated to the
observable P1�t� decays as

T�1
g��� =

1

� ln �
, �36�

where �= t− tw. The asymptotic decay of R1
g��� is given by

the derivative of �1
g��� multiplied by the temperature:

TR1
g��� = −

1

�2 ln �
+ O
 1

�2 ln2 �
� . �37�

Now, by using Eq. �23� at zero temperature,

�R0
g

��
= R1

g − P0R1
g − P1R0

g, �38�

we obtain the asymptotic decay of R0
g:

TR0
g��� =

1

� ln2 �
+ O
 1

�2 ln3 �
� . �39�

In the right column of Fig. 12 we numerically confirm
scalings �37� and �39� for different values of tw. Due to the
fact that the dynamical equations for the correlations are for-
mally identical to those for the response functions, one finds

C0
g��,tw� = −

ln�tw�
� ln2 �

+ O
 1

�2 ln3 �
�

C1
g��,tw� =

ln�tw�
�2 ln �

+ O
 1

�2 ln2 �
� , �40�

where the dependence on tw has been inferred from the decay
of the global correlations at equal times �Eq. �24��.

These scalings are again confirmed numerically and are
shown in the left column of Fig. 12. With these scalings we
recover the FDRs
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X0
g�tw� = X1

g�tw� � − tw, �41�

in agreement with our numerical findings. A similar analysis
can be done for k
1.

V. CONCLUSIONS

In this paper we have solved the relaxation of the corre-
lations and response functions in the BG for a general dy-
namic rule �provided that it satisfies local detailed balance�.
We have studied �by means of numerical integration and ana-
lytic asymptotic expansions� the behavior of effective tem-
peratures and FDRs in the glassy regime.

We have found that both the correlation and the response
functions show two characteristic time scales: a first � relax-
ation for short times characterized by an equilibrium FDR,
X�t , tw�=1, and a second � relaxation at long times with a
nontrivial value of the FDR. This is a very common feature
of structural glasses and other glassy systems. Moreover, we
have found that both the correlations and responses display
simple aging.

In this paper we have analyzed the resulting FDRs ob-
tained from local and global perturbations. The interesting
conclusion is that the local FDRs depend on both t and tw,
while the global FDRs only depends on tw. Moreover, global
FDRs are independent of the observable in contrast with the
local ones.

More interesting is the fact that this observable-
independent value of the global FDR is negative and di-
verges with the waiting time as

Xg�tw� � − tw. �42�

This result points in the same direction as recent studies on
kinetically constrained models �7,8� which also found nega-
tive FDRs. In these studies, the negative character of the
FDRs was associated to activation effects in the dynamics. In
the present case, we have found negative FDRs in the sole
presence of entropic barriers for the BG.

It is worth emphasizing that negative FDRs are related to
nonmonotonic response functions. In the glassy literature,
nonmonotonic responses are associated with non-neutral ob-
servable quantities �5�. The non-neutrality property of these
observables emerges as a consequence of the dynamic cou-
pling between the external field and the energy of the system
leading to negative effective temperatures.

In this paper we showed that an observable-independent
FDR can be properly defined by studying global observables.
However, we found a unique negative FDR due to the non-
neutrality of the observables under scrutiny. Therefore, the
neutrality of an observable seems to be a key aspect in order
to define nonequilibrium effective temperatures.

How much current results would change if the perturba-
tion h�n,k acts along an arbitrary direction k
1? We do not
expect big qualitative changes in our results depending on
the “orientation” of the field provided that k is finite �and k
�N�. Arbitrary values of k will result in a bottleneck effect
similar to that observed in the current study for k=1. How-
ever, for k /N finite the bottleneck effect will be substantially
different because the energy will not be able to reach the
asymptotic low-energy regime E→−1+1 / ln�t�.
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Finally, it would be extremely helpful to find a microca-
nonical derivation or a phenomenological argument for re-
producing the asymptotic behavior of the effective tempera-
ture when perturbing along arbitrary observables Pk. This
could be done either by a closure of the dynamical equations
by using a partial equilibration hypothesis, or by exact com-
putation of the appropriate configurational entropy in the off-
equilibrium regime. Such arguments would greatly facilitate
the computation of effective temperatures without having to
solve the full set of dynamical equations for correlations and
responses.
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APPENDIX A: LOCAL DYNAMICAL EQUATIONS

In the present analysis we consider a general dynamics
with just one restriction: it must obey local detailed balance.
This restriction ensures that the system converges to its equi-
librium state. In fact, we will see that this is the necessary
condition for FDT to be obeyed at equilibrium. From now
on, the transition probabilities will be expressed by W�	E�,
where 	E is the energy difference between the final and the
initial states.

1. One-time quantities

The dynamic equations for the occupation probabilities
can be computed in the same way as have been obtained for
the Monte Carlo dynamics of this model �see Ref. �11� for
details�. The general result is

�Pk
1

�t
= W�0��− kPk

1 + �k + 1�Pk+1
1 − Pk

1 + Pk−1
1 � + �W�0� − W

�− 1 + h���P1
1�1 − P0���k,1 − �k,0� + P1

1P1��k,1 − �k,2��

+ �W�0� − W�h���P1
1P0��k,1 − �k,0� + P1

1�1 − P1���k,1

− �k,2�� + �W�0� − W�− h���2P2
1�1 − P0���k,2 − �k,1�

+ P0
1P1��k,0 − �k,1�� + �W�0� − W�1 − h���2P2

1P0��k,2

− �k,1� + P0
1�1 − P1���k,0 − �k,1�� + �W�0� − W�1��


�P0�kPk
1 − �k + 1�Pk+1

1 � + P1
1P0��k,0 − �k,1�

+ 2P2
1P0��k,1 − �k,2�� + �W�0� − W�− 1���P1�Pk

1 − Pk−1
1 �

+ P0
1P1��k,1 − �k,0� + P1

1P1��k,2 − �k,1�� . �A1�

The quantities Pk�t� are the occupation probabilities,
while the quantities Pk

1�t� are the average occupation prob-
abilities restricted to box 1, which is the box affected by the
external field. As a particular case we can get the dynamic

evolution for the occupation probabilities for any box at zero
field:

�Pk

�t
= W�0��− kPk + �k + 1�Pk+1 − Pk + Pk−1�

+ �W�0� − W�− 1��


�P1�Pk − Pk−1 + �k,1 − �k,0��

+ �W�0� − W�1��


�P0�kPk − �k + 1�Pk+1 + �k,0 − �k,1�� . �A2�

These equations cannot be solved exactly �although an
analytic treatment has been done in the asymptotic regime
�11�� but can be integrated numerically to give the full solu-
tion. More significantly, these equations are the first step in
order to compute the dynamical evolution of two-time quan-
tities such as the autocorrelation functions and the local re-
sponse functions.

2. Local correlations and response functions

As a consequence of the local character of the external
field, we have to deal with the corresponding local response
functions and the box-box autocorrelation functions. These
autocorrelation functions are defined as

Ck
loc�t,tw� =

1

N	�
r

�nr�t�,k
�nr�tw�,1
 , �A3�

which can be expressed in terms of the following conditional
probabilities �k�t , tw�= P(nr�t�=k �nr�tw�=0):

Ck
loc�t,tw� = P1�tw��k�t,tw� . �A4�

Following the same strategy as in �11� the dynamic equa-
tions for these conditional probabilities give

��k�t,tw�
�t

= W�0��− k�k + �k + 1��k+1 − �k + �k−1� + �W�0�

− W�− 1���P1��k − �k−1� + ��k,1 − �k,0���1�1 − P0�

+ �0P1�� + �W�0� − W�1���P0�k�k − �k + 1��k+1�

+ ��k,0 − �k,1���0�1 − P1� + �1P0�� . �A5�

The corresponding local response functions are just the
variations in the occupation probabilities for the perturbed
box with the external field:

Rk
loc = 
�Pk

1�t�
�h�tw�

�
h�tw�→0

. �A6�

From this expression and Eq. �A2� we arrive at

�Rk
loc�t,tw�
�t

= W�0��− kRk
loc + �k + 1�Rk+1

loc − Rk
loc + Rk−1

loc �

+ �W�0� − W�− 1���P1�Rk
loc − Rk−1

loc � + ��k,1 − �k,0�


�R1
loc�1 − P0� + R0

locP1�� + �W�0� − W�1��


�P0�kRk
loc − �k + 1�Rk+1

loc � + ��k,0 − �k,1��R0
loc�1
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− P1� + R1
locP0�� + ��t − tw�Sloc��Pk�� . �A7�

Note that, formally, the dynamic evolution for the re-
sponse functions is just the same as for the autocorrelation
functions. This is a general feature and is due to the fact that
in equilibrium FDT must be satisfied. The only difference is
that in the equation for the responses there is a delta term
which fixes the value for Rk

loc�tw , tw�. This term comes from
the first order of the Taylor expansion in the transition prob-
abilities which depend on the external field h. This is not an
approximation because higher-order terms in Taylor’s expan-
sion vanish when we set the external field equal to zero. The
function Sloc��Pk�� is defined as

Sloc��Pk�� = �e�W�1��P1�1 − P0���k,1 − �k,0� + P1
2��k,1 − �k,2��

+ �e�W��1��P1�1 − P0���k,1 − �k,0� + P1
2��k,1

− �k,2�� − �W�0��2P2�1 − P0���k,2 − �k,1�

+ P1P0��k,0 − �k,1�� − �W��0��2P2�1 − P0���k,2

− �k,1�� + �W��1��2P2P0��k,2 − �k,1� + �1

− P1�P0��k,0 − �k,1�� − �W��0���1 − P1�P0��k,0

− �k,1�� , �A8�

where W� denotes the derivative of the transition probability
with respect to 	E. Finally, we must stress that in this equa-
tion we have already supposed that our dynamics verifies
local detailed balance. If W� is discontinuous we should have
to consider two possible response functions depending on the
chosen value for W� �15�.

APPENDIX B: GLOBAL DYNAMICAL EQUATIONS

As we have made in the case of a local perturbation, we
consider a general dynamics with the only condition that it
must obey detailed balance. As before, this is the unique
ingredient we need to ensure that equilibrium is reached at
long enough times.

1. One-time quantities

By considering all the possible elementary moves, we get
the following dynamical equations for the occupation prob-
abilities:

�Pk

�t
= W�0��− kPk + �k + 1�Pk+1 − Pk + Pk−1� + �W�0� − W�h

− 1���P1�1 − P1���k,1 − �k,0� + PkP1�1 − �k,1�

− Pk−1P1�1 − �k,2�� + �W�0� − W�2h − 1���P1
2�2�k,1

− �k,0 − �k,2�� + �W�0� − W�− h���2P2�1 − P0���k,2

− �k,1� + 2PkP2�1 − �k,0� − 2Pk−1P2�1 − �k,1�� + �W�0�

− W�1 − 2h���− 2P0P2�2�k,1 − �k,0 − �k,2�� + �W�0�

− W�1 − h���P0�kPk − �k + 1�Pk+1 + �k,0 − �k,1

+ 2P2�2�k,1 − �k,0 − �k,2��� + �W�0� − W�h���P1�kPk

− �k + 1�Pk+1 + �k,1 − �k,2� + P1
2�− 2�k,1 + �k,0 + �k,2�� .

�B1�

Note that now, due to the global character of the field, we
have to consider only the occupation probabilities averaged
over the whole system. As we expect, at zero field we re-
cover the same equations as in the local case �which are the
extension of the equations obtained for Monte Carlo dynam-
ics �10��:

�Pk

�t
= W�0��− kPk + �k + 1�Pk+1 − Pk + Pk−1�

+ �W�0� − W�− 1���P1��k,1 − �k,0 + Pk − Pk−1��

+ �W�0� − W�1��


�P0�kPk − �k + 1�Pk+1 + �k,0 − �k,1�� . �B2�

These equations are the first step in order to compute the
dynamical equations for the correlation and response func-
tions and give the evolution of all the possible observable
physical quantities of this model. Moreover, these equations
are the base of the more complex computations of the dy-
namical evolution of the two-time correlation and response
functions.

2. Global correlations and response functions

Due to the extensive nature of the perturbation the corre-
lation functions related with the responses are the connected
ones. So, let us introduce the deviation of the instantaneous
values of the occupations from their average value at each
time:

�k�t� =
1

N
�

r

�nr,k
− Pk�t� . �B3�

These quantities will give us insight into the fluctuations
of the occupation numbers �i.e., the correlations�. The dy-
namical evolution of these quantities is

��k

�t
= W�0��− k�k + �k + 1��k+1 − �k + �k−1�

+ �W�0� − W�− 1����1��k,1 − �k,0 + Pk − Pk−1�

+ P1��k − �k−1�� + �W�0� − W�1����0�kPk − �k + 1�Pk+1

+ �k,0 − �k,1� + P0�k�k − �k + 1��k+1�� . �B4�

In this equation we have considered that the quantities �k
are of order 1 /N, so we have neglected the quadratic terms
�k�l in these equations because they vanish in the thermody-
namic limit. The global connected correlation function will
be

Ck
g�t,tw� = ��k�t��1�tw�� . �B5�

The equations of motion for these correlations are easy to
compute from these equations and give

�Ck
g�t,tw�
�t

= W�0��− kCk
g + �k + 1�Ck+1

g − Ck
g + Ck−1

g � + �W�0�

− W�− 1���C1
g��k,1 − �k,0 + Pk − Pk−1� + P1�Ck

g

− Ck−1
g �� + �W�0� − W�1���C0

g�kPk − �k + 1�Pk+1
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+ �k,0 − �k,1� + P0�kCk
g − �k + 1�Ck+1

g �� . �B6�

Now we define the global response function �which is
related to the experimental susceptibility� as the response of
the probabilities to the extensive perturbation coupled to P1:

Rk
g�t,tw� = 
�Pk�t�

�h�tw�
�

h�tw�→0
. �B7�

From the equations in a field and expanding to first order
in h, we have for the response functions

�Rk
g�t,tw�
�t

= W�0��− kRk
g + �k + 1�Rk+1

g − Rk
g + Rk−1

g � + �W�0�

− W�− 1���R1
g��k,1 − �k,0 + Pk − Pk−1� + P1�Rk

g

− Rk−1
g �� + �W�0� − W�1���R0

g�kPk − �k + 1�Pk+1

+ �k,0 − �k,1� + P0�kRk
g − �k + 1�Rk+1

g �� + ��t

− tw�Sg��Pk�� , �B8�

where we have defined the function Sg��Pk�� which depends
only on one time and gives the initial value for the responses.

Similar computations as we have done for the local case lead
to

Sg��Pk�� = �e�W�1��P1�1 − P1���k,1 − �k,0� + PkP1�1 − �k,1�

+ Pk−1P1�1 − �k,2�� + �e�W��1��P1�1 − P1���k,1

− �k,0� + PkP1�1 − �k,1� + Pk−1P1�1 − �k,2��

+ 2�e��W�1� + W��1���P1
2�2�k,1 − �k,0 − �k,2��

− �W�0��2P2�1 − P0���k,2 − �k,1� + 2PkP2�1

− �k,0� − 2Pk−1P2�1 − �k,1�� − �W��0��2P2�1 − P0�


��k,2 − �k,1� + 2PkP2�1 − �k,0� − 2Pk−1P2�1

− �k,1�� + 2�W��1��− 2P0P2�2�k,1 − �k,0 − �k,2��

+ �W��1��P0�kPk − �k + 1�Pk+1 + �k,0 − �k,1�

+ 2P0P2�2�k,1 − �k,0 − �k,2�� − �W��0��P1�kPk − �k

+ 1�Pk+1 + �k,1 − �k,2� + P1
2�− 2�k,1 + �k,0 + �k,2�� .

�B9�

As before W��	E� is the derivative of the transition prob-
ability with respect to 	E evaluated at 	E=0,1.
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