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We study the phase-ordering kinetics of the one-dimensional Heisenberg model with conserved order pa-
rameter by means of scaling arguments and numerical simulations. We find a rich dynamical pattern with a
regime characterized by two distinct growing lengths. Spins are found to be coplanar over regions of a typical
size LV�t�, while inside these regions smooth rotations associated to a smaller length LC�t� are observed. Two
different and coexisting ordering mechanisms are associated to these lengths, leading to different growth laws
LV�t�� t1/3 and LC�t�� t1/4 violating dynamical scaling.
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I. INTRODUCTION

After quenching a ferromagnetic system to a low-
temperature phase, relaxation toward the new equilibrium
state is realized by a progressive phase-ordering �1�. The
specific mechanisms involved in the coarsening phenomenon
depend on the presence and the nature of topological defects.
In d-dimensional systems described by an O�N� vector order
parameter, topological defects are unstable for N�d+1 �for
N=d+1 peculiar defects as textures �2� may be present�.
Therefore, in the asymptotic regime when all defects have
disappeared, the dynamics is solely driven by the reduction
in the excess energy related to the smooth rotations of the
order parameter. In contrast, systems with N�d are charac-
terized by the presence of stable defects whose presence in-
fluences the dynamics in the whole phase-ordering stage. In
particular, when N=d defects are localized and ordering oc-
curs by mutual defect-antidefect annihilation. This is the case
of the Ising chain, where up and down domains are separated
by pointlike interfaces performing random walks.

Generally, the late stage is characterized by dynamical
scaling �1,3�. This implies that a single characteristic length
L�t� can be associated to the development of order in such a
way that configurations of the system are statistically inde-
pendent of time when lengths are measured in units of L�t�.
The characteristic length usually has a power-law growth
L�t�� t1/z. In systems with a conserved order parameter
�COP� one generally finds z=3 �4,5� or z=4 �6,5� for N=1
and N�1 respectively.

For systems at or below the lower critical dimension dL,
such as the Ising chain, a true asymptotic phase ordering can
only be observed in quenches to T=0. However, if quenches
to a relatively low temperature are performed, one observes
an initial transient regime �but very long lasting when T is
small� where the dynamics is indistinguishable from that at
T=0. This regime lasts until L�t� has grown comparable to
the equilibrium coherence length ��T�.

In this paper, we investigate the phase-ordering kinetics of
the one-dimensional Heisenberg model �N=3� with COP
quenched to a low temperature T. We show that the dynam-
ics is much richer than what one would naively expect. This
is due to the formation, in an early stage, of couples of par-
allel spins, separating regions in which the spins are copla-
nar. These parallel spins act as pointlike defects, as it will be
explained in Sec. III. Their presence provides an analogy
between the Heisenberg and the Ising chains, where couples
of parallel spins and regions of coplanarity in the former
model correspond to interfaces and domains in the latter. The
analogy is not only formal but is reflected in the kinetics: in
a first stage �whose duration however diverges in the T→0
limit� regions of coplanar spins coarsen similarly to the do-
mains of the Ising model, with their typical length growing
as

LV�t� � t1/3. �1�

In this regime the number of defects is reduced only by a
mechanism which recalls the annihilation of the interfaces in
the Ising model. Simultaneously, smooth rotations of the
spins, typical of vectorial systems, occur inside the regions
of coplanarity. The coherence of the spins inside these re-
gions extends over a length LC�t��LV�t� increasing as

LC�t� � t1/4. �2�

The existence of two growing length, associated to different
ordering mechanisms, produces the breakdown of dynamical
scaling. In the analogy between the Heisenberg and the Ising
chains, a notable difference must be stressed. While in the
latter interfaces are stable defects which can only be re-
moved by mutual annihilation, defects in the former are un-
stable. Namely, after a first stage of coarsening of coplanar
regions, the defects spontaneously decay due to thermal fluc-
tuations. The typical lifetime of the defects is limited by
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temperature and coarsening of the coplanar regions persists
up to very long times in deep quenches. After that, defects
disappear and the system finally enters a late stage where
smooth spin rotations remains the only mechanism at work,
until equilibration is attained when LC�t����T�. In this
regime dynamical scaling is restored with exponent z=4,
as expected for a system with N�d+1. In the small-
temperature limit the duration of the two regimes, with and
without dynamical scaling, is comparable.

This paper is organized as follows. In Sec. II we introduce
the model and define the observable quantities that will be
considered. In Sec. III we describe the main features of the
dynamics in the different regimes, compute the value of the
exponents and of other quantities by means of scaling argu-
ments, and compare our results with the outcome of numeri-
cal simulations of the model. A summary and the conclusions
are contained in Sec. IV.

II. MODEL AND OBSERVABLES

The Heisenberg model is defined by the Hamiltonian

H��� = �
i=1

N

�i = − J�
i=1

N

��� i · �� i+1 − 1� = − J�
i=1

N

�cos 	i − 1� ,

�3�

where �i is the local energy density, �� i is a three-component
unit vector spin, i=1, . . . ,N are the sites on a one-
dimensional lattice, and 	i is the angle between �� i and �� i+1.
We will assume J=1 and the Boltzmann constant kB=1.

The equilibrium properties of the model are exactly
known �7�. This system is ergodic except at T=0. At any
finite temperature the state is disordered with a vanishing
magnetization and internal energy �per spin� Eeq�T�=T
−coth�1 /T�+1 with the low-temperature expansion Eeq�T�
�T. The correlation function Ceq�r�= ��� i�� i+r	= �1−Eeq�T��r

decays exponentially over a coherence length ��T� that di-
verges in the T→0 limit.

Concerning dynamics, at equilibrium the model possesses
an intrinsic kinetics where the energy and the magnetization
are conserved �8�. Studies �9� of this intrinsic dynamics have
evidenced the failure of the equilibrium scaling symmetry
close to T=0. Experimental work supports this picture �10�.

For the situation considered here, where the system is
quenched from a high-temperature configuration to a low
temperature T, a different dynamics allowing transfer of en-
ergy to a heat bath must be considered. In order to model
this, we introduce a dynamics where two neighboring spins
�� i ,�� i+1 of a configuration ��� � are randomly chosen at each
time step and then they are updated to �� i� ,�� i+1� provided
the local magnetization is conserved, namely, s�i=�� i+�� i+1
=�� i�+�� i+1� . Notice that magnetization is conserved at the
local level with this rule. Due to the conservation law, the
spins �� i ,�� i+1 can only rotate rigidly around their sum s�i, as
shown in Fig. 1. We consider the heat-bath transition rates
��� �→ ��� �� satisfying detailed balance

wi��� �� = Wi
−1 exp
−

H��� ��
T

� , �4�

where Wi=�d�� i�d�� i+1� 
��� i+�� i+1−s�i�exp�−H��� �� /T�. Heat-
bath transition rates provide a particularly fast and efficient
dynamics with respect to other �i.e., METROPOLIS� choices

�11�. Let us denote d� i=�� i+1−�� i, d� i�=�� i+1� −�� i�, and p� i as the
projection of �� i+2−�� i−1 on the plane � perpendicular to s�i
�see Fig. 1�. Any move, involving the couple �� i and �� i+1, can

be described by a rotation in the plane � from d� i to d� i�. In

this framework the angles between p� i and d� i �d� i��, denoted as
�i ��i��, fully parametrize the dynamics and the transition rate
�4� can be rewritten as

wi��i�� = Wi
−1 exp
dipi�cos �i� − 1�

2T
� , �5�

where di= 
d� i
= 
d� i�
 and pi= 
p� i
. Von Neuman rejection
method �12� allows us to efficiently generate �i� according to
the transition rates �5�. Notice that in a move the typical
deviations from the lowest-energy configuration ��i�=0� are
of order

cos �i� − 1 �
2T

dipi
. �6�

We consider a system initially prepared in a high-
temperature uncorrelated state, with �i=1

N �� i=0, and then
quenched, at time t=0, to a lower final temperature T. As
already mentioned in Sec. I, the dynamics of systems at or
below the critical dimension, such as the one considered
here, is characterized by an initial transient where the system
orders �13,14� as in a quench to T=0. The characteristic
length of ordered regions grows in time until, at time 
eq�T�,
it becomes comparable to ��T�. At this point the final equi-
librium state at T is entered and phase ordering ends. If the
system is quenched to a sufficiently low temperature, since
��T� is very large, the phase-ordering kinetics extends over a
huge time window t�
eq�T�.

Characteristic lengths, and scaling properties, can be stud-
ied from the knowledge of the two-point equal-time correla-
tion function

� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �
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� � � � � � � � � � �
� � � � � � � � � � �
� � � � � � � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

σ σ
i+2

i+2
σ

i−1σ
i

i+1σ
i−1

s
i

σ

p
i

φ
iΠ

iv

d i

θi

FIG. 1. �Color online� Schematic representation of the four
spins �� i−1 ,�� i ,�� i+1 ,�� i+2.
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C�r,t� = ��� i�t� · �� i+r�t�	 , �7�

where �¯	 means an ensemble average, namely, taken over
different initial conditions and thermal histories. Due to
space homogeneity, C�r , t� does not depend on i. Dynamical
scaling �1� would imply

C�r,t� = c�x� , �8�

where x=r /L�t�. For systems with an O�N� vector order pa-
rameter the Bray-Puri-Toyoki �15� behavior

1 − c�x� � xN �9�

is observed for small x. In the scalar case, this behavior
reduces to the Porod’s law �16�

1 − c�x� � x , �10�

which is generally expected in systems with sharp interfaces.
From Eq. �8� one can extract a quantity LC�t� proportional to
L�t� from the condition

C�LC�t�,t� =
1

2
, �11�

namely, as the half-height width of C�r , t�. In the following
we will also consider the correlation

V�r,t� = �v� i�t� · v� i+r�t�	 , �12�

where the unit vectors

v� i =
�� i � �� i+1


�� i � �� i+1

�13�

identify the planes formed by neighboring spins; hence,
V�r . t� represents the correlations between these planes.
When scaling holds, V�r , t� behaves similarly to C�r , t�,
namely,

V�r,t� = v�x� �14�

and, defining LV�t� analogously to LC�t� in Eq. �11�, also
LV�t��L�t�.

III. DYNAMICS: SCALING ARGUMENTS
AND NUMERICAL RESULTS

In the following we will discuss the main features of the
dynamical process by means of scaling arguments and nu-
merical simulations. These are performed on a string of 8000
spins with periodic boundary conditions �N+1=�1. We have
checked that with this size our simulations are free from
finite-size effects. An average of over five to ten realizations
is made for each simulation. In the limit of low temperatures,
to which we are interested in, the kinetics becomes very slow
since, as it will be discussed below, time rescales as T−1/2;
simulations are therefore quite time consuming in this re-
gion. The dynamics of a low-temperature quench is charac-
terized by different subsequent regimes, which are separately
discussed below.

A. Pinning (quenches to T=0)

The kinetics of the quench to T=0 is determined by the
existence of frozen states where the system gets trapped after

a while. The nature of these states can be understood by
looking at the first line �denoted as time t� of Fig. 2. The two
spins on sites i , i+1 are parallel; hence, no move involving
this couple can be done since the angle �i is not defined. On
the left and on the right of the aligned spins there are regions
where the spins are coplanar, and hence v� i are parallel and
point along certain directions, denoted by �, �, etc., which
can be considered as different phases of the system. These
phases extend up to another couple of parallel spins �not
shown in the figure�. As it will be shown in Sec. III C, in
quenches to finite temperatures the system depins after a
while and these coplanar regions coarsen much in the same
way as equilibrium phases do in usual coarsening systems.
Due to this analogy, the term phases are used also here.
However it must be noticed that regions of coplanarity are
not equilibrium phases, because in equilibrium spins are co-
planar and aligned, while here they typically rotate �see Fig.
2�, as will be discussed in Sec. III C. For the following dis-
cussions, we also introduce the terminology distance be-
tween two phases � ,� related to the angle by which the
vectors v� i of the phase � must rotate in order to align with
those of the phase �. In this sense we will also talk of nearby
or distant phase.

As anticipated in Sec. I, the impossibility to eliminate
couples of parallel spins by means of local rearrangements,
involving �� i ,�� i+1 alone, makes them reminiscent of topo-
logical defects. Actually these spins represent real topologi-
cal defects as is readily seen by considering the representa-
tion in terms of v� i instead of �� i. With this description, phases
are domains in a strict sense, namely, v� i is constant in the
interior of coplanar regions. They will be denoted as domains
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FIG. 2. �Color online� Schematic representation of spin configu-
rations at three subsequent times t , t+1, t+2. For each time the
upper and lower lines represent the �� and v� configurations. Given a
vector �� �or v�� with components �a ,b ,c�, the arrow in the figure is
a vector of components �a ,b ,0�, namely, the projection of �� on the
two-dimensional plane of the figure. The third component c can be
read off by the constraint of unitary length of �� with the help of the
unitary circles represented around each vector. The origin of a vec-
tor is marked with a heavy dot when c�0 �vector pointing behind
the figure� or with an open circle when c�0. The meaning of the
phases � ,� ,� is discussed in the text.
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in the following, or planes, in view of the coplanarity of their
spins, without further specification. Different domains are
separated by sharp boundaries and, right on top of them,
there is a localized defect where v� i is not defined. Then, once
the proper representation is considered, parallel spins qualify
as defects in the usual sense. Since spins are coplanar inside
the domains and parallel on a defect, it is clear that any move
involving any couple of spins is forbidden at T=0, and the
dynamics is frozen on states like those depicted on the first
line of Fig. 2. By identifying aligned spins as defects sepa-
rating domains, an analogy with the COP Ising model, which
freezes as well at T=0 �17�, can be drawn. Let us mention,
however, at least two main differences. First, the constraint
on the motion of parallel spins in the Heisenberg model is
related to the kinetic rule and not to T=0. Second, as will be
discussed in Sec. III D, the defects in the Heisenberg model
are unstable, although their lifetime diverges in the T→0
limit.

When a quench to T=0 is performed, the system starts
reducing its energy by ordering the spins until some couples
happen to be nearly parallel. Meanwhile the n spins between
two defects adapt themselves on a plane. Since n is a finite
number this process can be accomplished in a finite time. At
this point, the model gets trapped in one of the absorbing
states discussed above. Notice that, in a situation as the one
discussed here, LV�t� and LC�t� describe, respectively, the
length of the domains and the coherence length of the spins
in the bulk of the planes. The evolution of the model toward
the pinned state can be studied by following the evolution of
these lengths in the insets of Figs. 3 and 4. In a quench to
T=0 both these quantities initially grow but then saturate to
a constant value when the system freezes.

B. Depinning

When T�0 but sufficiently small, the dynamics leading
the system to the frozen state proceeds practically as in the

case T=0 described in Sec. III A, since it is entirely domi-
nated by the moves which lower the energy which are not
affected much by a small T. When the system is trapped in
the absorbing state, however, activated moves can occur in-
side the domains if T�0. According to Eq. �6�, since the
system is still very disordered in this stage, both di and pi are

on average large and the typical value �̄ of the angle �i �we
will use the overbar in the following to denote the typical
value of a quantity� is small. Notice, in fact, that even for the
smallest temperatures considered in the simulations reported
in Figs. 3 and 4 pinning is never complete: LC�t� and LV�t�
keep slowly increasing because couples of spins are tiny
twisted. This mechanism eventually depins the system from
the absorbing state, restoring the dynamics, as shown in Figs.
3 and 4, after a characteristic time 
p�T�. From Eq. �6�, as-

suming �̄ to be small, one has cos �̄−1� �̄2�2T / �d̄p̄� and

hence �̄�T1/2. Since �̄ is tiny, a number n�T��� / �̄ of these
moves are needed in order to produce an appreciable decor-
relation �of an angle of order, say, �� with respect to the
pinned state and to restart the dynamics. Therefore we find


p�T� � T−1/2. �15�

According to this result, for sufficiently low temperatures the
curves for LC�t� or LV�t� �and, more generally, of any time-
dependent observable� should collapse after the pinning
stage when plotted against tT1/2. Figures 3 and 4 show that
this is indeed quite well verified over 10 decades in tempera-
ture �with some deviations that will be discussed in Sec.
III C�.

C. First phase-ordering regime: Presence of domains

Here we give a schematic description of the microscopic
kinetics in a first dynamical regime occurring after the de-
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FIG. 3. �Color online� The quantity LC�t� is plotted against res-
caled time tT1/2 for different temperatures. The dotted-dashed line is
the expected behavior LC�t�� �tT1/2�1/4 after the depinning �see
text�. In the inset the same quantity is plotted against time in the
case T=0.
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FIG. 4. �Color online� The quantity LV�t� is plotted against res-
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the expected behavior LV�t�� �tT1/2�1/3 in the first phase-ordering
regime �see text�. In the inset the same quantity is plotted against
time in the case T=0.
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pinning. In this regime spins evolve in such a way that the
coplanarity of the spins inside the phases is preserved. Actu-
ally, the domains compete among themselves and grow much
in the same way as the equilibrium phases in usual coarsen-
ing systems, as testified bye the increase in LV�t� �see Fig. 4�.
This regime lasts until the phenomenon of the breakdown of
the plains, discussed in Sec. III D, occurs. �When this hap-
pens LV�t� stops growing and goes abruptly to zero. The end
of this first dynamical stage can then be easily recognized by
inspection of Fig. 4.�

As we will explain below, in this regime two mechanisms
are at work: the former is responsible for the coarsening of
the domains, while the latter is the phase ordering of the
spins inside the domains. Since these mechanisms are asso-
ciated to two different growing lengths, dynamical scaling is
not obeyed, as we will show explicitly.

1. Coarsening of the domains

In the limit of small T, among the moves discussed in Sec.
III B, those which produce the smallest energy increase are
overwhelmingly favored. These are generally the moves in-
volving the spins near the boundary of a plane, for instance,
those on sites i−1 and i in Fig. 2. The effect of this move
occurring in the � phase is the nucleation of a third phase,
denoted by �, as it is clear considering the direction of the
vector v� i−1 in the second line �denoted as time t+1� of the
figure �a spurious phase on site i−2 is also generated, whose
presence is, however, irrelevant�. At this point the dynamics
may proceed by rotating the spins �� i−2 ,�� i−1 in order to make
�� i−2, �� i−1, and �� i coplanar �third line, denoted as time t+2, in
the figure�. In this way the new phase � may spread replac-
ing the pre-existing phase �. After the complete replacement
of the phase � with � �when this occurs�, if the energy of the
system is increased �because � is more distant to the neigh-
boring phase � �or the one on the left, not shown in the
figure� than the original � phase, the � phase is quickly
readsorbed by reversing the process. Conversely, if the en-
ergy of the system is decreased a new blocked state is
reached, characterized by domains of more nearby phases.
This mechanism provides a direction to the process, favoring
on the average the formation of new phases for which a
diminishing of the system energy occurs. At this point the
process can start again with the activated nucleation of a new
phase replacing � and so on repeatedly until one of the two
adjacent phases �say �� extends over the original domain of
the � phase, increasing the typical size of the domains.

The basic steps of this ordering process may recall what
happens in the COP Ising model �17�. Actually, in both cases
there are domains of different phases ��i= �1 in Ising and
v� i=�, �, etc. in the Heisenberg models� separated by sharp
interfaces �see also the discussion on Porod’s tails below in
this section�. In both cases, the first step is the nucleation of
a germ of another phase �the evaporation of a monomer in
Ising� inside a domain of a preexistent phase. After nucle-
ation, the kinetics proceeds by a random motion of the nucle-
ated phase. This analogy is not only qualitative since, as
we show below, the growth exponent of LV�t� is the same
�z=3�.

Actually this can be inferred by the following argument.
After the first move, the position of the boundary between
the new nucleated phase � and the remaining of the old �
phase performs a random walk. Considering the long-time
regime, where LV�t� is large, most of the times the boundary
returns to its original position j. In this case the � phase is
readsorbed after the duration 
�LV

2�t� of the random walk.
The probability that the interface moves a distance LV�t� and
hence the � phase is eliminated is proportional to 1 /LV�t�
�17�; for this reason the whole process must be repeated
LV�t� times in order to substitute the old phase �. This re-
quires a time


† � LV�t�
 � LV�t�3. �16�

This conjecture has been tested by means of numerical simu-
lations, mimicking the evolution of a single domain as fol-
lows. We have prepared a domain of LV initially coplanar
spins, with a uniform rotation such that �i= �̄ , ∀ i in the bulk
of the domain. The boundary condition is made of two spins
�on each side� lying on a differently oriented plane. Then we
started the dynamics and recorded the behavior of the central
spin as a function of time for different choices of LV and of �̄.
The results are presented in Fig. 5. The central spin can be
described by a couple of angles 	 ,�. Here we plot the be-
havior of 	 �similar results are obtained for �� as time
passes. In an early stage t�
† the central spin remains
blocked since the dynamics starts from the boundary and
proceeds toward the interior, as discussed above. Then 	 is
constant. Later, from t=
† onward the central spin begins to
rotate unless the entire plane is aligned with the plane de-
scribed by the boundary conditions. This is testified by the
linear increase in 	 toward a limiting final value. The figure
shows that the curves for different LV collapse when time is
rescaled as t /LV

3 . This supports Eq. �16�. Notice also that, by
considering different temperatures and �̄, one obtains data
collapse by plotting 	��̄ /T�1/2. This is a consequence of Eq.
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FIG. 5. �Color online� Simulation of a single domain of LV

spins. The angle 	 of the central spin �rescaled by T1/2� is plotted
against rescaled time t /LV
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�6�. Actually di can be written as di=��2�i�. Then d̄ is of
order ��̄�t�. Analogously, it can be shown that also p̄
���̄�t�. Inserting these typical quantities in Eq. �6�, and let-

ting cos �̄�1− �̄2, since in the late stage spins are rather
aligned, one obtains

�̄ � 
T

�̄
�1/2

. �17�

In conclusion, the numerical simulation of the evolution of
the single domain confirms our scaling hypothesis.

At low temperatures, as discussed above, �̄ is small and
hence the new generated � phase is only slightly different
from the pre-existing �. Reasoning along the same lines as
regarding the simulation of a single domain, the process of
replacement of an old phase with a new one must be repeated
a number nr�T��T−1/2 of times in order to obtain, in place of
the original � phase, the phase �say �� of one of the neigh-
boring domains. In conclusion, the complete replacement of
the phase � with a neighboring one ��� requires a time of
order �t�nr�T�LV

3 . When this process is completed the typi-
cal length of a domain is increased of a quantity �LV�t�
�LV�t�. Therefore dLV�t� /dt��LV�t� /�t�LV�t�−2T1/2 and
hence

LV�t� � �tT1/2�1/3 �18�

This prediction can be checked in Fig. 4. Here one observes
that the curves for LV�t� relative to different temperature
quenches collapse �after the pinning� when plotted against
tT1/2. The collapse is good for the lower temperatures �for
T�10−4�, while it is quite rough at higher temperatures. This
is expected since our results are valid in the T→0 limit.
Regarding the power growth law �18�, it is satisfactorily con-
firmed by the data in a certain time window after the depin-
ning. For longer times LV�t� goes abruptly to zero due to the
phenomenon of the breakdown of the planes that will be
discussed in Sec. III D. As explained in Sec. III D this phe-
nomenon is delayed lowering T �actually, for a relatively
high temperature as T�10−3 it prevents the observation of
law �18��.

We consider now the issue of dynamical scaling. In Fig. 6
we plot V�r , t� against x=r /LV�t� in the range of times in
which this first dynamical regime occurs. One observes a
good data collapse up to r /LV�t��1.5. According to Eq.
�14�, this implies that V�r , t� takes a scaling form in this
range of r /LV�t�. Since usually scaling is first achieved for
smaller distances, one could infer that, by pushing the simu-
lations to much longer times, one could observe collapse on
a larger range of /LV�t� and conclude that the whole V�r , t�
scales. This is surprising, since we have anticipated that dy-
namical scaling is violated in this regime. However this hap-
pens because the correlator V�r , t�, due to its construction,
exclusively probes the dynamics of the boundaries of the
domains, being blind with respect to the spin configuration
inside, whose evolution is responsible for the breakdown of
dynamical scaling, as we will discuss in Sec. III C 2. One
could say that, restricting the attention on the plane bound-
aries, scaling is obeyed, although globally it is not. A similar
situation is observed in the d=1 XY model �2� where again

scaling does not hold �for a different reason� but particular
correlators, such as C�r , t� or V�r , t�, take scaling forms.
Clearly this is not a general property of every observable, as
genuine scaling should imply. Finally, the Porod law �10� is
obeyed, signaling that interfaces are sharp and that domains
remain well defined while coarsening in this whole regime.

2. Phase ordering of the spins

Inside the planes, the spins smoothly rotate generating
textures, much like in the one dimensional XY model �2�.
Comparing Figs. 3 and 4 one understands that the length
LC�t� associated to the spin-spin coherence is much smaller
than LV�t�, particularly for large times. Then, what really
matters for LC�t� is the evolution of the spins in the bulk of
the domains, where, since the interfaces are far away, all the
additional complications related to their presence become ir-
relevant. As far as the spin-spin correlations are considered,
therefore, one expects the system to behave as a normal con-
served vectorial system �but with N=2�, namely, C�r , t� to
obey the scaling form �8� and Eq. �2� to hold. These features
can be checked in Figs. 3 and 7. Regarding the growth law of
LC�t� we obtain a behavior in good agreement with what
expected, namely, Eq. �2�, for the higher temperatures,
namely, for T�10−4. For the lower temperatures, namely,
T�10−7, we measure an effective exponent somewhat larger
than 1/4. The case with T=10−6 is somehow in between since
the curve initially �after the pinning� grows with an exponent
larger than 1/4 but then the slope is gradually reduced and an
exponent in agreement with 1/4 is obtained toward the end of
the simulation. The behavior of this curve may probably pro-
vide an interpretation for what is observed for the lower tem-
peratures. Namely, the behavior seems to set in after a tran-
sient which widens as T is lowered. In the transient a slightly
larger exponent is observed. Notice that the curves for LC�t�
roughly collapse �we recall that the figure covers 10 decades
in T� when plotted against tT1/2, for the same reason of LV�t�.
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FIG. 6. �Color online� V�r , t� is plotted against r /LV�t� for a
quench to T=10−7 and different times. The dashed line is the Porod
law �10�.
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Similarly, the collapse seems to improve in quality as T
→0, as expected, while for T�10−3 the collapse is poor.

The scaling form �8� can be checked in Fig. 7. Here one
observes a good data collapse up to r /LC�t��1.5, similarly
to what is observed for V�r , t�. Concerning the shape of
C�r , t�, differently from V�r , t� it does not display the Porod’s
tail, as expected since the rotation of the spins is smooth and
there are no sharp interfaces. On the other hand, one ob-
serves �in the inset� behavior �9� typical of vectorial systems
but, interestingly, with an effective value N=2 which is
clearly interpreted as due to the fact that spins in this regime
lie on planes.

The results discussed insofar provide a picture of a system
with two different ordering mechanisms at work, coarsening
of the planes and phase ordering of the spins. These pro-
foundly different processes coexist in this regime, apparently
in a rather independent way, without interfering, possibly
because they act on different length scales. To each mecha-
nism a particular correlation function is naturally associated,
giving rise to two distinct lengths growing with different
exponents. Due to that, dynamical scaling is violated even if
V�r , t� and C�r , t� possibly scale separately with respect to
LV�t� and LC�t�.

D. Breakdown of the domains

As discussed above, although thermal fluctuations be-
come relevant in depinning the system, their effect in the
previous regimes is basically to produce the coarsening of
the planes without dissolving them. This is because, since in

the early stage the spins are quite misaligned, both d̄ and p̄
are rather large and hence according to Eq. �6�, the typical

rotation angle �̄ is rather small.

As the dynamics proceeds, however, textures stretch,

spins align, and d̄ and p̄ decrease. In view of Eq. �6�, at a

certain time 
v�T�, values of �̄ sufficiently large, namely,

cos �̄−1 of order unity, become available, which are suffi-
cient to destroy the structure of the domains. The breakdown
of the planes can be nicely detected by directly looking at the
spin configuration or, more properly, by inspection of V�r , t�.
In fact, while for t�
v�T�, V�r , t� takes the scaling form
�14�, for t�
v�T�, when the domain disappears, it quickly
collapses to a rapidly decaying function. Meanwhile, LV�t�
stops growing and abruptly decreases, as shown in Fig. 4.


v�T� can be evaluated by means of Eq. �17�. The condi-

tion cos �̄−1�1 for the breakdown of the plains is realized
when

�̄�
v� � AT , �19�

where A is a constant. This is very well confirmed numeri-
cally. In Fig. 8, we plot the average energy computed at the
time when LV�t� reaches its maximum against the tempera-
ture of the quench. We find that Eq. �19� is well verified with
A�2.76.

In order to estimate 
v�T� we notice that �̄�t� is entirely
associated with the smooth rotation of the spins in the bulk
of the domains, because on the interface between domains
spins are perfectly aligned. The typical angle between two
adjacent spins is 	̄�LC

−1�t�. Hence the energy �̄�t�=1
−cos 	̄�LC

−2�t�, a fact that we have verified with good ac-
curacy in the simulations. This leads to


v�T� � KT−�, � =
5

2
, �20�

where K is a constant. The dependence of 
v�T� on tempera-
ture is shown in the inset of Fig. 8. We find a power-law
behavior but with a value ��2.3 only in rough agreement
with the expected value �=5 /2. This partial agreement is
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probably due to the fact that our results are only valid in the
asymptotic limit of small T and large times t. Here, for in-
stance, we cannot consider very small temperatures since for
T�10−3 the time of domain breakdown is too long for our
simulations. However, as already observed, in such large-
temperature regime the numerical data do not scale accord-
ing to the asymptotic behavior �recall the discussion regard-
ing Figs. 3 and 4 in Sec. III C�.

Since the time to approach and leave the frozen state is
negligible in the T→0 limit, 
v�T� represents also the dura-
tion of the regime where scaling is violated. Notice that it
increases quite rapidly as quenches are made deeper.

E. Second phase-ordering regime: Absence of domains

We have seen that the breakdown of the domains occurs
when the energy �̄�t� of the system is comparable to AT �A
�2.76� �Eq. �19��. On the other hand, the system equilibrates
at the time 
eq�T� when �̄�t� reaches the equilibrium value
�̄�
eq�=Eeq�T��T. Hence the energy must still be lowered
after the breakdown of the planes. Then, phase ordering must
continue even after 
v�T�. Clearly, once the domains are
eliminated, smooth rotations of the order parameter remain
the only mechanism at work, and one expects the usual
coarsening mechanism of vectorial systems for LC�t�, char-
acterized by dynamical scaling with z=4. This can be
checked in Fig. 3. One can observe that the power law �2�
continues to be valid, with no apparent modifications, even
after the breakdown of the planes, signaled by the decrease
in LV�t� �Fig. 4�.

F. Equilibration

Recalling that Eeq�T��T, using again �̄�t��LC�t�−2 one
obtains


eq�T� � A2
v�T� . �21�

This results shows that the duration of this regime character-
ized by dynamical scaling is comparable to that of the pre-
vious one. Their duration diverges with the same exponent as
T→0.

In the simulations, after 
eq�T� the system is observed to
enter the equilibrium stationary state. Computing the behav-
ior of some equilibrium quantities as, for instance, Eeq�T� or
��T�, we found the exact equilibrium results of Sec. II with
great accuracy. This confirms the correctness and the effi-
ciency of the heat-bath transition rates �4�.

IV. SUMMARY AND CONCLUSIONS

In this paper we have studied the kinetics of the one-
dimensional Heisenberg model with conserved order param-
eter. The distinguishing feature of this model is the presence
of defects in the form of couples of parallel spins separating
coplanar regions. These are quite unusual and somewhat
counterintuitive defects since normally one associates the no-
tion of defect to regions where the order parameter varies
quite abruptly, while here spins are perfectly aligned on the
defect. Their nature, however, is clearly manifested in the
representation of v� i, where they qualify as unstable �but long

living in deep quenches�, pointlike defects. Their presence
makes the kinetics similar in some respect to that of a scalar
order parameter, because defects play the role of interfaces in
the v� i representation. In particular, since the removal of de-
fects can only be achieved by activated moves, in a low-
temperature quench the system initially pins; the later ther-
mally activated evolution is characterized by coarsening of
the domains with the scalarlike exponent z=3. The vectorial
nature of the system makes itself manifest particularly in the
smooth rotations of the spins inside the domains, producing
alignment over a typical length growing with an exponent
z=4 characteristic of vectorial systems. This interplay be-
tween two different ordering mechanisms continues up to a
time 
v�T� �Eq. �20��, which represents the lifetime of un-
stable defects. After, defects are removed by thermal fluctua-
tions and a second phase-ordering regime sets in, character-
ized only by smooth variations of the spins, where dynamical
scaling is obeyed. It is worth mentioning that the duration of
the second phase-ordering regime, without defects, is com-
parable with respect to that of the first one in the low-
temperature limit.

These features are unusual and unexpected in nondisor-
dered phase-ordering systems. A natural question, therefore,
regards their generality, namely, if one could expect a similar
behavior in other systems. The peculiar dynamics found in
the Heisenberg chain is obviously related to the conserved
character of the kinetics. Therefore we do not expect to find
something similar in systems without the conservation law,
because in that case parallel spins can be singularly updated
and, in doing so, the defect is removed. In order to check this
we have performed simulations of the system subjected to
the same Hamiltonian but with a dynamics which does not
conserve the magnetization. As expected, in this case we did
not find the unusual features observed with COP, such as
scaling violations. The same is found by considering a dy-
namics where conservation is imposed only globally �by ex-
changing two spins without the constraint of neighborhood�,
as expected since it is known �1,18� that the global conser-
vation law is irrelevant. Restricting to systems where conser-
vation is realized locally, as far as we can see there is no
reason preventing the formation of similar defects for N�3
or, perhaps, even with d�1. The other ingredient which
turns out to be fundamental in the model considered insofar
is the ability of the system to squeeze all the n spins between
two defects into a plane, during the regime preceding the
pinning. This reduction in the effective internal dimensional-
ity of the order parameter from N to N−1 can be achieved
because, since n is finite, these spin can be projected on the
most energetically favorable plane in a finite time �the time
over which the system pins at T=0�. On lattices, the feature
of n being finite is related to the one-dimensional nature of
the system. In fact, in d�1 the typical configuration of the
system is a bicontinuous percolating structure �1� and, even
assuming that a relevant number of couples of parallel spins
may be formed in an early stage, their geometry should not
enclose a domain with a finite number n of spins. Actually,
we have run some simulations of the Heisenberg model in
d=2 and we have not find the peculiarities of the one-
dimensional case. On inhomogeneous systems, n is expected
to be finite on finitely ramified structures. Therefore, a simi-
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lar behavior could be observed on comb lattices, t fractals,
and other finitely ramified networks, where phase ordering
for discrete models display one-dimensional features �19,20�.

On the basis of these reasoning, we also infer that a be-
havior similar to that of Heisenberg chain with COP could be
expected for a generic O�N� model �with N�3� with COP in
d=1 or, possibly, on finitely ramified networks. Let us men-
tion that our simulations of the O�4� model quenched to T
=0 show pinning in states characterized by defects similar to
those of the Heisenberg model. A rather complete analysis of

the kinetics for generic N, similar to that presented in this
paper, is geometrically rather complicated and beyond the
scope of this paper, but may represent an interesting issue for
further research.
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